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Hello and welcome to our next lecture on Trellis Coded Modulation. Let us start with a

brief outline.

(Refer Slide Time: 00:36)

So, we would primarily cover Ungerboek’s design rules today and understand how we

can design very efficient trellis with good distance properties, and then we would spend

some  time  looking  at  performance  evaluation  of  TCM schemes  over  additive  white

Gaussian noise channels. Of course, we will look at some examples along the way.



(Refer Slide Time: 00:38)

Let us quickly see what we have done so far. We have understood what do we mean by

coding and modulation  and combining them then we introduced the notion  of  trellis

coded modulation and we introduced the idea of free distance. We will soon see that free

distance  d  free  will  be  the  single  most  important  design  parameter  for  trellis  coded

modulation schemes.

(Refer Slide Time: 01:21)

So, if you remember in error control coding, we introduced extra bits in a known manner

to be recovered at the receiver end in order to come back from the errors.



Now, this addition of extra bits came at a cost of additional bandwidth. Therefore, error

control schemes always required more bandwidth and we realized that this was inversely

proportional to the code rate R.

(Refer Slide Time: 01:52)

And, what we decided that in trellis coded modulation scheme we can gain something

out of nothing because we can leverage the gain by the error control coding scheme and

the modulation scheme together.

So, we defined for ourselves the coding gain where we found out that at a high SNR the

coding gain asymptotic coding gain as SNR tends to infinity is defined as 10 log to the

base  10 d  free  over  E s  normalized  coded scheme versus  uncoded scheme.  For  the

uncoded scheme deep free is simply the minimum Euclidean distance between the signal

points.  So,  this  is  this  gain  that  we  get  because  of  the  trellis  d  free  that  as  to  the

advantage and please remember that we have now the trellis labeled by symbols rather

than by the bits as in the convolutional encoder case.



(Refer Slide Time: 02:54)

So, we looked at how to maximize this free distance while designing good trellis coded

modulation schemes for that we designed we decided that the error event is when we

diverge like this and then we go through the trellis for a couple of hops, and then finally

we  merge  back.  So,  this  constitutes  an  error  event.  What  happens  is  we transmit  a

sequence of bits and it corresponds to a path in the trellis for example, this path and at

the decoding end suppose we are using Viterbi we decode another path in the trellis and

therefore, this constitutes an error event.

Now, in order to maximize the d free we would like to make sure that the two most

closely resembling paths are separated maximally, for that we do not know what happens

in between, but at least the diverging and the merging back paths need to be maximally

apart in terms of the Euclidean distance. Here we look at the squared Euclidean distance

because we take the total of all the branch labels.



(Refer Slide Time: 04:17)

So, we introduce the concept of set partitioning where we consecutively partition a set of

the constellation diagram into increasingly minimum Euclidean distances. And what we

want to do is to associate the different symbols at different stages of the set partition tree

with the branches and label the branches accordingly.

(Refer Slide Time: 04:42)

So, this is a simple example of 8-PSK and how we do set partitioning. So, step one we

get into two subsets each one has a larger Euclidean distance and then we continue this



further till  we get to the maximally separated points. So, this is an example of a set

partitioning of 8-PSK signal set.

(Refer Slide Time: 05:08)

Now, Ungerboek’s design rule tells us in a heuristic manner how to assign symbols to a

trellis. This is rule number 1, where the parallel transitions if present must be associated

with the signals in the subset of the lowest layer of the set partitioning tree, which means

that if you were to have parallel transitions in your trellis then this is the lowest set and if

you have parallel transitions then these opposite symbols s 0 and s 4 for example, should

be assigned or s 2 and s 6 must be assigned to the parallel transitions and so and so forth.

Now, rule number 2 says that the transitions originating from or merging into one-state

must be associated with the signals of the first step of the. So, go one step higher first the

most damaging ones are the parallel transitions. So, the symbols should be such that they

are maximally apart.  Then if  we do not have parallel  transitions then we look at the

merging and diverging paths where they should be assigned to the next higher level. And

finally, what we must do is try to ensure that all signals are used with equal frequency.

This is to our advantage otherwise if we use certain signals too many times then you end

up reducing the distance.
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This is an example we did in the last class and how we have been able to assign the

diverging  paths,  and  the  merging  back  paths  from  the  sets  of  symbols  which  are

maximally apart.

(Refer Slide Time: 06:52)

So, let us look at this example again it is best understood by this example. So, suppose

we are looking at a rate 2 by 3 convolutional encoder followed by a natural mapping. If

you remember natural mapping means 000 is mapped to symbol s 0, 001 is mapped to

symbol s 1 and so on and so forth.



