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Hello and welcome to our next lecture on Space Time Codes.

(Refer Slide Time: 00:32)

Let us start with a brief outline of today’s talk; we will start with the concept of space

time codes. We had originally looked at multi antenna systems and we would justify the

use  of  that  in  the  context  of  space  time  codes.  Then  we  would  look  at  the  classic

Alamouti code, then we will talk about diversity and diversity gains plus we will have

some examples to illustrate the concepts.



(Refer Slide Time: 00:58)

So,  let  us  see what  we have done in  the previous  lecture;  we have  looked at  TCM

schemes, looked at combined coding and modulation, defined free distance, design rules,

performance evaluations and finally, we went over to space time trellis codes; where we

started  using  2  antennas.  So,  that  was  a  logical  extension  of  space  trellis  coded

modulation going on to space time trellis code.

In today’s lecture, we would look at the space time block codes, where we do not have

so, to say trellis to help us encode the sequences.

(Refer Slide Time: 01:38)



But before we do so, we start with a quick motivation; we start with wireless channels

because this  is where we will  be using space time codes frequently. So, the inherent

characteristic of any wireless channel is multipath propagation; we have seen this before

and this leads to signal fading.

Now, one of the ways actually an easy way to improve the capacity of wireless channel is

to use multiple antennas and the transmitter and receivers ok. So, multiple antennas can

provide several things including the diversity gain that we talked about in the last class,

but the problem is that the receiver could be your handset and you do not have enough

space to put multiple antennas. So, it is logical to put more number of antennas at the

base station.

So, what we would like to do is we would have to also have a minimum separation

between the antenna elements for them to be feeding relatively independently. So, the

requirement of spacing between antenna elements and the place, a space available on the

receiver handset restricts putting multiple number of antenna elements at the receiver

end, but from the base stations perspective this can easily be done.

(Refer Slide Time: 03:11)

So, as we mentioned not practical to deploy multiple antennas at the receiver, but on the

other hand base stations can easily accommodate multiple antennas. So, this is the basic

premise with which we will start, we will have multiple antennas at the transmit site. So,

we are going to look at multi input single output or MISO systems.



 Now space time coding basically allows different symbols to be sent from the different

antenna elements  in  different  time slots.  So,  we have  already looked at  Space Time

Trellis Codes; STTC as a natural extension of trellis coded modulation and today we

would delve into space time block codes; that is the subject for today.

(Refer Slide Time: 04:02)

Now let us start with the anatomy of a space time block codes shortly we will discuss the

details. So, we are talking about STBC; Space Time Block Codes let us start from the

first block the information source. And this source is generating enough bits and what we

do is we take 2 bits at a time and in general we can start with b bits at a time. So, if you

club it into 2 b bits then we can look at a signal constellation with 2 b symbols.

So, let us quickly look at it here.



(Refer Slide Time: 04:46)

So, the source will generate 2 b which is nothing, but b and b; now what we do is we

have a constellation this is predefined, this constellation has a certain number of points in

the constellation diagram.

So, suppose we choose any constellation and in this there are 2 raised power b points. So,

for the first b, I will go ahead and pick any one point and for the second b; I will go

ahead and pick another point. Because b bits will corresponds to any one of points in the

constellation diagram and once we pick up these 2 points then we say that this is your S

1 and this one is your S 2.

So, we have a pair S 1, S 2 pair this pair has to be sent to the space time encoder. So, this

is a space time encoder and this guy has 2 antenna elements and what do these 2 antenna

elements do? Well they have got these 2 symbols S 1 and S 2. So, they will take S 1 and

S 2 and transmit it out.

 But we observed that the receiver may not have the luxury of multiple antennas. So, we

have only a single antenna at the receiver right and the receiver receives S 1 and S 2

simultaneously plus there will be some noise also coming. So, we will have n 1 and n 2

for the 2 signals S 1 and S 2 and this will then be fed to your channel estimator right and

of course, I would also have based on the channel estimation a combiner.



