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Trellis Coded Modulation

Hello and welcome to our lecture on Trellis Coded Modulation; let us start with the brief

outline for today’s talk.

(Refer Slide Time: 00:34)

We would introduce this interesting notion of combining coding and modulation; so we

will look at combined coding and modulation, then we will move on to the idea of trellis

coded  modulation,  we  will  then  characterize  the  free  distance  and  come  up  with

interesting idea proposed by Ungerboek in terms of his design rules; of course we look at

some examples as we go along.



(Refer Slide Time: 01:03)

So, so far what have we done? We have looked at block codes, linear block codes, we

look we have looked at cyclic codes. BCH codes, then we changed gears and looked at

codes with memory and we looked at convolutional codes and turbo codes and now we

move  on  to  a  completely  different  area  where  we  look  at  coding  and  modulation

combined together.

(Refer Slide Time: 01:30)



But why do we do that?  So first  let  us  look at  the tradeoff between bandwidth and

performance; we know that in all error control coding techniques extra bits are added to

the information bits in a known manner therefore, the receiver can decode it.

But this is not free additional bits come at the expense of additional bandwidth and as we

know bandwidth is not cheap, the bandwidth expansion is equal to the reciprocal of the

code rate for example, if you have the Reed Solomon 255 comma 223 code then there is

a 1 over R equal to 1.14 so as a 14 percent expansion.

(Refer Slide Time: 02:14)

Now, this tantamounts to for a every 100 information bits we have about 14.35 overhead

bits on an average.

So, a 14.35 percent expansion of bandwidth this is non-trivial even for an efficient code

like Reed Solomon 255 comma 223. So in power limited channel one may trade the

bandwidth expansion for the desired performance, but for bandwidth limited channels we

may not have this luxury. So can we do better for example, telephone lines are bandwidth

limited and if we want to push data over telephone lines we need to work more smartly.



(Refer Slide Time: 03:01)

So, let us look at coding and modulation; how can we talk about coding and modulation

on the same slides. Well traditionally coding and modulations have been considered as

two separate  parts  of  a  digital  communication  system;  you first  do coding and then

follow it up by modulation right. First the input stream is channel coded and then we

convert into an analog waveform by the modulator, but if you look at it more carefully

the objective of both the channel encoder and the modulation is to correct errors and this

is because of the imperfections in the channel, so both of them are doing the same job.

If you look at an error control code, we find out what is the probability of residual error;

if we look at the characteristic of a modulator we always plot the BER versus the SNR

curve; the standard waterfall curve, so again we are talking about bit error rate.



(Refer Slide Time: 04:05)

So,  now  both  this  blocks  are  optimized  independently  even  though  it  seems  their

objective is the same. Now a high performance is possible by lowering the code rate at

the cost of the bandwidth expansion and increase decoding complexity that is what we

have learned so far.

So, if you need a stronger code, you have to have a poorer code rate because that is how

you will  be able  to  recover  from more number of  errors.  Now the question is;  is  it

possible  to  obtain  this  coding gain  without  the  bandwidth  expansion,  is  there  a  free

lunch, can we get something out of nothing; that is the question we are asking whether

both coding and modulation can be looked at  together  to give you this  gain without

additional bandwidths requirement.



(Refer Slide Time: 05:01)

So,  let  us  understand  this  with  a  simple  example;  suppose  we  are  looking  at  data

transmission over a channel of throughput 2 bits per second per hertz ok. So the moment

I see 2 bits per second per hertz my mind jumps to uncoded QPSK; where we have 2 bits

per symbol, but we say wait a minute we can do this differently we first use a 2 by 3 rate

convolution encoder and it takes the 2 bits of raw data and converts into 3 bits of coded

data, and then 3 bits have to be transported and we use now an 8-PSK because I need 3

bits per symbol because I do not need additional bandwidth.

