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Hello and welcome to our next lecture on Cryptography.

(Refer Slide Time: 00:32)

Let us start with the brief outline for today’s talk. We would start with DES; it is an

acronym for data encryption standards, then will look at couple of more acronyms idea

PGP, RSA, and DH protocols. So, basically today we are going to go through a set of

algorithms and protocols.



(Refer Slide Time: 01:01)

So,  let  us start  with a  quick recap what  we have studied so far. We have looked at

introduction  to  cryptography,  followed  by  symmetric  key  and  asymmetric  key

cryptography, and where a very brief introduction to cryptanalysis.

(Refer Slide Time: 01:17)

Now, the basic premise is that we start with the plaintext go for encrypt, and obtain a

ciphertext which is not discernable to the unintended users. But that intended valid user

goes to decryption process and gets the plaintext back.



(Refer Slide Time: 01:40)

We looked at the symmetric key encryption,  we start with the plaintext  again we go

through  the  encryption  block  using  one  key, and then  we receive  the  ciphertext  the

ciphertext undergoes a decryption using the same key and we get the plaintext. So, this

was the symmetric key or the secret key encryption method, because the key needs to be

kept secret in order to preserve the authenticity of the message.

(Refer Slide Time: 02:08)

Now, we looked at symmetric key algorithms, which are of 2 types block ciphers where

we process block by block and encrypt each block, using a key or a set of keys, or sub



keys whereas stream cipher works. It is like the convolution encoder we have seen it is

with memory and that the current output depends on the past inputs and current input.

(Refer Slide Time: 02:39)

So now we go on to look at some of the standards past present in future which help us

understand how we use the theory in practice.  So, we looked at  this  data encryption

standard from the classical perspective, because this is kind of now obsolete it has been

replaced by AES advanced encryption standard, but for classical reasons let us look at it.

So, basically it was created by IBM in the 70's.

(Refer Slide Time: 03:10)

 



And what it did provide and it still does provide is a very high level of security with

limited key size.

So, remember the security depends on the key and not on the secrecy of the algorithm so,

D is algorithm is out in the open, right. So, this is a very efficient algorithm classically

important and it is most importantly the stepping stone for the next generation encryption

standards. So, the next generation is the advanced encryption standard AES which is now

use worldwide and it is supersedes the DES or the data encryption standard with that

background.

(Refer Slide Time: 03:51)

Let us quickly look at what DES does and how does it work. So, it is a symmetric block

cipher algorithm, we have studied what are block cipher algorithms.

So, the key length typically is 64 bits, and it works with a block size of 64 bits. So, we

take a non-coded plaintext of 64-bit block, and then work with it using a 64 bit. Being

symmetric the same key that is used for encryption, and is used for description and same

as the setting for AES, but today we will just discuss DES in detail.



(Refer Slide Time: 04:32)

So, what are the steps? The first step is a transposition is carried out according to the set

up a table, which is the initial permutation. So, the 64-bit plaintext block is; first, split

into 2 32 bit blocks. And then 16 identical operations call rounds are carried out on each

halves, ok. This is made public people know how to do this, right. And then the 2 halves

of 32 bit block a joined back together.

(Refer Slide Time: 05:05)

The 64 bit keys first reduced to 56, bits’ key by removing every 8 bit,  and these are

probably later used for error checking. So, 16 different 48-bit sub keys are then created,



one for each round so, we talked about those earlier 16 rounds. So, this is achieved by

splitting the 56-bit key into 2 halves, and then circularly shifting them left by 1 or 2 bits.

So, these are the details basically what it tells us is that we sub divided the block, and

then we take the keys, and then we do the permutations and then finally, we carry out the

encoding.

So, different groups of key bits are used as different sub keys. The process that we just

not discussed is called compression permutation, due to the transposition of the bits and

the reduction of the overall size, we call it as a compression permutation.