So, I will get the estimates of the channels now what are these channels? Well we can

represent  it  as h 1 and h 2 these are  complex;  so,  these represent my channel  gains

alright. So, these are complex numbers and the signal S 1 gets multiplied with h 1 and

gets added with noise n 1 and similarly S 2 gets multiplied by h 2 and then gets added

with n 2.  So,  the estimates  of these to h 1 hat  and h 2 hat  have to be given to  the

combiner and here after that we will take this for maximum likelihood decoding.

So, if we go and look at the slides once again we have the same concept exemplified

here. You have this information source you take 2 b bits at a time, separate out these 2

bits into b bits and b bits and each one picks up a point in the constellation diagram. So, I

have a pair S 1 and S 2 which is fed to the space time encoder. Now this antenna spacing

is providing the space we have not talked about that time part yet.

So, we have now the time slot; so, in time slot 1, we send out S 1 and S 2. So, if you see

there is a matrix right want if you want to look at this as a time axis; then this there will

be symbols along this and this will be this space. So, this is corresponding to antenna

element 1 and S 2 corresponds to antenna element 2.

But what we do is we then also do something more interesting in the next time slot. So,

this is the axis and I already have S 2 and S 1 available with me and they are complex

because they are coming from a constellation diagram. So, they have a amplitude and

phase; I do a simple computation, I do minus S 2 star for example, and S 1 star. So, I take

this  complex  conjugate  multiplied  with  a  negative  and  again  loaded  this  guy  on  to

antenna element 1 and the second person on to antenna element 2 and retransmit.

So, please note this 2 b bits resulted in the transmission of S 1 and S 2 from antenna

elements 1 and 2 in the first time slot. And then now we have not taken any more bits in

the second time slot what we have done is we have sent something different based on S 1

S 2; so, that is a rule. So, regardless of what S 1 and S 2 are the next 2 symbols to be

transmitted simultaneously will be minus S 2 star and S 1 star.

This is just an example, this is a strategy this is my coding strategy and therefore, this

can represent my space time block code. Why this will work? How good is it? Why are

we doing it in this all of these questions will be answered in the subsequent slide, but the

method is pretty easy; it is mechanical, but the beauty lies in the decoding part.



So, let us go on and see what really is the gain that we get from doing this kind of

encoding.

(Refer Slide Time: 11:29)

So, let us look at a simple example consider a wireless system with 2 transmit antennas

and 1 receive antennas. So, these 2 transmit antennas could very well be seated on the

base station and receive antenna is your handset. And we have to have some constellation

diagram signal constellation available to us it could be MPSK, MQAM what have you

right and this constellation could be real or complex ok. So, there is no restriction that it

has to be complex.

Now, we will transmit b bits per cycle right and we will use a modulation scheme that

maps one symbol from the constellation with 2 raised power b symbols and output will

be x 1 x 2 and as we mentioned this encoding takes 2 time slots right.



(Refer Slide Time: 12:33)

And we have this coding strategy; so, this particular way of coding has a name based on

the person who first proposed it is called the Alamouti code and this is the depiction for

the Alamouti code. So, if you have this as the coding strategy then the codeword matrix

C as we just now observed could be written as follows S 1 S 2 minus S 2 star S 1.

(Refer Slide Time: 13:12)

So, this method of doing space time coding can be expressed in the form of a table. Here

on this axis we have the space antenna 1 and antenna 2, they are spatially apart here we

have the time period 1 and time period 2. So, this is the time axis and as we mentioned in



the first time slot we use antenna 1 to send out S 1 and use antenna 2 to send out S 2.

And then in time period 2, we do minus S 2 star and S 1 star load them onto the antennas

and transmit. So, this is in a nutshell the depiction of the Alamouti code ok; so, far it is

pretty easy.

(Refer Slide Time: 14:03)

But now let us make some interesting observations. Why has it been chosen like this?

What  is  so,  great  about  putting  a  minus  S  2  star  and  S  1  star  here?  So,  the  first

observation is that X hermitian X, where X was given by this is just showing a general

coding strategy. And if the exam symbols were S 1 and S 2 then coding strategy will put

S 1 and S 2 in the case of x 1 and x 2. So, x represents the code and this is the code word

matrix. So, X hermitian X is x 1 squared plus x 2 squared right absolute value squared

into this identity matrix.