So,  this  coded  8-PSK  schemes  yield  the  same  information  data  throughput  as  the

uncoded QPSK which was sending 2 bits per second per Hertz. We assume that QPSK

and 8-PSK are consuming roughly the same bandwidth it is not a bad assumption, but we

know that the symbol error rate for 8-PSK is worse off than that of QPSK for the same

energy per symbol, but on the other hand the 2 by 3 convolution encoder has been able to

provide some coding gain.

So, if you look at it graphically, this is what we did, we had this 2 bits coming in now if

you look at these 2 bits these 2 bits can be either sent using QPSK where you know there

is  a constellation diagram and we have these 4 possible  symbols in the constellation

diagram and you have got 2 bits per symbol.



(Refer Slide Time: 06:54)

But we say no wait a minute this 2 bits can be passed through a convolution encoder

which is rate 2 by 3, so 2 bits go in and 3 bits come out.

So, what do I do I have to modulate and send so I need a a higher order modulation

scheme so I need probably an 8-PSK so if you look at it this is my 8-PSK this is the

constellation diagram. Here I have got 3 bits per symbol please note that this radius of

the circle is proportional to the energy per symbol; so we do not want additional power

so the radii are the same; so the same radii implies that this circle has these symbols

closer together as opposed to the distance.

So, the Euclidean distance goes down, the Euclidean distance going down may lead to an

increase in probability of error, but you already have an error control code put into place

whose job is to reduce the error, so this block is going to reduce the probability of error.

So on one side we have a mechanism that tries to push down the error the other side may

lead to increase of error.

So, if you play our cards right then we can come out an overall winner; so this trade off

will decide whether we finally, end up having a better BER. Please note we have not

touched power, so same power and here these two modulation schemes we have not

really asked for additional bandwidth so we have same bandwidth. Now with the same

power and same bandwidth do we have an improved BER that is the question; did we

really gain something out of nothing.



We know  that  from  Shannon’s  theorem  you  give  me  more  power  I  will  give  you

improved BER, you give me more bandwidth I will give you an improved BER, but I ask

for no additional power, no additional bandwidth and am I going to get an improved

BER; so the answer is yes and let us see how we can do it. So we go back to our slide

and what we have just mentioned it could be possible that the coding gain provided by

the encoder outweighs the performance loss because of the 8-PSK signal set as we are

looking in our slides.

Now if the coded modulation scheme performs superior to the uncoded one at the same

SNR we can claim that an improvement is achieved without sacrificing either data rate or

bandwidth.

(Refer Slide Time: 11:05)

So please note we did not sacrifice data rate in either case we got those 2 bits per second

through the channel.  So in this  example we have combined a Trellis  encoder with a

modulator and hence we have looked at combined coding and modulation; this scheme is

called a Trellis Coded Modulation or TCM for short.



(Refer Slide Time: 11:48)

So, let us look at QPSK and 8-PSK a little bit more carefully; if you see that both the

circles are of the same radius which means that energy per symbol is the same. Now we

also  know that  the  probability  of  error  depends  on  the  Euclidean  distance,  here  the

smallest Euclidean distance between s 1 and s 0 will decide what is the error rate. So I

put delta 0 as the first  distance if  the radius of the circle  is under root E s then the

distance between s 1 and s 0 delta naught squared would be 2 E s and similarly the

second possible distance between s 2 and s 0 will be 4 E s.

On the other hand if you look at 8-PSK the distances are shorter, so the smallest distance

possible delta naught 0 is 0.586 E s, where E s represents the energy per symbol and the

radius of the circle is under root E of s. Here delta 1 squared is between s 0 and s 2 same

as delta 0 squared in QPSK, but we have 2 other distances delta 2 and delta 3 listed here.

So, this smaller distance leads to a higher error for 8-PSK.



(Refer Slide Time: 13:15)

So, we make some observations, we observe that the expansion of the signal set in order

to provide redundancy results in the shrinking of the Euclidean distance; this leads to an

increase in the error rate which must be compensated with the coding gain; that is the

increase  in  the Hamming distance.  We also know that  the note  that  the use of  hard

decision demodulation prior to decoding in a coded scheme causes an irreversible loss of

information.  So,  these  are  the  observations  we  make  and  finally,  this  hard  decision

decoding leads to loss of SNR.

