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Hello and welcome, to our next lecture on Space Time Codes.

(Refer Slide Time: 00:32)

Let us start with a brief outline of today’s lecture. What we will study today are real

orthogonal designed for space time block codes, then we will look at the generalization

of real orthogonal designs, then we will move on to the domain of complex orthogonal

design and then we would like to generalize that concept. Finally, we will look at some

examples.



(Refer Slide Time: 00:57)

Let us do a quick recap as to what we have done so far. We have already introduced the

concept of space time codes and how it gives diversity gain. We specifically looked at

Alamouti code as a very interesting example of space time block codes. We dealt into

diversity gain and coding gain and we looked at some examples along the way.

(Refer Slide Time: 01:22)

Let  us revisit  the anatomy of a space time block code STBC for short  and what we

realized was that an information source pumping in bits of information what we do is we

take 2b bits at a time and of this first b bit is used to select one signal from the signal



constellation and then the next b bits are used to pick up another signal s 2 from the

signal constellation. So, I have s 1 corresponding to the first b bits and s 2 corresponding

to the next b bits, thus we have a tuple s 1, s 2 which is coming out from this signal

constellation block and this is fed to the space time encoder.

In this example we have two transmit antennas therefore, we picked up 2 symbols s 1

and s 2. What they do is load symbol s 1 onto the element 1 and load s 2 onto it antenna

element 2. So, Tx 1 sends out s 1 Tx 2 sends out x 2. There is a only one receiver

because we have argued that in most cases it is difficult to put multiple antennas on the

receiver, but you can have multiple antennas. In this example we are only looking at one

single receiver antenna element. So, the s 1 goes through a channel gain of h 1 whereas, s

2 undergoes a channel gain of h 2 and we receive it and of course, we have additive

white Gaussian noise added up n 1.

But, this we do in the first time slot as a name suggests it is a space time block code. So,

the space element is coming from the antenna and the time is the different time slots that

we are going to send out. So, we sent out s 1 and s 2 from the two antenna elements in

the first time slot. Now, for those same 2b bits we have picked up s 1 and s 2, but in the

second time slot what we do is we send out minus s 2 star and s 1 star. s 1 and s 2 belong

to a complex constellation. So, we have the complex conjugates here.

So, what we do is we send out from antenna element 1 minus s 2 star and s 1 star this is

just an example I can have other ways of doing it and then we send out. These two go

through the channel gains and we get noise n 2 added and so, we have two received

signals in time slot 1 and time slot 2 of course, we need the estimates of the channels h 1

and h 2 and then we have a combining strategy which goes through the ML decoder.



(Refer Slide Time: 04:19)

So, in this example we have talked about the space antenna 1 and antenna 2 and time;

time period 1 and time period 2, so, we have this matrix of symbols that we want to

transmit and this is kind of the code the space time block code that is being used.

(Refer Slide Time: 04:39)

Now, we make some observations because if you represent x with those matrix then X

Hermitian X happens to be x 1 absolute value squared plus x 2 absolute value squared I

2, where I 2 is the identity matrix.



Now, the channel gains h 1 and h 2 are complex and they can be modeled as alpha 1 e

raise power j phi 1 and alpha 2 e raise power minus j phi 2.

(Refer Slide Time: 05:11)

And, we can multiply it out to get the first received signal in time slot 1 as a r 1, this is

simply s 1 with channel gain h 1 plus s 2 with channel gain h 2 plus n 1. Similarly, in the

second time slot we have minus h 1 s 2 star plus h 2 x 1 star plus n 2 here it should be s

1. So, we have this received signal r 2 in the second time slot. Now, the observation right

here is  that  r  1 depends both on s 1 and s 2 and r  2  also depends on s  2  and s  1,

simultaneously.
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But we have this interesting combining scheme wherein we have r 1 tilde equal to h 1

complex value, complex conjugate r 1 plus h 2 into r 2 star, which means that if we have

the knowledge about the channel gains h 1 and h 2 which are complex we can use this

combining scheme to get r 1 tilde and similarly, r 2 tilde.