(Refer Slide Time: 06:08)

After the key transformation, whichever half blocked is being operated upon undergoes

an  expansion  permutation;  now, after  the  compression  operation.  So,  details  are  as

follows  is  how you  can  basically  in  this  operation  the  expansion  transpositions  are

achieved simultaneously by allowing forth and the first bit in each block to appear twice

in the output. Therefore, we replicate and therefore we expand.



(Refer Slide Time: 06:35)

We can look at it in terms of a diagram. So, you have these 4 bits, and this forth bit is

replicated  some.  So,  with fifth  bit  is  replicate  so,  we kind of expand.  So,  there is  a

expansion permutation this is a spelling mistake.

(Refer Slide Time: 06:52)

Here,  but  what  does  this  (Refer  Time:  06:55)  this  expansion permutation  achieves  3

things. Firstly, it increases the size from 32 bits to 48 bits.

It  produces  a  longest  string  of  data,  for  the  substitution  operation  that  subsequently

compresses it, and most importantly because in the subsequent substitutions, the first and



the  forth  bits  appearing  to  S  boxes;  which  will  describe  shortly  S  boxes  stand  for

substitution boxes. And the effect of is this is that the dependency of the output bits on

the input bits increases rapidly. And so, therefore, does the security of the algorithm.

(Refer Slide Time: 07:36)

So, after this in DES, the next operation is substitutions on the expanded blocks, there

are 8 substitution boxes called S boxes, the first S box operates on the first 6 bits of the

48-bit expanded block, similarly the second S box on the next 6 and so on and so forth.

Again  these  are  the  details  these  are  openly  available.  And  the  net  result  of  the

substitution phase is, that 8 4 bit blocks that are then combined into 30, 4, 2-bit block.

So, basically we break it up do the operations do the permutations, do the expansion then

combine them back into 32-bit block. This is these are the details of the operations.



(Refer Slide Time: 08:20)

So, this is how this 8 S boxes work with you start with 48 bits, and divided into S boxes

and then go on to get the 32-bit output.

(Refer Slide Time: 08:32)

So,  the  32-bit  output  of  the  substitution  phase  that  undergoes  a  straightforward

transposition, and using a table sometimes known as the P box for permutation box. And

basically  after  all  the rounds that  have been completed the 2 half  box remember we

started  off  with  2  32-bit  half  are  recombined  to  form  a  64-bit  output.  The  final



permutations performed on it and the resulting 64-bit block is finally, the DES encrypted

ciphertext, ok.

So, just a series of steps can be encoded into a computer program very easily.

(Refer Slide Time: 09:11)

So, decryption part is quite easy, provided you have the right key, thanks to it is design

the decryption algorithm is identical, but in the reverse order of the encryption algorithm.

So, whatever we do splitting we do combining we do substitution, we can undo that in

the decryption process. The only alteration that is made is to decrypt DES ciphertext, the

subsets of the key used in each rounds are used in the reverse order. DES is really no

longer used; today we use AES, but you have understood the concept AES is based on

rijndael cipher developed by 2 Belgian cryptographer Joan Daemen and Vincent Rijmen.

And this  rijndael  cipher  that  we use  in  AES is  belongs  to  a  family  of  ciphers  with

different keys and block sizes.

This in general gives a bird’s eye view so, to say of the DES how it does and how you

can go and make the different steps in order.



(Refer Slide Time: 10:19)

We now move on to the next so, to say defect to standard, which is called international

data encryption algorithm, or the acronym is idea what does it do? Well, it was created in

1990's, and it was originally called the proposed encryption standard even after it was

proposed. And then in the sub following year it was strengthened and it was called the

improved proposed encryption standard or IPES.

Later on the next year the name was formerly change to international data encryptions

algorithm idea, ok. And that is how it is known. And we know idea as being used in PGP

or the pretty good privacy which is pretty  common for securing our emails,  we will

spend one slide on PGP later on in this talk. Well, the good news is in 2012, the patents

regarding idea expired and now, it is patent free and thus free to use. So, we can expect a

lot of proliferation for this idea.



