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Hello and welcome to module 3 of source coding. Let us look at the outline of today’s

talk. Today we are going to consider a very interesting thing, information measures for

continuous random variables. So, far we have only dealt with discrete random variables.

So,  what  does  it  mean? We will  look at  that.  Then we will  formulate  the notion  of

differential entropy, we will follow it up with Average Conditional Entropy. We look at

Relative Entropy which is also known as Kullback Leibler Distance. We will look at

Jensen Shannon’s distance and finally, we will look at Prefix Codes ok.

Let us start once again. We will cut off the first three minutes all right. All of you are

settled in ok, shall start with the regular formality hello and welcome to module three of

source coding. Let us look at the outline of today’s talk. We will start with information

measures for continuous random variable as opposed to discrete random variables that

we  talked  about  in  the  previous  module.  Then  we  will  formulate  the  notion  of

Differential  Entropy.  We will  look  at  Average  Conditional  Entropy  for  Continuous



Random Variables. Then we will discuss something called Relative Entropy which is a

kind of distance measure called the Kullback Leibler  Distance.  We will  then look at

Jensen Shannon’s distance and finally, we will introduce the notion of Prefix Codes. So,

this is our general outline. But first let us start with a quick recap of what we have done

already.
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So, we have already looked at Average Mutual Information. We talked about entropy and

its  relation  to  say self-information.  We went  on to  discuss  conditional  entropy, joint

entropy and so and so forth.

So, very quick look at what self information was. So, if you remember we talked about a

discrete random variable X with possible outcomes x i equal to 1, 2, 3 up to n and self

information was defined as I x i log P 1 over x i and when the base of the log was 2, the

units was in bits, but please note this n does not have to be finite; what if i goes from 1,

2, 3, 4 up to n. Let us look at an example.
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So, suppose I have P x i equal to 1 over 2 raise power i right. So, the probabilities look

like 1 by 2, 1 by 4, 1 by 8 and so and so forth, but I do not stop at n. I go right up to

infinity. Now if you do a basic sanity check overall I, you will see that it adds up to 1.

So, this is indeed a probability measure and if it is a probability measure, then I should

be able to talk about the self-information and what do I do? I plug into the formula. So, if

I want to do I x i, I will have for a particular case log 1 over P x i, but if I want to have

the notion of H of x which is the average self-information, then I have summation of P x

i log 1 over P x i and this i will go from 1 to infinity.

Now, if I just plug in the values of the probabilities here and I solve it you can do so. It is

a pretty straightforward answer because log 1 over 2 raise power 1 2 raise power 2 and

so and so forth with probabilities multiplied here you will get up a summation and it adds

up to 2 bits.

So, please note that even though there are infinite number of possible outcomes here, the

net average self-information is bounded. So, even though the formula does not allow you

to some beyond n, you can always have a answer up to a summation up to infinity.
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We then looked at mutual information and mutual information between x i and y j was

defined as log P x i given y j divided by P xi and we made a very interesting observation

that I x i semicolon y j is equal to i y j semicolon x i. So, it is symmetric in nature.

(Refer Slide Time: 06:05)

We then went on to define the notion of a average mutual information which is just a

average it over the joint probabilities of P x i comma y j and I get capital I, the mutual

information X semicolon Y is defined as follows and we know that I X semicolon Y is

non-negative greater than or equal to 0 and the equality is achieved, if and only if X and



Y are statistically independent. Please note, these are discrete random variables. What we

have to do today is to look at continuous random variables and whether there is a notion

of mutual information for continuous random variables or not.

(Refer Slide Time: 06:56)

So, let us look at this notion of information measure for continuous random variables.

Now the definition of mutual information for discrete random variables can directly be

extended to continuous random variables, but this is talking about the definition. We will

talk about the meaning, whether the meaning can be extended or not in a later slide. 

So, let X and b be random variables with joint probability density functions p x comma y

and marginal pdf’s p x and p y, fair enough? We are talking about continuous random

variables here. And we then define the average mutual information between x and y as I

x comma y is equal to integration double integration over this is p x comma y and log p y

given x into p x over p x into p y dxdy. So, this is the definition of continuous random

variable the information measure for that.



(Refer Slide Time: 08:00)

So,  let  us  put  a  word  of  caution.  Even  though,  we could  extend  the  definition;  the

physical interpretation probably cannot be stretched. So, we should point out that the

definition  of  average  mutual  information  can  be  carried  over  from discrete  random

variables to continuous random variables, but the concept and the physical interpretation

cannot. 

What  was the physical  interpretation  for a discrete  random variable?  Well,  when we

defined  an  average  mutual  information  between  X  and  Y,  the  basic  physical

interpretation  was  having observed Y, what  can  you say  about  X? In general  on an

average, what can you say? Maybe you can say something? Maybe you can say nothing.

So, X occurrence of X communicate something about occurrence of Y and vice versa and

that is basically captured by I X semicolon Y.

Now, you  would  like  to  say  the  same  thing  about  continuous  random variable,  but

unfortunately  that  is  not  the  case.  The reason is  that  the  information  contained  in  a

continuous random variable is actually infinite. I mean what is the best way to look at it?