But,  if you workout this then r 1 tilde comes out to be this expression and r 2 tilde

correspondingly gets this one. The interesting observation is r 1 tilde only depends on s

1. So, suddenly with this combining scheme we have been able to decouple the decoding.

So, r 1 is only dependent on s 1 and r 2 is only dependent on s 2. So, we can use the

maximum likelihood decoding strategy and recover using the single symbol decoding.
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In  the  last  class,  we  therefore,  came  up  with  this  rank  and  determinant  criteria  for

designing  space  time  block  codes  and  what  we  came  up  with  is  the  rank  and  the

determinant criteria. So, we defined this matrix A and we said that it should be full rank

for any two code words C i not equal to C j and the smallest value of the r rank over any

pair of code words provides a diversity gain of r into M, where M is the number of

received antennas. 

This  is  the  rank  criteria  and  the  determinant  criteria  says  that  in  order  to  achieve

maximum coding gain, right. So, we have already talked about the diversity gain, but in

order to achieve the maximum coding gain the minimum determinant of the matrix A

should be maximized for any two code words which are not equal.



(Refer Slide Time: 07:50) 

So, we quickly revisit the Alamouti scheme with N is equal to two transmit antennas and

this is the code further Alamouti scheme and if we have another pair of symbols and this

matrix is denoted by C prime as follows.

(Refer Slide Time: 08:08)

Then, we can go and find out how the diversity gain is obtained from the Alamouti code.

So, diversity gain is obtained simply by looking at the slopes of the BER curves. So, on

the x axis we can have the SNR, y axis we have the symbol error rate, if you will and



then if you look at with and without Alamouti code you see a distinct change in the slope

which indicates the a diversity gain.

(Refer Slide Time: 08:43)

Now, a few words about single symbol decoding; We have realized the uniqueness of this

Alamouti  code  because  this  pair  r  1,  r  2  star  is  dependent  only  on  s  1  and  s  2

independently.

(Refer Slide Time: 09:02)

So, you can have this estimates of x 1 and x 2 as simply as h 1 absolute value squared

plus h 2 absolute value squared s 1, s 2. So, basically what it means is that your x 1 tilde



depends only on s 1 and x 2 tilde depends only on s 2, ok. So, this is the single symbol

decoding which reduces drastically the complexity and the decoder.

(Refer Slide Time: 09:35)

So, you observe that this sigma sigma Hermitian is nothing, but h 1 squared plus h 2

squared I 2 and the generator matrix for the code is simply given by G. So, throughout

this  lecture this is how we will  denote the generator matrix of the code for different

cases. This is a 2 cross 2 complex design, but we will look at real designs and complex

designs in our subsequent slides.

(Refer Slide Time: 10:12)



So, what is interesting about this generator matrix is if you take GG Hermitian you come

up  with  a  scaled  identity  matrix  and  this  interesting  fact  allows  us  to  decouple  the

decoding problem and we do symbol by symbol decoding we have one single symbol at

a time which is required to take the decision. And the reason is because we have an

orthogonal design. So, GG Hermitian is simply this identity matrix multiplied by this

term.

So, the key part is this orthogonal design and now, let us focus on what good orthogonal

designs are available, how to go about doing it, do orthogonal designs of all size exist or

not let us look at these questions.

(Refer Slide Time: 11:15)

So, let us now start on real orthogonal design. So, let us start with the definition a real

orthogonal design of size N is an N cross N matrix G. So, the moment we are trying to

define a space time block code which is a real orthogonal we would simply represent it

with  a  matrix  G  which  is  the  generator  matrix  with  entries  consisting  of  only  real

elements drawn from plus minus x 1, x x 2 so and so forth, till x N such that G transpose

G is summation I is equal to 1 through N x i squared times this identity matrix of size N

cross N.

So, what is very interesting is it can be shown that only when N is 2, 4 or 8 do you have

a really orthogonal design that this is possible otherwise you simply cannot have this



condition being satisfied. We also note that G is proportional to an orthogonal matrix, ok.

So, I can have a proportionality a constant also ahead in front of you.

(Refer Slide Time: 12:26)

Let us look at these possibilities for N is equal to 2, 4 and 8. So, if you have generator

matrix G 2 as follows then you can satisfy yourself by a taking G 2 transpose into G 2

and you will get that there will be terms only along the diagonal and there will be 0’s of

diagonal.