(Refer Slide Time: 11:30)

So, let us quickly spend a few minutes on looking at overall how idea works. First of all,

idea is a symmetric block cipher, with a key length of 128 bits. So, immediately the

strength of the algorithm goes up because the key length is pretty good. So, block size

use a 64 bits, and as with DES the algorithm provides the encryption and decryption. So,

it is a symmetric idea again has some rounds actually 8 rounds using 52 sub keys rest of

the matter of the detail how these rounds are executed and how these sub keys are found,

each round use a 6 sub keys with the remaining 4 being used for the output.

(Refer Slide Time: 12:14)



So firstly, what do we do with this 128-bit key, is divided into 8 16 bit keys to provide

the first 8 sub keys. The bits of the original key are then shifted 25 bits to the left, and

then it is again split into 8 sub keys, these details can be worked out, and the shifting and

then splitting is repeated until all 52 sub keys have been created.

(Refer Slide Time: 12:40)

So, what do we do with them? The 64-bit plaintext block that we have to encode is first

split into 4 blocks. So, remember the key length was 128, which was used to generate

sub keys,  but  the  block length  for  the  un-coded the  plaintext  is  64 bits,  which  first

divided into 4 16 bit blocks B 1 to B 4.

And then we have to do this keys, somehow operate the keys on the blocks to get output

block. So, for example, the output block one takes the first sub block of the plaintext and

multiplied exhort, rather with the first key, similarly second one is the second key; so we

of these operations that you can carry out up to this 14 output blocks.



(Refer Slide Time: 13:30)

Again very, very easy to implement in hardware, ok, these are all multiplications.

(Refer Slide Time: 13:40)

So now what do we do? In the input to the next round, we complete the first round, the 4

sub blocks are used in that order O B 1 1 O B 1 3 O B 1 2 and O B 1 4. And after the 8

round 4 final output blocks F 1 to F 4 are used for the final transformation to produce the

4 sub blocks of the ciphertext. And how are they formed? Again C 1 is F 1 star S K 49

and so on and so forth. And you get the ciphertext eventually C 1 C 2 C 3 and C 4, these

are the ciphertext blocks.



(Refer Slide Time: 14:25)

Now, let us look at the advantages, first of all it is the speed, very good for real time

operations where comparing it with DES for classical reasons, but the point remains the

same DES almost twice as fast as. So, a idea is twice as fast as DES, but at the same time

more secure. So, brute force approach would require you to try all 2 raise power 128

possible keys which is huge. I mean, if you look at one billion key attempts per second it

will take you 10 raise power 13 years which is more than the age of the universe.

(Refer Slide Time: 15:06)



So, it is pretty secure. Let us spent couple of more minutes on the next family of ciphers

called the R C ciphers, they were designed by Ron Rivest, for the RSA data security.

They also called Ron’s code or Rivest cipher, that that is the R C acronym. So, there is R

C 1 R C 2 R C 3 R C 4 so and so forth. R C 2 was designed as a quick fix replacement

for DES that is more secure more efficient. It is a block cipher with a variable key size

and has a proprietary algorithm. So, innovate is the disadvantage, R C 2 is a variable key

length cipher. And so, it is used also in the Microsoft base cryptographic provider, the

key length is 40 bits hardwired, and when using this Microsoft enhance cryptographic

provider, the key length could be put to 128 bits by default, right.

(Refer Slide Time: 16:17)

Similarly, we have another example of R C 4, it has a variable key size, but this is now

stream cipher as a post to the block cipher. So, we do not really know the details of the

algorithm, but it is very easy to describe and program. And just like R C 2 it is also

supported by Microsoft base cryptographic provider. The next version R C 5 is a block

cipher  again designed for speed.  So, basically  there is  a tradeoff between speed and

security, and the key length of course, the computational complexity also comes out. So,

R C 5 has a variable block size key size number of iterations, all of them can be fixed by

the user.