Now as  we  mentioned  after  we  transmit  the  symbols  they  go  through  the  wireless

channel. So, the symbol S 1 gets a channel gain h 1 it is complex can be represented

easily by alpha 1 e raised power 1 and h 2 is the channel gain encountered by symbol S 2

equal to alpha 2 e raised to power minus j phi 2.
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So, let us make some more assumptions it is assumed that the fading channel coefficients

h 1 and h 2 are constant across 2 consecutive symbol periods; it is not a bad assumption

at the data rates we have the symbol rates that we employ the channel does not change

significantly  between the 2 time slots.  So,  is  that  a  fair  assumption?  Yes it  is  a  fair

assumption.

Now, the received signal over the first 2 symbol period denoted by r 1 can be represented

as r 1 is h 1, s 1 plus h 2, s 2 plus n 1. Now if you look at the second symbol period right.

So, this is time slot 1 because in the time slot 1 both transmit antenna are transmitting

simultaneously. So, transmit antenna 1 sends S 1 transmit antenna 2 sends S 2 both get

multiplied by the respective channel gains and in the first time slot I have got the noise n

1.

And similarly in the second time slot I have got noise n 2, but what has happened for the

next time slot, the received signal that I get in the second time slot is I sent out from

antenna 1 minus s 2 star and from antenna 2 s 1 star. So, this should be s 1 s 1 star and

we have this r 1 and r 2.
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 Now the aim of the receiver is to extract the transmitted symbols x 1 and x 2 from r 1

and r 2 that is the aim; so, the receiver requires some kind of a combining scheme. So,

we have a strategy in place based on the channel estimates. So, we assume that we have

some knowledge about the channel gains h 1 and h 2 and the combining scheme r 1 tilde

is h 1 star r 1 plus h 2 r 2 star and r 2 tilde is equal to h 2 star r 1 minus h 1 r 2 star.

Now, what will all of this do? Because r 1 already we know is given by this and r 2 is

given by this. So, this and complex conjugate would probably help us simplify things ok,

but we make this observation that h 1 and h 2 is known. So, there is a channel estimator

which tells us the channel gains and of course, h 1 and h 2 are complex. So, now, if you

plug in the values of r 1 and r 2 let us see what we can get for our one tilde n r 2 tilde. So,

r 1 tilde is if you do the math and it is not to complicate it you get h 1 absolute value

squared plus h 2 absolute value squared into s 1 plus h 1 star n 1 plus h 2 n 2 star and

similarly r 2 tilde has a expression available for it.

So, what does it bias? Well the first interesting observation is r 1 depends only on s 1.

Earlier if you note everything was coupled the received signal clearly depended on s 1

and s 2; why? Both the transmitter antennas were sending together. So, it is, but obvious

that you will get a jumble, you will get a mixture of s 1 and s 2 multiplied by the channel

gains, but I do some smart processing at the receiver and suddenly some magic happens

and this r 1 only depends on s 1.



Now we tell you the advantage of that and r 2 only depends on s 2 of course, I have the

estimates of h 1 and h 2 and these are nothing, but some values multiplying s 1 and s 2,

but this is the most interesting fall out of this mathematics that has come out; r 1 tilde

depending only on s 1 r 2 tilde depending on only an s 2 this has big ramifications.

 Because at the end my job is to guess what was transmitted s 1 and s 2 ok. So, we have

to do a search because this is a maximum likelihood decoding and it is now a question of

matter of reducing the search space.

(Refer Slide Time: 20:20)

So, the beauty of the equation is that r 1 tilde depends only on s 1 and not on s 2. So, the

detection can be carried out only with respect to the single quantity. So, when I going to

search and find out which is the most likely symbol transmitted, I only do on the possible

points in the constellation diagrams s 1. Similarly for s 2 I only do search only for s 2; if

they were coupled then I have to have the number of searches s 1 and s 2 together. And

that would require me to search if there are 64 points in the constellation diagram, then

there the pairs number of pairs would be 64 into 64 as opposed to only 64.