Similarly, this is the design for N is equal to 4. So, please note the convention is the same

this axis is a space axis, this axis is the time axis. So, if I were to implement a real life

system with G 4 I will divide my implementation into four time slots. In the first time

slot I will send out x 1 through antenna element 1, x 2 through antenna element 2, x 3

from antenna element 3 and x 4 from antenna element 4 and then wait for the next time

slot wherein I will send out minus x 2 x 1 minus x 4 and x 3 and so and so forth for the

four time slot.

So, in four time slot I have been able to send out 4 symbols x 1 x 2 x 3 and x 4. So,

therefore,  the rate  is  also 1,  I  have not  compromised  on the rate,  right,  but  what  is

interesting is if you take G 4 transpose into G 4 you will again get the values along the

diagonal and there will be 0 terms of diagonal. So, again this is an orthogonal design

which means you can happily go ahead and do single symbol decoding. So, the decoding

complexity is again quite low.
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If you look at for N is equal to 8 again this is a real design and it is a real orthogonal

design  you can  verify  G 8 transpose  into  G 8  will  again  give  you a  only non-zero

elements along the diagonal. And this is again the simple strategy I have got 8 antenna

elements right and here are 8 time slots and this precisely tells you what to send at what

time slot on what antenna, ok. Again, single symbol decoding is possible. Unfortunately,

beyond eight we have no designs possible, it is possible to prove it.

(Refer Slide Time: 15:14)



So, it is known that real orthogonal designs exists only for N N is equal to 2, 4 and 8. So,

how do we go beyond that? We have to generalize the orthogonal designs to non square

real matrices of size T cross N earlier it was N cross N, but suddenly I want to have T

which means I want to increase the number of time slots. So, it might take a hit on the

rate. So, the number of time periods is denoted by T and the number of antenna elements

is N and T is not necessarily equal to N.

So, clearly for the N is equal to 2, 4 and 8 cases, the generator matrix was a square

matrix, N was equal to T, but since we have no more such matrices for larger values of N

we now resort to T cross N. So, these are non square matrices.

(Refer Slide Time: 16:17)

So, what is the definition? A generalized real orthogonal design is a T cross N matrix. So,

if you have to design a generalized real orthogonal design we have to just come up with a

matrix which is T cross N, but all  the elements of this matrix all the entries are real

drawn from plus minus x 1 plus minus x 2 up to plus minus x K such that G transpose G

is again equal to I is equal to 1 through K x i squared I N, where IN is a N cross N

identity matrix, ok. 

So, again only the diagonal terms exist rest are nonzero, rest all off diagonal terms are 0

only the diagonal terms are nonzero. But, clearly, now the rate has to be defined and rate

is K over T, right. So, T is of course, larger than K and therefore, it is possible that the

rate will be less than 1.
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But of course, in real life we would like the rate to be as close to 1, if not 1. So, a

generalized  real  orthogonal  design  with  rate  R  is  equal  to  1  it  is  called  a  full  rate

orthogonal design, ok; so, if we are still in the domain of generalized real orthogonal

design, but we are not talking about full rate design.

(Refer Slide Time: 17:54)

Since the space time block codes from orthogonal designs have to have T is equal to K is

equal to N and the rate R is equal to one and they form a special case of the generalized

real orthogonal design. So, the already the case of N is equal to 2, 4 and 8 the orthogonal



designs there were a special case of the generalized real orthogonal designs with rate R is

equal  to  1.  Generalized  real  orthogonal  designs  provide  full  diversity  and  separate

decoding of symbols. So, the diversity is there as discussed earlier and you have single

symbol  decoding.  So,  separate  decoding  of  symbols  exists.  So,  receiver  complexity,

receiver time is both reduced.

A real space time block code is defined as one of as one that uses G as a transmission

matrix. So, we have already looked at the properties of G. G transpose into G should be a

matrix  with  only  the  diagonal  elements  as  nonzero.  So,  let  us  assume  that  the

transmission  is  been carried  out  using  a  constellation  consisting  of  2  raise  power  b

symbols we have discussed this before.