What is a very interesting is that the key size, which has a direct implication on the

security can be as large as 2048 bits.



(Refer Slide Time: 17:19)

So, far we have studying these private key encryptions, symmetric key where the same

key is used for encoding and decoding. We now change gears and we look at the public

key encryption where we have the notion of a public key and a private key. We talked

about it briefly in the previous lecture, but let us look at some examples and considerate

in more detail. So, public key and algorithms by definition are asymmetric. So, the key

used to encrypt is definitely different from the key used to decrypt. So, the encryption

key is called the public key, where is the decryption is called the private key.

This type of algorithm has a number of advantages, right, because the key transfer key

exchange it is really much more efficient in this case, ok. So, the basic idea is in the

recipient can make his or her public key available widely. And anybody wants to send

the message can use the public key to encode and send, whereas it can only be opened by

the private  key. So, only the recipient  intended recipient  legitimate  receiver  with the

private key can decrypt the message.



(Refer Slide Time: 18:45)

So,  disadvantage  of  public  key  algorithms  is  that  they  are  more  computationally

intensive.  So,  it  is  short  messages  for  key  exchange,  but  not  for  large  volumes  of

messages. So, public key standards the P K C S are specifications produced by the RSA

labs in cooperation with secure system developers worldwide.

(Refer Slide Time: 19:10)

So, let us now talk about one specific example called the RSA algorithm, named after

Rivest  Shamir  and Adleman,  the  3 inventors  right.  So,  the  first  effective  public  key

algorithms and it has stood the test of time. So, public key algorithms has we know rely



on being computationally unfeasible to recover the private key, from the public key that

is  the  basic  premise  it  is  a  computational  difficulty  which  prevents  the  hacker

deciphering the message.

(Refer Slide Time: 19:42)

So, what does RSA rely on? The basic idea is that it believes that it is easy to multiply 2

large prime numbers, but extremely hard to factor them back. So, the one-line motivation

regarding RSA easy to multiply difficult to factor factoring a number means finding it is

prime factors. So, for example, here we know 10 can be written as into 5, 60 again can

be broken up and these are obvious, but the moment I go to slightly larger number like 2

raise power 113 minus 1 factorization becomes extremely hard.

So, in this example, you can see going from multiplication going from the right hand side

to the left hand side is very easy I can multiply them and get you this big number. But

given this huge number, getting the factors is a hard task. In fact,  some of the good

efficient  computers  a  tested  for  this  speed  by  giving  them  difficult  numbers  large

numbers to be factorized and to check whether they are prime numbers.



(Refer Slide Time: 21:01)

So, how do we make this RSA algorithm work? The algorithm is as follows, to very large

prime numbers large, how large? Are there enough last prime numbers? Which are those

questions,  but  let  us  assume  that  there  enough  large  prime  numbers  will  ask  those

questions, but let us assume that there are enough large prime numbers.

So,  we pick 2 of them to very large prime numbers normally  of  similar  lengths  are

randomly chosen, and then multiplied together. So, A and B are multiplied to get N. And

then we get another number T as a product of a minus 1 times B minus 1. So, third

number is also chosen randomly as the public key E so, it is chosen. Such that it is no

common  factor,  what  does  it  mean?  That  is  relatively  prime  with  T. So,  it  has  no

common factors with T, and how did we get T? A minus 1 into B minus 1, what is A?

One of the prime numbers picked at  random B is  the other prime number picked at

random, A and B are of similar sizes.

So, how do we get the private key? Because the public key was chosen randomly; so to

get the private key we compute D as E inverse mod T. And to encrypt a plaintext M we

take M raise per E mod N. So, please note, what are we doing? M into M into M so and

so forth E times; therefore, we get M raise per E, but remember we are working with

large large numbers, so, E can be really really large. So, self-multiplication many, many,

many number of times could be difficult. And then of course, we have modulo M, how

do we decrypt? Well to decrypt getting back the message M from the ciphertext C, we



take C, and then multiply with itself D times. What is D? D is the private key, and this is

also very large.