(Refer Slide Time: 13:51)



Some more observations so for coded modulation schemes where the expansion of the

signal set implies power penalty, use of soft decision decoding is imperative ok; as a

result demodulation and decoding should be combined. So not only the modulation and

coding is combined the demodulation and decoding itself is combined as the receiver

side.  For  the  maximum likelihood  decoding using soft  decision  the  optimal  decoder

chooses that sequence which is nearest to the received sequence this time in terms of the

Euclidean distance and not the Hamming distance that we saw in the last time.

So, what is an efficient coding scheme? It should be based on maximizing the minimum

Euclidian distance between coded sequence rather than the Hamming distance.

(Refer Slide Time: 14:42)

We have looked at free distance earlier in terms of convolution codes we define the free

Euclidean distance; so the minimum Euclidian distance between any 2 paths in the trellis

is called the free Euclidean distance d free of the TCM scheme. Please note here since

there is a convolution encoder present they will be a trellis diagram, but the labels of the

branches instead of being bits should be symbols because, all the bits have been mapped

to symbols.

Now, you must remember in convolution codes we had the linearity constrained; so we

were working with linear codes we could take the all 0 paths and find out the d free with

respect  to  the  all  0  path.  Here  is  a  word  of  caution  for  TCM;  TCM  is  non-linear

therefore, in order to find the d free one must look at all possible pairs within the trellis



diagram ok. We are looking at non-linear codes this mapping mapping of the bits to the

symbols introduces the non-linearity.

(Refer Slide Time: 16:03).

So let us look at the decoding; please note there is a viterbi algorithm associated with it

simply because we have a trellis  diagram which is used for encoding. So we do the

decoding using the viterbi algorithm which we have studied already in the context of

convolutional codes. What does the viterbi decoding do? It looks for the most likely path

through the trellis, but this time instead of finding out the most likely path closest to the

received  sequence  in  terms  of  Hamming distance  we should be using the Euclidean

distance for TCM.

The performance of the decoding algorithm depends on the minimum Euclidian distance

between the pairs of paths forming an error event. What is an error event? First the paths

diverge and then they merge back ok.



(Refer Slide Time: 16:50)

So we come back to our slide; we have done all of so let us look at this example now, let

us consider a simple example where if you see a trellis encoder in the beginning it takes

in 2 bits a 1 and a 2 and gives out 3 coded bits c 1, c 2, c 3.

But the moment I get these 3 bits I use a natural mapping on 8-PSK and it gives me a

symbol. So if you look at the combined coding and modulation 2 bits lead to 1 symbol;

what is natural mapping? It is 0 0 0 is s 0, 0 0 1 bit means transmit s 1, these are the

symbols 0 1 0, transmit s 2 up to 1 1 1 means transmit s 7 symbol from the constellation

diagram. The rate is clearly 2 by 3 and it takes in 2 bits and converts it into 3 bits and the

constellation is 8-PSK.



(Refer Slide Time: 18:17)

So, if you see that this combined encoding and modulation can be represented using a

trellis diagram, but this time we label the branches with the output symbols and this is a

fully connected trellis  where each branch is labeled by the symbols from 8-PSK and

encoding is a simple process as we had learnt earlier; 1 comes in you take the upper

branch, 0 comes in take the lower branch and you read out what is written on top of the

branch.

(Refer Slide Time: 18:53)



So, if you have to look at the trellis diagram you just take in the input bit stream which

tells you which path in the trellis you have to take.

Let us take a simple example of a streak sequence of bits to be encoded using the trellis

coded modulation scheme, say the bit stream is 1 0 1 1 1 0 0 0 1 0 0 1 this has to be

encoded using the trellis coded modulation scheme.

(Refer Slide Time: 19:25)

So, here is the corresponding trellis for the TCM schemes; now please note that instead

of labeling each branch and it becomes a little confusing we write the symbols here so s

0 corresponds to the first branch label, s 7 corresponds to the second branch, s 5 third and

s 2 forth. So, let us look at it graphically here so we draw this trellis diagram.