So, clearly there are 3 bits at the output of this convolutional encoder and therefore, we

must have 8-PSK in order to convert it into a symbol Si. So, 2 bits come in goes through

the convolutional encoder 3 bits come out they are mapped using the natural mapping

and one symbol comes out. So, the equivalent trellis will have 8 states because there are

3 memory elements and there will be 2 paths emanating sorry 4 paths because they are 2

bits which are input. So, corresponding to 00, 011, 0 and 1 1 you will have 4 branches

coming out and each branch will be labeled by a symbol.

(Refer Slide Time: 07:59)

So, the other way to visualize this is in terms of the delay versions. So, if you look at just

the first C 1 it is directly a 1 and C 2 is directly a 2, but C 3 is a 1 with one delay and

then a 2 goes through two delays and the sum goes through three delays. So, if you solve

this then you can label C 1 as a 1, C 2 as a 2, because they were directly connected, but C

3 if you solve those intermediate equations can be represented in this delayed version.



(Refer Slide Time: 08:50)

So,  we  have  an  equivalent  generator  polynomial  matrix  for  this  encoder  which  we

studied earlier in convolutional encoder as follows. So, you have a simple representation

of this generator polynomial matrix, ok. This unity this one and one here and identity

matrix in the beginning shows that it is kind of a systematic encoder.

So, clearly if we have G D we can write out the H D matrix the poly the parity check

polynomial matrix H D such that G D into H transpose D should be equal to the 0 matrix.

So, you can quickly make an observation and write as follows. So, if you multiply G

with H transpose then this D squared is specter by this one D specter by this one so,

numerator becomes D squared plus D divided by 1 plus D cubed and you quickly realize

that you have GD H transpose D equal to 0. So, it is easy to make H D from G D and G

D is equally easy to realize from the visual observation.
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So, now you have this H D matrix in terms of the H 1 D, H 2 D and H 3 D and you can

write it in terms of binary or octal as follows. So, D squared. So, this stands for the

coefficients of D raised to the power 0, if it is missing. So, it is 0 this is the coefficient

for D raised to the power 1, which is missing. So, it is 0 and this is the coefficient for D

raised to the power 2 which is present. So, it is 1. So, that is the binary representation and

this is the octal representation.

Similarly, H 2 D it is the coefficient for D is there, coefficient for D raised to the power 0

is missing, coefficient is for D squared is missing and therefore, it is 010 and binary and

02 in octal.  The first three bits stands for the first digit secondary bits stands for the

second digit and H 3 D is 1 plus D squared if you see 1 plus D cubed. So, you have 1

here and this is the coefficients of D cubed; so 1 1 in octal.  So, I can represent this

simply using the octal notations which is found in the literature, ok.

So, it is now possible to form a table which goes the encoder realization and asymptotic

gains of some good TCM codes usually constructed from binary searches because there

is no hard and fast design rules. So, we can always come up with a table, they have been

found by exhaustive computer searches.
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So,  we can write  them out  and document their  gain asymptotic  gain with respect  to

QPSK as follows. Here is  a table  of good TCM schemes of which we have already

looked at this number of state 8 H 1 – 4, 2 and 11 in octal notation, where we calculated

that this normalized free distance squared is 4.58 leading to a gain of 3.6 dB asymptotic

coding gain, but that is not the only one we have, so many other possibilities and by now

we understand how to write the encoder using the octal notation as follows. So, this is a

set of good TCM schemes using 8-PSK.

(Refer Slide Time: 12:45)



So, now let us look at another example using 16 QAM and this encoder takes in 3 bits

and adds one more bits to gives it is a 4 bit output. So, the convolution encoder is a 3 by

4 consequently we cannot use 8-PSK we must use 16 QAM and what we do is that you

can first find out what is the average signal energy for 16 QAM. If you remember all the

symbols do not carry equal energy because they are not equally spaced from the center or

the origin.

(Refer Slide Time: 13:25)

So, this is the example of the rate 3 by 4 convolutional encoder. It takes 3 bits and gives

out 4 bits followed by a natural mapping, but this time I need to have a 16 QAM and

consequently  we  get  mapped  symbol  S  i  out.  Again,  there  are  3  memory  elements

leading to 8 states in the trellis. So, rate 3 by 4 convolution encoder natural mapping

eight-state trellis.