So, again you can see computationally it is really involved.

(Refer Slide Time: 23:18)

Let us take a very simple example; this is a toy example because the prime numbers will

never be so small they will run across the slide. So, let us take prime number a as 37

prime number B as 23. So, we get N as a product of these 2 prime numbers, similar T is a

minus 1, into B minus 1, and we multiply and we get this number. Now we must choose

the public key E, the conditions is that the public key must have no factors other than one

common with this T. So, again a very small number 5, we find out that 5 is not a factor of

7 9 2. And easily we can pick E as a valid public key 5.

So, to generate D which is the private key we take 5 inverse, mod 7 9 2 and you get this

number, alright. So, once you calculate D, you can now go for getting a ciphertext. So,

suppose we want to encrypt G a letter G. So, we first letter G if you see it is the 7th letter

in the alphabet. So, we say that, ok, I encode 7. So, G represented as 7, becomes my

message M, and the ciphertext is obtained as M raised to the power E 7 raised to the

power 5 modulo 851, and that gives a 638, just computation and decryption is again M is

equal to C raised to the power D modulo N, and we decrypt use in this, and we get back

7. So, even with this moderate, this small numbers we have this kind of a 638 raised to

the power 3 one 7 modulo 851.



So, again you can see that the computation is pretty involved.

(Refer Slide Time: 25:16)

So, what does RSA algorithm rely on? Relies on large prime numbers, but question again

is look if everybody in the world has to use RSA algorithm do we have arbitrarily size

prime numbers to begin with. And do we have enough of them or, are we going to repeat

this keys we do not want to, we should have as many keys as possible. So, we would like

to answer this question about do we have enough large prime numbers, we talk about this

prime counting function. The prime counting function pi is a function of N, just counts

the number of primes that are less than or equal to M, ok, that is the prime counting

function.



(Refer Slide Time: 26:01)

Let us say N so, if you look at this time accounting function, you have prime number

yes. So, incremented by 1, pi N 3 prime number, yes, 2 4. So, N is 4, but this is no longer

prime numbers the count remains 2 and then 5 prime number count increases 6 prime

number,  no,  count  does  not  increase  encounter  another  prime  number.  So,  pi  as  a

function of N increases and so, for this is a prime counting function. So, this function is

monotonically increasing, and with that.

(Refer Slide Time: 26:38)



So,  if  you look at  the  question  of  are  they  enough prime  numbers,  well,  let  us  see

whether they are enough or is this infinitely large set. So, let us assume that we only have

finite number of prime numbers. And let this set be P 1 P 2 up to P N. So, we have in this

world only N prime numbers that is the assumption. Let us see whether this assumption

is right or wrong.

So, let us make another composite number M as a product of this prime numbers plus 1.

So, M is larger than any of the prime numbers. And so, since they have only so many

prime numbers, right, M is larger than this and M is a composite number. But if it is

composite number should be divisible by some prime number. So, that has to have a

factor it is a composite number, it is not a prime number. But if you divide by any one of

them, because there is are the all known numbers, we have assumed, you always get the

residue has 1, the remainder is 1, because it is product of always prime numbers plus 1

which  means  that  it  is  not  a  composite  number. So,  it  there  is  a  contradiction,  and

therefore, we have infinitely many prime number, and that is a saving grace because RSA

requires us to have infinite supply of prime numbers.

(Refer Slide Time: 28:09)

What is the security of RSA? Well the security of RSA algorithm depends on the ability

of  the  happy to factorize  numbers,  because  we have  assumed it  is  easy  to  multiply

difficult to factorize. So, we know that better methods of factorization are coming out the

current best is the number field safe. And of course, on top of add we are getting very



fast computers, which do this factorization much faster. So, it is just race with quantum

computing coming in RSA is at a bigger threat. So, as the theory and computer become

more efficient larger and larger keys will have to be used.