(Refer Slide Time: 20:01)

There are 4 states in the trellis, because if you see you have 2 memory units leading to 4

states and it is a fully connected trellis which means that each node is connected to every

other node and so and so forth. Now for any bit that comes in and this is a rate 2 by 3; so

2 bits come out so they have possible 4 possible transitions 0 0 comes in take this branch,

0 1 take this branch, 1 0 take this branch, 1 1 take the last branch.

What happens once you take the branch you get an output bit, but you encoded using and

then you map it back using the 8-PSK natural mapping. So the mapping strategy that we

have given is s 0 for 1 what is this s 0 well if you look at your 8-PSK these are your

symbols; so this is your s 0 this is your s 1 so this s 0 is this s 0, but suppose you go for

this transition then you label it with s 7. This is a design that we have come up with I

could have labeled it something else, but we are not yet looking at the design criteria and

then the third branch is s 5, the fourth branch is s 2.

If I start labeling all of them it gets a little congested so we can say this is s 0 s 7 s 5 and

s 2 so this is the convention. Similarly for the next 1 I can write s 5 s 2 s 0 s 7 of course,

it will be easy to start connecting them and labeling and so and so forth. And similarly

the third one and the fourth one and this repeats, so we just fix it and write out the trellis

s 4 s 6 s 1 similarly s 6 s 1 s 3 and s 4 right.

So, we can always write a trellis diagram in a compact form; so let us look at the slides

again and if you see this fully connected trellis then we must now find out a way to



encode the path in the trellis. So it says the bits input bit stream is 1 0, 1 1, 1 0 and 0 0 in

the slide. So what we do is look at the first 2 bits since encoder and decoder are friends

we know that 2 bits are encoded at one time and the encoder then takes 1 0 means takes

the  third  path  then  1  1  take  this  path  and  then  so  this  basically  gives  which  is  the

direction to take which sequence of bits will define that a certain path in the trellis must

be traversed.

And what we do is simply read out what is written off on top of each of the branches.

The objective  of  the decoder  again  is  to  recover  this  particular  path  from the trellis

diagram.

(Refer Slide Time: 23:50)

So, here is in a nutshell all of it if you see this is the hardware followed by the mapping,

so I can describe my TCM scheme as a diagram with a circuit implementation and a

mapping or equivalently I can define my trellis using the states and a trellis diagram they

are the same you give me 1 and I will give you the other.



(Refer Slide Time: 24:11)

So, if you look at the path in the trellis this slide tells me how to go from the input

sequence to the path on the trellis and the encoder takes 2 bits at a time and follows the

consequent paths in the trellis.

(Refer Slide Time: 24:47)

And reads  out  the  corresponding symbol  written  on top  of  that  branch so  this  slide

basically tells you that first branch has s 5 written on it so read out s 5 second branch has

written s 1 on it so read out s 1 s 3 and s 3 and so on and so forth.



(Refer Slide Time: 25:05)

So, now we go to the job of finding the free distance; we know that free distance is the

single most important parameter which describes how good this trellis code is. So the

free Euclidean distance of the TCM scheme can be found by inspecting all possible pairs

of path in the trellis not just from the all 0 path this is because we are dealing with a non-

linear code.

(Refer Slide Time: 25:39)



So let  us look at  this  diagram and this  is  the same trellis  coded modulation scheme

described earlier here after a lot of inspection we have been able to identify 1 pair of path

which leads to the minimum distance called the free distance.

So we have s 0 s 0 s 2 and s 7 s 0 s 1 that they have been shown using bold lines and

clearly the distance is not coming from the all 0 path. In fact, the all 0 path does not lead

to the calculation of d free here at all.