So,  that  is  the  biggest  advantage  that  we  are  going  to  get  here;  the  detector  users

maximum likelihood  decision  and so,  x  1 tilde  is  nothing,  but  this  is  the  maximum

likelihood r 1 tilde we just now minus this h 1 absolute value square plus h 2 squared s.

Similarly x 2 estimate is minimum over all the possible constellations points r 2 tilde



minus h 1 squared plus h to  absolute  value squared S ok,  this  is  just  the maximum

likelihood ml decoding.

(Refer Slide Time: 21:57)

So, that is the beauty of the Alamouti scheme; we have really reduced the complexity the

decoding complexity. Now will it work in general? Let us consider a slightly different

example; again we have 2 transmit antennas and 1 receive antennas, nothing is different

except that this time we employ a slightly different combining scheme and this will lead

to a mixture of the transmitted signals.

So, for example, let r 1 tilde we sum ar 1 plus br 2 complex conjugate and r 2 tilde could

be some c r 1 plus d r 2 star plus this noise part. So, if a b c and d are some coefficients

then the vector r tilde can be expressed as this a b c d x 1 x 2 plus n 1 tilde n 2 tilde.
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So, if a matrix can be represented as a b c d then the ml decision rule can be written x 1

tilde x 2 tilde is minimum over this vector x over S squared.

So, now this is the process of minimizing is a search for a vector of length 2 as opposed

to a single symbol search. So, if the constellation has M points then the computational

complexity of the search is of the order m squared. If the number of transmit antennas is

increased to n the computational complexity of the search will be m raised power n. So,

early we only talking about 2 therefore, I was sending symbol s 1 and s 2, if there were 3

transmit antennas then the search will be over a 3 tuple is there n transmit antennas in the

search will over m raised power n.

So,  this  is  the  biggest  problem  the  complexity  will  forbid  the  use  of  any  general

arbitrarily  designed  scheme.  This  A has  to  be  designed  very  carefully,  but  for  the

Alamouti scheme that we saw this increase in complexity is avoided because of the use

of an orthogonal encoding matrix.  So, that  was the beauty of the Alamouti  code the

coding matrix was orthogonal therefore, it could d couple the s 1 and s 2. So, this is the

crux this is the reason why it is such an efficient decoding algorithm.



(Refer Slide Time: 24:56)

Now, in the previous example we have used 2 transmit  antennas and 2 time periods

leading to a 2 cross 2 code matrix right this is obvious space time. In general we can

consider a wireless system that uses N transmit antennas, clearly the gain with increasing

the number of transmit antennas is phenomenal. So, we have again a certain number of

time periods and certain number of N transmit antennas.

 Now if this and then the time slots is T, then we have an N cross T matrix which will

represent the code just like when 2 transmit antennas and 2 time slots were there; so, N

was 2 and times loss T were2; so, you had a 2 cross 2 matrix.

So, in general we will have this representation again this is the epsilons dot dot dot.
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So, if we look at in general if you look at the code for this N cross T encoding matrix,

then C will be written as C 11, C 12 to C 1N, then C 21, C 22, C 2 N and you can keep

going and you have T time slots. So, T 1, C T 2, C T N and if you see here we have N.

So, this is the space axis and this is a time axis right. So, this is space and you have N

and this is T; so, this gives you the N cross T.

So, this is a general notation for a space time encoding matrix we can represent it.

(Refer Slide Time: 27:31)



So, now the question is; what is a good space time block code? How do we design one?

We need some design rules. So, we saw that a space time block code is essentially a

mapping from input bits to a transmitted symbols. So, we have to play the game there,

these symbols are transmitted simultaneously from the different antenna elements ok.

And therefore,  they  couple  at  the  receiver;  the  aim of  the  space  time  decoder  is  to

correctly  guess  the  transmitted  symbols.  And  error  occurs  when  one  code  word  is

wrongly mistaken as another code word. So, suppose the wireless system use uses N

transmitted antennas and T time periods, then the code word we have already looked at

looked at as C 1.