(Refer Slide Time: 28:56)

We go to now the next so, to say defect standard the pretty good privacy P G. G is a

hybrid  cryptosystem,  right,  created  in  1991  was  released  over  the  internet  by  Phil

Zimmerman, as a freeware program. And it was intended to be used for email security,

but it can be used for a variety of applications. PGP provides cryptographic privacy and

authentication.

So, both of them are there is very important for email security. I would like to know who

sent me that email, whether it is reliable, and it is next [FL] open PGP encryption can

ensure  secure  delivery  of  files  and messages  as  well  as  provide  verification  of  who

created or send the message using digital signatures. PGP and it is source code is freely

available on the internet. And this means that has been subjected to a enormous number

of tests enormous amount of scrutiny by cryptanalyst, and therefore, it should install a lot

of confidence in the users.



(Refer Slide Time: 30:09)

Let  us  look  at  another  interesting  cryptographic  method  called  the  elliptic  curve

cryptography, or also called as cryptography on the elliptic curve ECC. So, let us see

most public key cryptosystems get the security from the assume difficulty of inverting a

one-way function,  you can multiply 2 a numbers, but not factorize and so on and so

forth. ECC has become important mainly, because groups have been found in which sub

exponential  algorithms  to  invert  the  discrete  exponential  functions  are  not  known to

exist. We will talk about this (Refer Time: 30:55) in a short while what do we mean by

this discrete logarithmic problem, and discrete exponentiation functions.

So, that is one has to use a standard exponential time algorithms to break the security of

the conventional public key cryptosystems. The basic advantage of ECC or the elliptic

curve cryptography is that they are equally secure with smaller keys sizes, than then their

counterparts like the RSA so, smaller key size, but equal security.



(Refer Slide Time: 31:27)

So, it is kind of an example to understand. Let Z sub p be the set of integers 0 1 2 up to p

minus 1, where P is an odd prime number, ok. Let us define an elliptic curve over Z p as

follows. So, we are going to define using an example of an elliptic curve y squared equal

to  x  cube  plus  a  x  plus  b,  taken  modulo  p,  this  is  my  elliptic  curve.  And  all  my

calculations multiplications additions will be d1 over this curve will tell you how.

What are a and b? A and b also are elements of Z of p. And we put an a constraints this is

an example, 4 a cube 27 B square is not equal to 0 modulo of p. So, this is my definition

that we are going to use for the elliptic curve and this example.



(Refer Slide Time: 32:26)

So,  for  any a  and b,  in  Z p  the  above equation  has  a  pair  of  solution  x comma y,

remember?

(Refer Slide Time: 32:30)

So, we have this x and y here which is defining, so, x comma y is a point on this curve.

So, we are now going to talk about points on this curve, defined by this y squared is

equal to x cubed plus a x plus b, this some constraints. So, E Z p is the tuple x comma y,

such that x comma y like on the Z P. And x and y are such that this condition is satisfied



y square is equal to x cube plus a x plus b modulo p, and what A and b again we have put

this constraint.

So, the resulting set E as a function of Z P consist of all pairs x comma y, element of Z

square p. So, basically we have found a set of points, and all we are going to do is work

with this  set  of points.  In addition to this  points lying on the elliptic  curve,  we also

consider point 0 or O at infinity. So it is a, together they form the complete set of points

on the elliptic curve. What are some of the properties? Well, any point P plus O is O plus

P for all points on P is right, and if a point P given by x comma y lies on the elliptic

curve, then x comma y plus x comma minus y is O. And this x comma minus y is also

called minus P, because P minus P where P is a point on the elliptic curve should be O.