(Refer Slide Time: 26:20)

So, if you add those free distances, so it is Euclidean distance so if you see first we will

take the distance between s 0 and s 7 plus between s 0 and s 0 plus distance between s 2

and s 1, but what distances are we adding? We are adding the Euclidean distances and

therefore,  we  take  the  squared  Euclidean  distance  because  we  can  add  the  squared

Euclidean distance overall.

So, we take the distance between s 0 and s 7 square Euclidean distance, square Euclidean

distance between s 0 and s 0 and squared Euclidean distance between s 2 and s 1. If you

add them up you get answer equal to 1.172 E s; what is E s? Well the radius of the circle

is under root E of s so it can be seen that in this case the error event that results in the d

free does not involve the all 0 path in the trellis and we looked at all possible pairs in the

trellis to find out d free not just the all 0 path.



(Refer Slide Time: 27:30)

Now, we define something called as coding gain the difference between the values of the

SNR  for  the  coded  and  the  uncoded  schemes  required  to  achieve  the  same  error

probability is called the Coding Gain. What is this gain? This g is SNR uncoded minus

SNR coded we had seen this  definition earlier  also.  So at  high SNR this asymptotic

coding gain g infinity where SNR tends to infinity is defined as 10 log to the base 10 d

free squared over E s of coded scheme versus d free squared over E s of uncoded scheme

this is called the Asymptotic Coding Gain.

So,  for  uncoded scheme d free  simply the  minimum Euclidian  distance  between the

signal points, so uncoded is in the denominator.



(Refer Slide Time: 28:28)

So, let us look at the TCM scheme we considered earlier, we had calculated d free as

1.172 E s for our scheme, but for QPS the distance between any 2 signal points is 2 E s;

so g infinity is 10 log 1.17 divided by 2 equal to minus 2.3 dB; which means that we

have actually lost out the gain provided by the encoder function encoder did not more

than enough compensate the loss because of movement to 8-PSK. So, we did not kind of

win the game we can do better.

(Refer Slide Time: 29:17)



And that  is  what  we have  to  look at  so our  performance  is  actually  worse than  the

uncoded scheme, so it is a 2 edged sword and it tells us that we have not we have used

the good properties of the encoder in terms of Hamming distance, but not the Euclidean

distance. So the aim of the design of good TCM scheme is to maximize the Euclidean

distance; so we did not do well in terms of TCM; so we must now look at maximizing

the Euclidean distance.

(Refer Slide Time: 29:49)

So  how do  we  do  that;  well  a  proper  choice  of  mapping  scheme  can  improve  the

performance and it is better to design the TCM scheme working from the trellis itself

because finally, it is a d free that we have to maximize and d free is calculated using the

trellis so why not work with that trellis itself. So the objective is to assign 8 symbols of

the 8-PSK signal set in such a manner that d free is maximized ok. Now in the last

example there were 16 branches because there were 4 states 4 branches were coming out

from each.

So, there were 16 branches we have to choose 8 symbols; so how many ways we can do

it for an exhaustive search well 8 raise power 16 different cases that is just too large even

a supercomputer, network supercomputer, distributed computing cannot solve that so we

need better heuristic methods to solve it. A computer search will not work why are we

making this point; for convolution encoders efficient computer searches had helped solve

the problem, but not for this case.



(Refer Slide Time: 31:01)

So, let us look at what is an error event will error event we have seen when 2 paths

diverge  they  keep  away  from  each  other  and  then  merge  back  in  the  trellis  after

sometimes.  This red dots are the nodes in the trellis,  so we have just shown 2 paths

which diverge and merge path this is constitutes an error event and the one with the

minimum distance  between  these  2  paths  distance  in  terms  of  Euclidean  distance  is

comes out as the d free. So at least what we can do we can maximize the two branches

where it diverges and merges back and rest all will add to it, but we do not have much

control how it jumps up and down in the trellis.

So, we will choose the Euclidean distance associated with at least the diverging branches

and the merge in back branches to give us something and we also know that there will

not be too many hop in 2 3 hops it combines back.