 Now the error is set to be the decoder is set to make an error if it decides that a different

code word was indeed transmitted. So, even though C 1 was transmitted we say no it is a

C 2 that is sent out. So, if you now look at; so, we already have C 1 which was sent out.

(Refer Slide Time: 28:58)

C 11 C 12 so and so forth; C 1N C 21, C 22 up to C 2 N and going on for C T 1, C T 2 up

to C T N, this one was transmitted, but what we received is C 2. So, we can differentiate

it as C 2 11, c and so and so forth as opposed to what was sent. So, I can put a superscript

here and I can distinguish these 2.

. So, this C 1 was sent and this is what we decode and wrongly. So, there is an error in

the decoding. So, let us look at the slides again.
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The probability of erroneously decoding code word C 2 when it is coded with C 1 was

transmitted it is called the pair wise error probability. So, this is denoted by P C 1 was

sent and C 2 received and this is the notation we will be using.

(Refer Slide Time: 30:41)

Now, suppose the codebook contains K code words. So, we can use union bind to find

the upper bound on the probability  of error  that the code word C 1 was transmitted

erroneous decoded. And the union bound is simply the probability of error given C 1 is

less than all possible. So, i is equal to 2 to K because i is equal to 1 represents the correct



decoding, C 1 goes to C i. So, this pair wise error probability the upper bound on that

will be used for our code design criteria.

So, to calculate the pair wise error probability; we assume a fixed known channel matrix

H. So, the average error is calculated by averaging over the distribution of H. So, for

different H we will have a different kind of a average error calculation.

(Refer Slide Time: 31:47)

So, after some mathematics we can show that the pair wise error probability is upper

bounded by this expression ok. Now here N of course, is a number of transmit antennas

right and we have M as a number of receive antennas. So, we have a MIMO system in

place and lambda n; n is equal to 1, 2, 3 up to N are the eigenvalues of the matrix A C 1

comma C 2. Now what is this matrix? Let us define this. So, this matrix will play a

central role in our design criteria. So, A C 1 comma C 2 is defined as this C 2 this was a

matrix minus C 1 this was the sent matrix hermitian into C 2 minus C 1. So, do we define

it like this ok.

So,  what  is  this  C 2 minus C 1? It  is  like the  distance,  but  remember  what  are  the

elements of this matrix? Well these are symbols in the constellation diagram. So, it is

nothing, but a distance; so we represent it with D; so, this is the distance between C 2

and C 1; 1 2 1 hermitian and distance between C 2 and C 1; so, this is a definition of this

A matrix.
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So, and this D is the difference matrix. Now, let us talk about the rank of the matrix A

right;  so, at  high SNR what we can do is you can neglect  the previous equation the

denominator and so, the pair wise error probability is upper bounded by 1 over; this are

the eigenvalues product M and this is the indicator for SNR; E S is energy per symbol

and power noise power is denoted here and raised power r M, M is the number of receive

antennas, small r is the rank rank of this matrix A.

So, if you recall we had earlier said to the pair wise error probability; if represented in

general as follows some constant over G c S raised power G d. Then G d is the diversity

order of the diversity gain this term diversity gain G d and G c is of course, the coding

gain alright. So, if you compare these 2; we can quickly see that there is this r into M

corresponding to G d right because S is the SNR here S is energy per symbol over for N

naught. So, this is an indicated for the S; SNR and G d is r M.
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So, the diversity gain of the code G d is r M, but what is r? r is the rank of the matrix A C

1 comma C 2. So, it appears that this matrix plays a critical role and we have to design

the  C 1 such that  this  rank is  maximized.  What  is  M? M is  the  number  of  receive

antennas; earlier M was 1, in that case this diversity gain would be limited to r right.

So, the coding gain is a function of the product of the nonzero eigenvalues of the matrix

A, this one where is this coming from? We go back and see that this G c provides the

coding gain. So, this term is essentially the coding gain and it depends on the eigenvalues

of this A matrix very interesting.

So, the coding gain is a function of the product of the nonzero eigenvalues the matrix A

or  equivalently  the  determinant  of  the  matrix  A,  which  means  the  full  diversity  is

possible and it will be M into N the matrix A is of full rank.
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So, we have to design this essentially gives us the method to design good space time

block codes. We have to design A with full rank, coding gain we have studied earlier

also, but we revisit it.