And what is interesting is if P lies on the elliptic curve, then minus P will always be a

point on the elliptic curve we can look at the symmetry.

(Refer Slide Time: 34:41)

So, if P is x 1 comma y 1, this kind of a toy example which will bring home the point

regarding elliptic curve cryptography. So, let P v B x 1 comma y 1, and Q another point

is x 2 comma y 2, right.

Then clearly with P not equal to P Q we have P plus Q as a third point. So, if we add 2

points on the curve, you get a third point also on the curve. And how do you get this

addition? Well, that 2 points coordinates x 3 and y 3. X 3 is lambda square minus x 1

minus x 2, and y is equal to lambda x 1 minus x 3 minus x 1, what is lamda? Lamda is



given by this one, provided if P is equal to Q, and P is not equal to Q. So, together we

have a rule for finding out addition of 2 points on the curve on the elliptic curve, and sum

of 2 points is always on the elliptic curve.

(Refer Slide Time: 35:49)

Now, where does is lead to? When I can always add P 2 it P itself; second get P plus P as

2 P, P plus P plus P 3 P and so on and so forth to k P.

So, self-addition a multiplication is very, very efficient. So, elliptic curve cryptography

relies on the difficulty of finding k given Q is equal to k P. So, this is the basic (Refer

Time: 36:21), that is what we are going to do. So, this property will be used in the Diffie-

Hellman key exchanged protocol based on the elliptic curve which will going to look at

the  last  example  in  today’s  lecture.  So,  it  has  the  utility  is  already  known  of  this

wonderful mathematical technique.



(Refer Slide Time: 36:40)

Let us look at  a little  bit  more into this elliptic curve cryptography by considering a

simple example. We put in numbers is time so, let us say a is equal to 1, b is equal to 1.

So, we have this elliptic curve y squared is equal to x cubed plus x plus 1, ok. And you

can verify that 4 a cube plus 27 b squared is not equal to 0, modulo of p, what is p? P in

this case is 23 remember we had this Z which had 0 1 2 3 up to odd prime number p.

So, what are the valid point? You can calculate you can plug in through (Refer Time:

37:28) and you can find the set of all tuples, valid points on this curve and they are listed

below. So, 0 1 you can substitute and you will find it satisfies equation and so, 0 22 and

so on and so forth. So, the all the valid point, as you can see this is a result of a computer

such that start with 0 0 then 1 1, then 3 a keep increasing and find the points on this

curve, so, that is all it. Take any 2 points at random, add the up and you will get it is a

close set will get point on the curve, ok.



(Refer Slide Time: 37:59)

So, these are all the points listed out.

We pick at random P is equal to 3 comma 10, here it is. And take Q is equal to 9 comma

7. So, here it is so, at took 2 points P and Q on the set. And we have interested in finding

on P plus Q. So, we had those equations given earlier. So, we found that P is not equal to

Q, I use that lambda and then we calculate x 3 and y 3 and calculate mod p, p is 23 here I

get 17 come a 20. So, I look in and yes low and low (Refer Time: 28:33) I find 17

comma 20 as a valid quantum (Refer Time: 38:37) So, there is the mathematics over the

elliptic curve.



(Refer Slide Time: 38:38)

So, this P plus Q 17 comma, 20 is also a point on this curve. And if you want to do P plus

P in a ; attempt to find out 2 times P you can calculate the subsequent lambda, and then

you can find out x 3 and y 3 as 7 comma 12 and if you go back into the 7 comma 12 is

also available.

So, if you add 3 comma 10 with itself, you get 7 comma 12, and so on and so forth I can

find out 2 times P 3 P and so on and so forth, and this 2 P also belongs to the set.