(Refer Slide Time: 32:07)

So,  it  will  not  be a  bad choice  so we look at  the diverging d E diverging path  and

reemerging path and we have a redundancy of 2 raise power m plus 1 m-ary signal set is

used to transmit m bits; why because we had this 8-PSK and then we went to from QPSK

we went to 8-PSK.

So, we have m over m plus 1 convolutional encoder in the last case we had 2 by 3 so m

was 2 so m shows that uncoded and m plus 1 is the coded so this is a typical case you can

have a 4 by 5, 7 by 8 convolution encoder. So the resulting m plus 1 output bits are then

mapped so we will use this concept to come up with some design methodology in terms

of increasing the Euclidean distance, but the method to do so is called set partitioning

and let us discuss how it is done.



(Refer Slide Time: 33:11)

So, the aim of set partitioning is to progressively increase the Euclidean distance and

then use that partitioned set to map onto the trellis; each time we partition the set we

reduce the number of signals points, but increase the distance between the signal points

in the subset.

(Refer Slide Time: 33:33)

Let us look at an example let us start with 8-PSK on the top you can see 8-PSK they are

all placed on a circle. So we now partition this is a set of 8 signal points which partition



it into 2 4 and 4, but see the distance has increased so the minimum distance has gone up,

but why should we stop here we can partition it further.

Again there is more than 1 way to do the partitioning, but we partition it in such a way

that the minimum distance in this partition set between 2 constellation points have gone

up so here there were 8 points now we have 4 points and 4 points highlighted by red and

then 2 points and 2 points 2 points and 2 points and then of course, you have single point

in the in the sets. So we have done the set partitioning of 8-PSK signal set it is pretty

mechanical you can do it for any large constellation diagram.

(Refer Slide Time: 34:45)

So, now the aim is how to use this partitioned set and map it to the trellis that we have

here; so what we do is we basically come up with a rule as to how to apply these points

from the  different  levels  of  constellation  diagram because  level  decides  what  is  the

minimum distance in terms of the diverging and merging paths.



(Refer Slide Time: 35:16)

So, again consider the expanded 2 raise power m plus 1-ary signal set used for TCM we

do not necessarily have to continue the process of partitioning till the last stage.

Suppose  the  desired  Euclidean  distance  to  be  obtained  just  after  the  m plus  1th  set

partitioning step is m tilde less than m; then it can be seen that m tilde plus 1 steps we

have got m tilde 2 raise power m tilde plus 1 subsets each subset containing 2 raise

power m minus m tilde single points. So as you go down the number of signal points

reduces and you have to only go down to those many points for which you have the

branches to assign to so you do not have to go right into the bottom of the parameter.



(Refer Slide Time: 36:03)

(Refer Slide Time: 36:07)

So, now let us look at a simple example of a general structure, suppose you have got m

bits so first you have a convolutional encoder here it is systematic so you have m minus

m tilde points going directly to the signal mapping and then m tilde over m tilde plus 1

convolutional encoder giving you the coded bit streams. The first m minus m tilde points

is used to select the signal from the subset and these are used to select the subset so you

have the subset and within the subsets you have signals.



So, this is a strategy how to choose the subset and then a particular signal from the subset

and this will give you a minimum d free in terms of the deltas.

(Refer Slide Time: 37:01)

So, this is the general structure that we have just described how you can use a TCM

encoder.

(Refer Slide Time: 37:08)

Now, we go on to Ungerboek scheme which tells us how to assign the symbols on to the

trellis  having done the set  partitioning so the aim is  to  maximize  the free Euclidean

distance  between  coded  sequences  so  just  consider  an  example  of  a  rate  2  by  3



convolutional  encoder  very  simple  2  by  3  encoder  natural  mapping  we have  shown

below.

(Refer Slide Time: 37:37)

And for that we are going to do an Ungerboeck scheme and here you can see that there

are parallel paths in this case because you know if this input a 1 does not change then the

state transition does not change and for a 2 between 1 and 0 there are 2 possible outputs

so there will be 2 paths from any 1 state to the next state, but the question is how to

assign the symbols from the 8-PSK.