(Refer Slide Time: 36:51)

So, the coding gain distance between codeword is the product of the nonzero eigenvalues

of the matrix A. So, we see from this expression that the block space time block codes

can provide you definitely with the diversity gain and coding gain and depending upon

how you have designed this matrix A.



So, let us now summarize these design criteria for the space time block codes. So, of

course, 2 things played an important role the rank and the determinant. So, we talk about

the rank and the determinant criteria for designing space time block code and what is it?

In order to achieve maximum diversity and diversity is so, important in we will take up

an example to show the importance.

In order to achieve maximum diversity, the matrix A should be full rank for any 2 code

words C i not equal to C j alright. And the smallest value of r over any pair of code

words provides a diversity gain of r times M; this is called the rank criteria M being the

number of received antennas.

 Now in order to maximize the coding gain ok; so, we have already talked about the

diversity gain. In order to maximize the coding gain, the minimum determinant of the

matrix A should be maximized for any 2 code words C i not equal to C j. So, this is

talking about the determinant and hence it is called the determinant criteria. So, together

they are called the rank and determinant criteria for designing good space time block

codes ok.

So, we can actually do a simple computers search to look at all possible combinations

and whichever gives this high rank and the maximizes the minimum determinant right

we get that.

(Refer Slide Time: 39:01)



So, let us revisit Alamouti code in this slide; so, we have seen that there are 2 transmit

antennas right; so, N equal to 2 and the code word we have seen earlier.

Now, let us consider a different pair of symbols with the corresponding code word matrix

C prime alright.

(Refer Slide Time: 39:30)

So, the difference matrix is nothing, but C 1 minus C prime. So, if you find out the

determinant of this is given by this and this is 0 if and only if S 1 is equal to S 1 prime

and  S  2  is  equal  to  S  2  prime  in  all  other  cases  the  determinant  will  be  nonzero.

Consequently this difference matrix D is full rank right, when C 2 is not equal to C 1. So,

that is the beauty of the design; it is a full rank.

So, Alamouti code satisfies the rank criteria and gives a diversity of 2 M, where M is the

number of receive antennas. Earlier we had talked about M equal to 1 for Alamouti code;

so, only one receive antenna. So, at least it will give a diversity gain of 2, I will just now

see what do we mean by a diversity gain of 2 is it good does it help.
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So,  let  us  understand  a  little  bit  more  about  the  Alamouti  code;  it  was  one  of  the

milestones. So, maximum diversity since the code satisfies the rank criteria, it provides

the maximum possible diversity  of 2 when the number of receive antennas is 1.  So,

diversity gain is 2 it provides symbol decoding; so, single symbol decoding, it is simple

each  symbol  can  be  decoded  separately  using  a  linear  processing  this  we  have

established because of its orthogonal nature.

And then it is full rate that is another interesting criteria what do we mean by full rate?

Well we transferred it to symbols into 2 2 time slots right; so, effectively we are sending

1 symbol per time slot; so, the rate is 1. So, we are not saying that we are slowing down

the communication, we did not take more time, we did not slow down the symbol rate

ok, we did not increase the decoding complexity, but at the same time we got a diversity

gain of 2.
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So, let us quickly look at the performance of Alamouti  code. So, we have made this

assumption of quasi static implying that 2 time periods are such that the channel does not

change significantly; so, H value is maintained.

So, let us plot the symbol error probability versus the SNR for N is equal to 2 transmit

antennas an M is equal to 1 receive antenna. So, we had already studied this scheme in

detail the Alamouti scheme and let us see how the symbol error probability curve looks

like, but how do we compare, did we gain anything? So, we consider the case when it

was a single antenna system. So, N is equal to 1 right; so, we plot that curve also and

compare how much is a Alamouti giving us let us say both of them are using this QPSK

constellation.
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So, let us plot the axis; so, on the x axis we are going to plot SNR, on the y axis will go

to plot the symbol error rate. So, if you do so if you see the stuff curve is the single

antenna transmit antenna and single receive antenna case, the second curve is Alamouti

scheme; both employing this QPSK constellation. And if you can see that there is a shift

in the slope, the gradient of this changes indicating the diversity gain and also please

note that these 2 diverge, which means as we go at a higher SNR regime the diversity

gain increases.