(Refer Slide Time: 39:23)



So, the elliptic curve is a discrete logarithm problem to be considered. So, if you have

these elliptic curve that we looked at with P is equal to 23 is equal to 9 and B is equal to

17. So, you have change the A and B from one and one to this one then you have a

parallel problem here. And to give you the feel of this discrete logarithm problem we try

to answer the following question. What is the discrete log k of Q equal to 4 comma 5 to

the base P 16 comma, fine? That is how many times should this P, right? P is a number

16 comma 5, it is a point on the curve.

How many times should P be added to itself to obtain Q? Like P plus P plus P so, K

times P is Q how many times k? But remember there is a mod in place and that creates

the problem. So, the brute force method would be to try first 2 P check whether it is the

same as Q, no, then try 3 P check whether it is equal to Q, not equal until K times P

whichever matches Q, ok. So, I can try this effort P 2 P, but remember, calculating P and

then 2 P and then 3 P require some mathematics, or geometrical you can do on the curve

that is an easier one. So, in this example K is 9, this is the discrete logarithm problem.

(Refer Slide Time: 40:56)

So,  bottom  line  is  a  real  word  K  is  very,  very  large  and  finding  k  could  be

computationally very expensive. This is exactly what ECC relies on, the elliptic curve

cryptography relies on the difficulty of finding K given Q is equal to k P, that is the basic

idea.



(Refer Slide Time: 41:19)

Now, last few slides we look at a practical application of this ECC in that form of the

Diffie-Hellman key exchange protocol, which allows to uses to exchange a secret key

over  an  insecure  medium.  So,  it  is  a  key  exchange  (Refer  Time:  41:34)  agreement

protocol, ok. So, it has 2 system parameters p and g p is a prime number and g is called a

generator. And we have this n equal to g raised to the power k mod P, will look at a very

simple example, to illustrate the point.

(Refer Slide Time: 41:52)



So, what does this DH protocol do? We have these 2 characters in the play Alice and bob,

who want to exchange the key?

So, Alice generates a random private value A, and bob generates a random private value

B. They are both drawn from the set of integers, then they derive the public value using p

and g right, and how do we do that?

(Refer Slide Time: 42:18)

Well  this  steps are as follows, Alice and bob mutual  agree on a number P ok. Alice

chooses a private key k, A known only to Alice therefore, k is away and then computes k

A P. Remember, there is a same time as a point P multiplied with itself with itself so, k A

P using the elliptic curve. And he is publishes k A P, right? But k A is not easy, that is the

computational difficulty that we have established. Similarly, bob does the same job, he

finds chooses at random K B which is known only to bob, and then computes K B P

using the elliptic curve, same elliptic curve, and then publishes this k B P. Again getting

k B from k B P is difficult.

Now, what does Alice do? Well, k B P is known, takes the elliptic curve and again does k

A times k B p, but K is known to Alice. What does bob do? Bob knows k A P, it has got it

is own k B known to bob, it does K B times k A p. But low and behold we have k A times

k B into P is same as K B into K a into P. And magically they have this 2 numbers k A

time K B into P which are same. So, Alice knows this number, bob knows this number,



but the eavesdropper does not know number. So, Alice and bob have now secretly been

able to exchange a key without the eavesdropper knowing it.

(Refer Slide Time: 44:06)

You can graphically represent this. So, Alice chooses k a calculates k a P publishes it.

Publish means, puts it into the public domain. B bob secretly chooses k B calculates k B

P. Now what is this P? P is known together, both of them, ad known to the outside world

as well, so, bob publishes k B P.

And then once the exchange it, then Alice calculates k A times k B P, bob calculus k B

times k A P, and then they decide to use k A and k b as a common k. So, thus they are

been able to exchange the k.



(Refer Slide Time: 44:52)

So, with that we come to the end of today’s lecture. We have looked at several acronyms,

we  started  with  DES  which  is  the  precursor  of  AES.  Then  we  looked  at  the  idea

algorithm, we looked at PGP, pretty good privacy followed by the public key methods

RSA, and then we looked at the DH Diffie-Hellman key exchange protocol.

With that we come to the end of today’s lecture.