So, this generalized real orthogonal design we will  now make it  GROD standing for

Generalized Real Orthogonal Design. So, let us now talk about the steps for generalized

real orthogonal design.

(Refer Slide Time: 19:33)

So, pick up a block of Kb bits coming from the input stream. So, we have no worries

getting enough bits to process today we are generating humongous amounts of bits, but

what we do is we take up a block of K into b bits. Remember, the constellation has

signals coming from 2 raise power b points in the constellation.



So, based on these Kb bits select K symbols from the constellation; so, the first b bits are

used to pick up first symbol s 1, the second b bits are used to pick up s 2 and the last b

bits are used to pick up s k. So, we have now s 1, s 2 up to s k symbols as coming

mapped out of this K b bits. So, from my generator for the space time block code I

substitute x k to s k.

So, now we have the code word coming as the generator matrix consisting of s 1, s 2, up

to s k. Clearly, this generator matrix is of the size T cross N. So, the transmission is done

row-wise, which means in the first time slot send out row 1, in the second time slot send

out row 2 because the rows represent the time axis the columns represent the antenna

element the space axis. So, each row obviously, of length N is transmitted at one time

period using the N antenna elements simultaneously.

At the time period t is equal to 1, 2, 3, up to T transmit the T-th row of the C; the code

word C, using the different antenna elements N is equal to 1, 2, up to N. So, this much is

pretty clear.

(Refer Slide Time: 21:45)

So, thus the entry C t comma n of the code is transmitted from the antenna element n at

the time period t, that is the notation. At the end of T time periods effectively K symbols

would have been transmitted, thus justifying the rate R is equal to K by T.

So, what does this mean? Intuitively, T corresponds to the block length of the code.
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Let us show it using a block diagram for orthogonal space time block codes. What we

have done is taken K bit bits coming at a time divided this Kb bits into b bits then b bits

then b bits and so and so forth for each of the b bits I pick up one symbol from the

constellation diagram. 

So, s 1 corresponds to the first b bits s 2 to the second and so and so forth and then I

assign x k equal to s k gives my generator matrix to generate the code C. Now, this is T

cross N matrix and then I transmit the rows of C in each time period.

(Refer Slide Time: 23:33)



Now, let us talk about delay optimal design. Clearly as we increase the size of T, I will

use more and more time slots if I use more and more time slots then my delay would

increase at the receiver side to get the decoded output. So, let us talk about this delay

optimal where we minimize this T. So, in order to maximize the rate it is important to

have the smallest value of the block length T, this is obvious.

So, the parameter T determines the decoding delay of the code, because we cannot really

start decoding until all the code words have been received, ok. So, we have to wait till

the last transmission and after T time slots and we would like to reduce this to the extent

possible.

So, what do we do? Let us define the delay optimal design. So, an orthogonal design

with minimum possible value of the block length T is called delay optimal.

(Refer Slide Time: 24:20)

It is better to look at an example to illustrate the point. So, let us consider the following 4

cross 3 matrix. So, N is equal to 3, T is equal to 4, leading it to a T cross N matrix.

Remember, this is the space axis. So, we have 3 antenna elements and this is the time

axis that I will be using four time slots. So, what this generator matrix tells us is in the

first time slot send x 1 from antenna 1, x 2 from antenna 2, x 3 from antenna 3, then wait

for the next time slot and transmit minus x 2, x 1 minus x 4 and so and so forth in the 4

time slots.



But,  we make a  very interesting  observation.  We just  do  not  have  three  symbols  to

transmit we have x 1 up to x 4. So, in 4 time slots we have been judiciously distributed

the symbols such that x 1, x 2, x 3 and x 4 all have been placed, such that G transpose G

again adheres to the definition of the orthogonal design. So, let us compute G transpose

G and if you do so, for this you will be surprised to find the answer as follows and the

observation is that the diagonal elements are non-zero and rest all are 0.

So, we have really in front of us a 4 cross 3 real orthogonal design, it is a generalized real

orthogonal design because it is not a square matrix, right.