So, it brings home the very interesting point that a diversity gain becomes more and

more effective as we go to higher and higher SNRs. Therefore, if you are working with

systems which inherently work in low SNRs scenarios, it is really not worth it to look at

schemes that provide diversity, diversity gain is best employed when reasonably good

SNR is available ok.
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So, from the figure we observe that the symbol error probability decreases S is power

minus 2 where S is the SNR which confirms that the diversity gain is of the order 2 and

the effect of the diversity gives becomes more pronounced at higher SNRs and it as it is

evident because the performance gap widens as SNR increases. And if you look at the

slopes of the 2 curves alright, you will see that the slope is the indicator of the diversity

gain that we get and typically asymptotically you can see.

(Refer Slide Time: 46:59)



Now just a few more comments about this single symbol decoding and then we will try

to explain intuitively why diversity happens, why diversity gain is happening? So, we

have talked about this Alamouti code and the optimal decisions can be made based on

single symbols at a time. And what we have is this r 1, r 2 star pair can be simply written

as S 1, S 2 times omega; what is that? Well omega is this h matrix h 1, h 2 right n 1, n 2.

So, we have just repositioned these parameters and we have rewritten the received pair as

follows.

(Refer Slide Time: 45:50)

So, if you see we have this r 1, r 2 star that we had rewritten and if you multiply it with

the hermitian of this omega; then you simply get h 1 absolute value squared plus h 2

absolute value squared times S 1, S 2 n. So, you can see that upon multiplying both sides

with this  omega h herniation;  you decouple the decoding part.  So,  it  is  effectively 2

separate equations that can be solved separately ok. So, that is the reason why it is a

single symbol decoding.
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Now, let  us  spend  just  2  more  minutes  on  why  there  is  diversity  gain  intuitively;

mathematics we saw slope of the curve we saw, simulation results we saw, but intuitively

why are we getting? What is the physical reason? Can we link this mathematics to any

physical intuition?

So, let us suppose that instead of 2 antennas there was only 1, then the received signal

would depend only on the h the fading coefficient which can vary drastically and what

does h do? When the fading is bad the value of h is small. So, h squared is even small

right and then the noise will dominate because the signal is just out of the picture, but if

we have 2 transmit antennas the receiver signal depends as we have seen on h 1 squared

plus h 2 squared we have seen this therefore, here see the received signal pair depends on

h 1 squared absolute value and h 2 absolute value squared right.

Now, when will the system be dominated by noise here is the noise. The system here will

be dominated by noise if both h 1 and h 2 are small; only then this signal will become

insignificant with respect to noise and system becomes dominated by noise both of them

not only both of them both of them must simultaneously be small. If one is small the

other is large, but the signal is still there both of them must simultaneously drop down,

but that is bad because h 1 is for channel 1, h 2 is for channel 2.



And  somewhere  we  said  these  guys  are  supposed  to  be  independent,  they  are

independently fading. So, the probability that both h 1 and h 2; together simultaneously

very small is very rare and that is where we are getting the diversity gain.
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So, if noise must dominate then h 1, h 2 must be fading at  the same time,  but it  is

contrary to our assumption that h 1 and h 2 are fading independently. This intuitively the

received signal is less like to likely to be in fade because of the diversity provided by the

2 independently fading channels. So, thus we have argued purely based on intuition why

the system with 2 transmit antennas provides diversity ok. So, there is a very physical

feel to the whole thing.
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So, let us summarize what we have learned today; we have introduced this concept of

space time codes and we brought it out with the help of this wonderful coding scheme

called Alamouti code. We looked at why Alamouti code works and we also looked at this

rank and determinant criteria, for designing good space time block codes. Then we spent

some time talking about diversity and intuitively explained why diversity happens in this

multi antenna systems; we also had some examples.

So, with that we come to the end of this lecture.