(Refer Slide Time: 13:57)

So, first we have to do set partitioning, but this time we start with the 16 QAM and if you

see as  a  first  step I  divided into two subsets  each  one.  We,  throughout  the alternate

symbols leading to an increased Euclidean spacing between the symbols as follows and

then we do not stop we continue further. So, we get even larger distances between the

neighboring symbols. So, first two subsets and then two more for each so, four, total

number of subsets and then eight subsets we have continuously increase the distance. So,

this is the example for set partitioning of 16 QAM.

Now, we will use Ungerboek’s rule to assign the symbols from the correct level of the set

partitioning tree to the diverging paths and the merging back paths.



(Refer Slide Time: 14:58)

So,  this  is  an  example  of  that  convolutional  encoder  if  you  see  there  are  parallel

transitions here so. In fact, every node has eight outgoing branches of which there are

four para pairs of parallel transitions. So, we must apply Ungerboek’s rule for this as you

can see there were three memory elements leading to eight states in the trellis, right and

there were three input bits coming in leading to eight branches emanating from each

node from 000 up to 111.

Here is assignment. So, here is the assignment of the symbols from the set partitioning

tree that we just now saw. This is a tree and this is what we mean by A 0 and A 1 as the

subsets this is A 00, A 10, A 01 and A 11. Similarly, these eight subsets A 000, A 100 up

to A 111. So, we are going to assign the parallel transition from this lowest rug in the

ladder, 

So, these two must be assigned to the first parallel transition, these two symbols must be

assigned to the second and then subsequently we can look at the different transitions. So,

A 000 so, the two symbols from A 000 are assigned here A 100 are assigned to the next

set of parallel transitions. Two symbols from A 010 to this one. And finally, two symbols

from A 110 to this one alright, but we have also made sure that the diverging branches

must be such that they get assigned from the next higher level.

So, the diverging branch should be such that the symbols are assigned from these parts.

So, that is the case because there more than one ways to assign these two symbols to the



parallel branches. So, similarly the merging back branches merging back branches must

be assigned to the next higher level. So, this is an example how Ungerboek’s design rule

is used to assign symbols to the trellis with parallel transitions.

(Refer Slide Time: 17:38)

So, if you calculate now the d free based on this then you can find out what is asymptotic

coding gain.

(Refer Slide Time: 17:51)

This if you do the calculations about the squared Euclidean distance then the minimum

squared Euclidean distance between non parallel paths is 5 delta naught squared and you



have if you look at the squared Euclidean distance between two parallel transitions is 8

delta naught squared. So, we have been able to ensure that it is not the parallel transitions

that are leading to d square d free squared.

So, if you look at d free square it is the minimum of the diverging and the merging back

branches. So, we calculated d free between this node and this node either through this

branch or it diverges and then merges back. So, it is not the parallel transition, but the

others which are causing it to have an error event and consequently we have the d free

dictated by the non parallel path which is 5 delta naught squared equal to 2 under root 2

E s.

(Refer Slide Time: 18:56)

So, now that we have the minimum Euclidean distance corresponding to the d free for

the TCM scheme we want to find out the asymptotic coding gain. So, if we had not used

rate  3 by 4 encoder, if  we had this  3  bits  coming and we had to  transmit  them by

modulating in them we would use 8-PSK. So, we find out the squared Euclidean distance

from 8-PSK which is 2 minus under root 2 E of s and now, this asymptotic coding gain is

simply the ratio 2 over 2 minus root 2 and this is log to the base 10, 10 time. So, it gives

you a whopping 5.3 dB coding gain.

So, that trellis  the complicated looking trellis  also gave us a  pretty  good asymptotic

coding gain. If you remember in electrical engineering even a coding gain of 3 dB is

worth looking into. Now, here we have 5 point 3 dB asymptotic coding gain. So, this is



really a very good design, it is a good example of a rate 3 by 4 convolutional encoder

coupled with the natural mapper.

(Refer Slide Time: 20:12)

Now, let us quickly spend some time looking at the decoding part. So, we have already

made this observation that there is a one to one correspondence between the bit stream

coming in and a path in the trellis.  Only in this  case the trellis  paths are labeled by

symbols and not by bits. So, the decoding problem is finding the most likely path of the

trellis  with respect  to  that  which  is  received  and most  likely  comes  in  terms  of  the

minimum Euclidean distance.

So, we use the maximum likelihood criteria to do it and Viterbi algorithm is commonly

used for this decoding technique.
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So, for soft decision decoding of the received sequence is using Viterbi algorithm each

trellis branch is labeled by the branch metric based on the observed received sequence.