(Refer Slide Time: 38:13)



So, here we have used the Ungerboek scheme which we will discuss how to assign the

different symbols from the;

(Refer Slide Time: 38:25)

So once you do a mapping as described earlier then we can calculate directly the d free

as the minimum of delta square m tilde plus 1 and d free squared m tilde which is E 4

comes from the maximally separated points on the symbol set and this tells you that the d

free is larger than the uncoded one giving us an asymptotic gain of 3 db. So we have

been able to recover and we have been able to give you a 3 db gain using a TCM scheme

this called the Ungerboek TCM scheme.



(Refer Slide Time: 39:07)
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So,  let  us  look at  the  design rules  first  and then  revisit  the example;  so these  were

proposed in 1982 by Ungerboek these are heuristic design rules; what are the rules? Well

they tell us how to assign symbols from the set partitioning to the trellis. So if a trellis

has parallel transitions right then they must be associated with the signals of the subset in

the lowest layer of the set partitioning tree that is they are maximally apart they have the

maximum minimum Euclidian distance.



Rule 2 is that the transition originating from or merging into 1 state must be associated

with  signals  from the  first  step of  the  set  partitioning we already have  done the set

partitioning and then rule number 3 is all signals are used with equal frequency in the

trellis diagram so these are heuristic rules which will ensure a good design of your trellis.

(Refer Slide Time: 40:11)

So, we want to improve the trellis scheme we just proposed and we want to improve the

performance of that scheme using these design rules. So, let us look at a trellis with 8

states,  let  us  look at  an  example  where  we will  execute  all  the  points  proposed by

Ungerboek.



(Refer Slide Time: 40:35)

So, this is a trellis with 8 states and as you can see that there are 4 branches emanating

from every node ok. So that 2 bits coming in for this convolutional encoder and there are

clearly s 0 to s 7 so there are 8 points in the constellation diagram so 3 bits are being

mapped to the symbols so it is a rate 2 by 3 encoded that has resulted in this trellis.

Since  there  are  3 memory elements  therefore,  there are  8 states  in  the trellis  so the

number of input bits is pretty much independent of the states in the trellis which depends

on the memory unit and the number of output bits basically decide that the constellation

size that we will use; so this is the trellis that we have at disposal.
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So, there are no parallel transitions we start directly with the Ungerboek second rule of

assigning; so in this trellis we have assigned s 0 s 4 s 2 and s 2 from for these 2 for these

4 branches which are diverging out.

So, this is from the lower most but 1 level of the set partitioning that we have done

already. Similarly we have taken the next one s 1 s 5 s 3 and s 7 these are the other 4

maximally separated points in the trellis and so and so forth and we have make sure that

these are assigned with equal frequencies. Same care has been taken for the diverging

and the merging back paths; so if you look at the points which are merging back they

have been also assigned with that same care.

So, in this slide we are looking at the diverging path and this slide describes why s 0 s 4 s

2 and s 6 symbol have been assigned to that they belong to the subset a 0 and for the next

node we have done s 1 s 5 s 3 and s 7 as we just not discussed ok.
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So we have done all of this and the order has been shuffled to ensure that the re the at the

reemerging and we still have the signals with the first step of the set partitioning that is

the care we have taken to do so and we have also ensured that the all the symbols have

been used with equal frequency.

So, we have been able to use Ungerboek design rule to assign symbols to this trellis

diagram with 8 states.
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Lets quickly calculate the d free, so d free we had already highlighted the 2 paths which

result in d free and the d free calculation gives the g infinity 2 3 point 6 db therefore, this

has a even better point 6 db gain over the TCM scheme discussed earlier by Ungerboek.

(Refer Slide Time: 43:56)

So, let us now kind of conclude this lecture what we have looked at is the notion of

combined  coding  and  modulation  then  we  introduced  the  idea  about  trellis  coded

modulation  and how we can get  improved performance  without  additional  power  or

bandwidth then we talked about the free distance and the Ungerboek’s designed rules we

also followed it up with some examples with that we come to the end of this lecture.