(Refer Slide Time: 26:22)

So, what are the observations regarding this design? T is equal to 4, N is equal to 3, as

we observed K is equal to 4, but the rate is 1, ok. We did not compromise on the rate. So,

it is a full rate generalized real orthogonal design. So, we have only used 3 transmit

antennas because N is equal to 3, but we have judiciously used the 3 antenna elements in

different time slots to send out the message which are single symbol decodable.

Of course, it uses 4 time periods to do. So, the delay increase a little bit, right. Please

remember, we never had a 3 cross 3 solution for real orthogonal designs, we had 2 cross

2, 4 cross 4 and 8 cross 8, but when we went to the generalized domain we have a 4 cross

3 solution and that is the interesting observation. So, it sends out 4 symbols using 4 time

slots and the rate is unity.
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So, let us start back and analyze it a little bit further. So, you have this three antenna

elements sending out this first row in time slot 1, second row in time slot 2, third row in

time slot 3 and fourth row in time slot 4 and if you want to depict it more clearly you

have this 3 antenna elements and four time slots and you exactly know which one you

are sending in which time slots, ok. So, this is actually the recipe for sending out the

code based on this design.

So, the important observation is that it is full rate we have not compromised on the rate.

(Refer Slide Time: 28:37)



So, it can be shown that for any number of transmit antennas N, there exists a full rate

real space time block code with block size T given by a minimum of 2 raise power 4 c

plus d. So, this rate full rate can be guaranteed provided you have a constraint on this

block size T. The minimization is all possible integer value values of c and d.

So, here this is the block size T and if you can have c and d as integers then you can

probably come up with this design and we look at an example shortly. This c and d have

some constraint c should be greater than or equal to 0 d should be greater than or equal to

0 and 8, c plus 2 raise power d should be greater than or equal to N. So, if you can find c

and d which can satisfy these conditions then T can be found out by this minimum and

then you can find out an example.
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So,  let  us look at  the following example  we have a 8 cross  7 matrix  for 7 transmit

antennas. So, just by looking at this matrix I know that there are 7 columns so, 7 transmit

antennas will be there. There are 8 rows so, I will be using 8 time slots. Obviously, in the

first time slot I will be sending out this first row, second row in the second time slot and

the eighth row in the eighth time slot.

Now, before we proceed any further we can quickly take G transpose into G and we will

see whether only the diagonal elements are non-zero rest are all zeros which will give

that it is a orthogonal design.
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So, we do that computation G transpose G and one can easily verify that you get this

expression. So, this will guarantee single symbol decoding.

(Refer Slide Time: 30:54)

But, we also see that 8 cross 7 is a real orthogonal design with K is equal to 8 and you

can do T as minimum of 2 raise power 4 c plus d equal to 8, because the integers which

we found was c is equal to 0 and d is equal to 3. So, we have satisfied those conditions

and we were able to get this 8 plus 7 matrix. So, not only it tells you that this T cross N

matrix exists, but you already have an example of what that matrix should look like.



So, this is the condition we satisfied ourselves with that there exists a full rate R is equal

to 1 real space time block code with block size given by this where the minimization is

over all possible interval integer values of c and d. In this example you have R is equal to

1, because you had if you see eight time slots and you have x 1 up to x 8 if you carefully

observe I am pushing through along x 1, x 2, x 3 up to x 8 in a distributed manner. So, in

eight time slots effectively I have sent out eight symbols. So, my rate is indeed 1. So, G

represents a full rate real orthogonal design which can be used with 7 transmit antennas.

(Refer Slide Time: 32:37)

So, some observations orthogonal designs are not unique, number – 2 multiplying any

orthogonal design G with a with a matrix U, right having the property U transpose U T U

equal to 1. So, results in another orthogonal design ok. So, deleting a column from an

orthogonal design leads to another orthogonal design that can be used to design a space

time block code with a one less antenna.

So, these are practical issues that we can look at, if we have a one design we can go to

another design by deleting a row or a column depending upon how you look at it. So,

deleting a column basically reduces one antenna element and you still have a orthogonal

design left. This process is called shortening if the original real orthogonal design is a

delay optimal then the shortened design is also delay optimal.
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Now, we changed gears slightly and we say look lot of our signal constellations  are

complex.  So,  are  there  complex  orthogonal  designs?  Of  course,  we  had  looked  at

Alamouti  to begin with so, we know the answer is, yes. So, let  us define a complex

orthogonal design. A complex orthogonal design of size N is an N cross N matrix G with

entries consisting of complex elements drawn from plus minus x 1, x 2 up to x N and

their complex conjugates x 1 star, x 2 star up to x N star, right or multiples of these by j

is equal to under root of minus 1 such that G transpose G, right should be this.