The  only  difference  is  in  convolution  decoding  we used  hard  we used  the  bits  and

therefore, the hamming distance here we will use the Euclidean distance.

So,  using  the  maximum  likelihood  decoder  for  the  additive  white  Gaussian  noise

channels the branch metric is defined as the Euclidean distance, and the Viterbi decoder

tries to find out a path in the trellis which is most closely resembling that is closest in

terms of the Euclidean distance with respect to the received path.
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 So, a branch metric for a TCM scheme is now in terms of the Euclidean distance and we

now try to find out the performance of TCM schemes in additive white Gaussian noise

channel.

(Refer Slide Time: 21:56)

So,  in  the  next  few  slides  we  will  develop  a  mathematical  tool.  It  will  be  slightly

involved, but what we will do is try to get the message across in terms of what we are

trying to do. So, we are now going to work with this free Euclidean distance.



Now, what we would define is the average number of nearest neighbors N as a function

of d free gives the average number of paths in the trellis with the free Euclidean distance

d free. So, d free is actually the weakest link in the chain and we would like to find out

how many weak links are there in the chain. So, this N as a function of d free is used in

conjunction with d free to evaluate how good a trellis coded modulation scheme is.

(Refer Slide Time: 22:50)

So, let us look at an error event definition. So, we have already defined that we have a

sequence S n, this  is  a vector  of S n. S n plus 1 and so on so forth,  but we have l

branches. So, S n plus l plus 1 and we have a received sequence or the estimate that we

try to get in terms of the guessed sequence that we sent, right. And we would like to get S

n equal to S hat n.
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So,  the  probability  of  an  error  event  starting  at  time  n,  given  that  the  decoder  has

estimated the correct transmitter state. And the time is called the error event probability P

e and we will try to get an upper bound on this P e.

(Refer Slide Time: 23:44)

So, the performance of a TCM scheme is generally evaluated by means of the upper

bound on the error event probability. We will soon realize why an upper bound is used

simply because it is impossible to keep track of all the possible path that may result in an



error event. So, we look at the whole group of possible paths and we come up with and

some kind of a union bound.

Now, the performance evaluation is based on the generating function approach that we

have  already  studied  in  our  earlier  portion  of  trellis  coded  modulation  and  the

convolutional encoder. So, here please note we are going to look at m over m plus one

TCM scheme in general and this will be coupled with a mapper. So, encoder takes m bits

and converts into m plus 1 bits and what we have is we have a binary m plus 1 tuple c i

as the label for signal s i. So, we have these labels that we are going to work within the

next few slides and the idea is to recover these labels and there is of course, a one to one

correspondence with this c i to s i. We observe s i and then we try to recover the c i.

So, an error event of length l can be equivalently described by two sequences of labels C

l and C l prime, ok. So, we are we are going to work with this and error event is when

they are not the same, ok. So, how do we describe it? Well, if they are not the same then

an error has happened and we have this c k binary addition e k where this is the error

event. Again, this is a binary label c prime k plus 1 this is nothing but the original one

that was transmitted plus an error binary event.

So, just like that we have a sequence of c k, c k plus 1 and so and so forth we have a

sequence of this error binary error vectors, ok.

(Refer Slide Time: 26:07)



So, basically in the performance evaluation over additive white Gaussian noise channel,

we look at the upper bound on the probability of error simply by looking at this union

bound, the probability of s l and the pair wise error probability P s l comma s l prime

where s l prime is not equal to s l. So, we look at all such cases therefore, it is summation

over all the cases where s l prime is not equal to s l.

And, then we have all the possible symbols, right. So, we have a summation over all the

possible symbols and then we have all possible path lengths of the error event. So, error

event can be of one length. So, in one hop it diverges and merges back or two hops or

three hops up to infinity, because the trellis is a semi infinite geometric structure. So, we

have these three summations  here.  And therefore,  we have a union bound on all  the

cases, where s l is not the same as s l prime.

(Refer Slide Time: 27:21)

So, now we can do a quick set of algebraic steps and, we look at this upper bound. Now,

since there is a one to one correspondence between a symbol and it is label we have

replaced the symbols by this labels. So, we have now the sequence of labels and the

probability that C l is not the same as C l prime. So, we do over all those possible cases

and we have  all  the possible  symbols  and we have the  C l  labels  and again  all  the

possible length of the path, but we have just now put together that this C l prime is

nothing but the original C l plus the error. So, it is simply written as follows.