So, we actually should write G Hermitian G should be written in this form, where I N is

the N cross N identity matrix and what is interesting is a real orthogonal design exists if

and only if N is equal to 2. It can be shown that and this great design is that Alamouti

code we have looked at so.
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This  is  an example  of  a  2  cross  2  matrix  which  we have  already seen  as  being  an

orthogonal design it is the Alamouti code, but this is the only one complex orthogonal

design which exists size 2 cross 2.

So, it is obvious that we must graduate to the generalized complex orthogonal design.

(Refer Slide Time: 35:15)

So,  we  define  it  quickly.  Generalized  complex  orthogonal  design  similar  to  the

generalized version of the real orthogonal design is a T cross N matrix G with complex

elements drawn from 0, x 1, x 2, x 3 and so and so forth up to x K such that G Hermitian



G is some kappa times summation of x i absolute value squared I N, where I N is an N

cross N identity matrix and kappa is a constant.

(Refer Slide Time: 35:48)

So, it is possible to have kappa is equal to 1 by appropriately normalizing the elements of

G is still remains an orthogonal matrix and we can multiply as before with the unitary

matrix then G prime equal to U times G is also generalized complex orthogonal design.

So,  multiplication  by unitary  matrix  as  in  the earlier  case does not  change it  is  still

remains a generalized complex orthogonal design.
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So, let us use the acronym generalized complex orthogonal design GCOD. So, a GCOD

design can be used to generate a rate R is equal to K by T space time code with N

antenna  elements.  Again,  we  do  a  similar  thing  we  assume  that  we  are  using  a

constellation consisting of 2 raise power b symbols and we look at the following steps as

before take a big block of Kb bits divided into b bits then again block of b bits and so

and so forth gives each block to pick up the symbols s 1, s 2 up to s k we have done this

before and then substitute x k for s k in the matrix G to generate the code C.

So, this G matrix always have the elements x 1, x 2, up to x k and once you substitute the

G generator matrix generates a codeword, the codeword matrix becomes the C, ok.
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So, this C matrix is of the size T cross N and it has a linear combination of s 1, s 2, up to

s k and their conjugates because it is a complex design. So, at time period t is equal to 1

through T you transmit  the t-th row as before and then,  clearly the C t  comma n is

transmitted from antenna element n at time period t as before it is pretty much the same

and we have  transmitted  effectively  K symbols  at  the end of  T time period  thereby

justifying that rate.
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So, some simple observations a complex space time block code constructed using a T

cross N generalized complex orthogonal design provides a diversity of N cross M. So, N

is the number of transmit antennas M is the number of receive antennas. So, this is the

diversity that is provided and it also results in a separate maximum likelihood decoding

symbol by symbol decoding is possible.

But, please note there are three independent parameters, the number of transmit antennas

N, the number of symbols K and the number of time periods T and so, the transmission

matrix generator matrix G is sometimes denoted by G subscript NKT.
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So, let us now try to conclude what we have studied in today’s lecture. We started out

with the notion of real orthogonal designs which provide single symbol decoding and full

diversity and we realize that only N is equal to 2, 4 and 8 is possible for real orthogonal

design that motivated us to look at generalized real orthogonal designs, where we are

working with a matrices which are not square and so, you can have more number of time

slots.

But, still it is possible to have rate R is equal to 1 and with then we defined the notion of

delay optimal then we moved on to complex orthogonal design, where the elements in

the generator matrix could be complex and we found out that only 2 cross 2 the Alamouti

code exists as the only example of complex orthogonal design. Therefore, we moved

over to the generalized complex orthogonal design. For both real orthogonal design and

complex orthogonal design the generalized versions we defined the steps as to how to go

about designing and sending it. 

Finally, we looked at the examples for ROD, GROD, COD and GCOD. So, with that we

come to the end of this lecture.