So, now we can use the Bhattacharyya bound to limit upper bound this error event. What

is this pairwise error event? Probability between C l being transmitted and C l plus some

error being received is now less than this is a function of C l minus C l prime. It is the

Euclidean distance square, where f is a memoryless mapper. So, this is how we are using

the Bhattacharyya bound to get into this Euclidean distance concept.

(Refer Slide Time: 27:28)

So, now define capital D as e raised to the power minus 1 over 4 N naught. So, this will

help us write this in a compact form. So, now, this pairwise error probability is upper

bounded by this D raised to power this norm of f C l minus f C l prime, and this is

nothing but the squared Euclidean distance between these two.

So, we now define this n function W of E l. So, please note it is a function only of E l

and this is great, because we do not want this W to be a function of any particular path in

the trellis it is only a function of the error event. Therefore, we are defining it as this.

This is simply defined as follows and now we will  plug in this  W into the term for

pairwise error probability.
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So, now pairwise error probability is now simply for all possible path lengths from 1 to

infinity and error not being equal to 0. Earlier it was at C l is not equal to C l prime and

for all this cases where error is not equal to 0 it looks at all the possible W’s here, fine.

So, we now look at finally, how to get a handle on this upper bound on the right hand

side.

(Refer Slide Time: 30:22)

So, we now have this error weight matrix G e i is an N cross N matrix whose element in

the p-th row and q-th column is defined as follows, ok. So, we define this error weight



matrix and see how clearly we are defining it we have this D which we have defined

earlier, this is the mapper of f c p to q, right and minus c p to q plus this error e i. So, if

you do this is talking about from transition from state p to q.

So, we are now looking at  all  the possible  transitions.  So,  we are looking at  all  the

possible transitions and how the error is incorporated when we go from one transition to

other, right.

(Refer Slide Time: 31:25)

So, if you do this math completely you can see that this W E l which is only a function of

the error can be written as 1 over N then 1 this is a vector transpose product of G e n 1.

So, this is what we can do some basic mathematics to come to this one.
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One I have said is a column vector of N length vector.

(Refer Slide Time: 31:57)

And so, we would like to finally, get to this P e, the probability of error.
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And, if you do this you can write out in terms of that modified state diagram T of D,

where D is as earlier e raise to the power minus 1 over 4 N naught.

So, here T D is very easily written as 1 over N 1 vector transpose G 1 vector and this in

some sense you have seen earlier in the modified state diagram, and G matrix is defined

as follows. T D is called a scalar transfer function or simply the transfer function of the

error  state  diagram.  So,  once  we learn  how to  calculate,  and we will  try  to  see  an

example, then it is very easy to get an upper bound on that.

(Refer Slide Time: 32:59)



So, let us quickly go through an example to see how this works. We have a rate 1 by 2.

So, m is equal to one m over M plus 1, TCM scheme and M is equal to 4 capital M. So, it

takes one bit converted into two bits and two bits required QPSK to be used.

Now, the two-state trellis diagram is we will just show it and the error vector e will be as

follows. So, this is an example how G e 2 e 1 can be written, ok. So, we have this 00, 10,

01 and 11.

(Refer Slide Time: 33:45)

And, here are the two-state trellis it is a simple example, where we have this QPSK and

the four symbols are being used and you can easily write G e 2 e 1 as follows.
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So, finally, if you follow the steps we have these three matrices G 01, G 10, G 11 in

terms of this D.

(Refer Slide Time: 34:25)

And, very quickly we can calculate this scalar transfer function T D and it comes out as

D square D raised to the power 6 over 1 minus D squared we could have solved it using a

traditional method also using dummy variables in the middle we have learnt how to solve

this. So, T D comes out to be this. Once we have the T D in any way you would like to



calculate then you substitute this D equal to e raised to the power minus 1 over 4 N

naught and you have the upper bound on the probability of error.

(Refer Slide Time: 34:58)

So, this gives a basic idea. So now, we would like to kind of summarize what we have

done  today. We have  looked  revisited  actually  Ungerboek’s  design  rules,  where  we

would like to understand how the parallel transitions and diverging and merging back

paths are assigned. Then, we looked at  how to evaluate  TCM schemes over additive

white Gaussian noise channel. We made the observation that d free is the single most

important  parameter  for  TCM  schemes  that  we  will  use  and  it  comes  out  that  the

probability  of error upper bound is  strictly  dependent  on this  d free notion.  We also

looked at certain examples to see how we can calculate this probability of error.

With that we come to this end of this lecture.

Thank you.