Take a sample, represent it correctly. How many decimal points do you need? You can

sample it  and say it  as 2.309921729, but you keep going. It  is  a continuous random

variable. It is a point on the real line. So, you keep going and you really need infinite

number of bits even to represent a single sample value, let alone the entire function.



So, the information content truly is infinite and therefore, we cannot really go on dealing

with infinite information all the time. Let alone compare and what one communicates

about the other random variable. So, we have just seen that the self-information entropy

is infinite and we have to get around this problem and we define a new quantity called

differential  entropy.  So,  what  each  one  of  the  random  variables  encompass  infinite

information? What about the difference? Maybe the difference is not infinite.

(Refer Slide Time: 10:47)

So  let  us  define  the  differential  entropy  for  a  continuous  random  variable.  So,  the

differential entropy is defined as h of X, mind you h is small h lowercase h as opposed to

uppercase h for discrete random variables and is defined as an integration minus infinity

to infinity p x log p x with a negative sign; as usual if the base of the log is 2, then the

units are in bits. Same word of caution, there is no physical meaning attached to it. 

If you remember in the earlier lectures, we tossed a coin and if it was a fair coin, we said

that the average self-information for that source tossing a fair coin was 1 bit and it made

sense because you needed 1 bit to represent either head or a tail. So, there is a strong

physical  interpretation;  however, for a continuous random variable,  we have no such

luck.

Student: (Refer Time: 11:54).

Yes we will talk about this differential part very shortly, it will come.
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Now let us look at the properties of differential entropy. So, we talk about this chain rule

where h X 1, X 2; this K should be dot, dot, dot, dot up to X n and it can be represented

in a conditional form as h X i given X 1, X 2 dot, dot, dot, dot up to X i minus 1. The

other  property  is  that  the  translation  of  the  random variable  X does  not  change  the

differential entropy and I am relieved because if I add a constant, it really does not add to

the  randomness  of  X  and  the  information  content  is  primarily  the  measure  for

randomness.

So, translation it turns out; does not alter the differential entropy. And if you just multiply

by a scalar, so the differential entropy of not X, but a times X is just a d c shift. How do

you visualize this practically? Imagine a continuous random variable. So, let us plot this

and try to get a physical interpretation for this.
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Suppose, this is just one capture of my random process because I have put a time axis

here and suppose I pass it through an amplifier and multiply it with a. And now I get

another capture of the same thing ok. So, if you can see just the physical observation tells

you that the second random variable which is a times multiplied with the first one has a

higher level of randomness. 

The variance has gone up and consequently the information content has to go up, but

how does it go up? It gives you a basic dc shift here. So, if you look at h a X equal to h

of X plus log absolute value of a is a. There is a strong interpretation attached to the

scaling factor.
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Now, another interesting question to ask is, how similar or if you are a pessimist; how

different are two probability distributions fine? So, we talk about a notion of relative

entropy as a measure of distance between two distributions, distance measure. Well I tell

you, how different to probability distributions can be. If I ask you a question, I give you

Gaussian and I say, how different is it with respect to another Gaussian or how different

is a distribution with respect to a Rayleigh distribution? These questions are valid and we

would like to have an answer to that.

So,  we  talk  about  this  notion  of  relative  entropy  or  by  the  two  guys  who  defined

Kullback  and  Leibler.  This  is  called  the  Kullback  Leibler  distance  between  two

probability mass functions; p x and q x. It is defined as d p parallel q is nothing, but p x

log p x by q x ok. This you can see is nothing, but an expected value of log p x over q x.

So, what they have done is taken the two quantities p x and q x, if you just think hard

enough it is nothing, but p x log p x minus p x log q x, but if you remember p x log p x is

a measure of the average self-information. So, therefore, the notion of relative entropy,

how is ones information relative to the other?

Now.

Student: Sir, so what is the physical significance of p x log p x log x? It is actually a p x

log p x there is a self-information and minus p x log p x.
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Yes. So, let us repeat the question. The question being asked is we have defined the

Kullback Leibler distance as follows and with a little bit of imagination, you can see that

this  is  nothing,  but  fair  enough.  Now, this  has  a  physical  interpretation.  It  tells  me

something about the average self-information of p of x;  however, with a little  bit  of

distortion because this is not q of x, otherwise I was really finding out the difference

between the self-information, average self-information of p x and q x. So, they have kind

of distorted it with a purpose and we will look at why it tells you because I am looking at

a similarity measure between the two.

Now, why would they define it like this? It is very simple. Suppose p x and q x are

identical, then you have log of 1 and clearly it is 0 and we are relieved to find the two

distributions which are identical,  their  distance is 0. The more different they are, the

larger should be the value of this distance and this notion; so, this is the basic definition.

Logarithmic measure is required because right from the beginning, we have argued by a

log measure for information is the only logical way to go and they have found out the

difference between log p x and log q of x, but that just would not do. So, they have

averaged it to give you the relative information measure.
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As we have seen there are clearly problems with this and our next slide will tell you,

what the problems are. There are many problems. First is, if we talk about this to be a

distance that is KL distance Lullback Leibler distance, then distance has 3 properties.

Number 1 non-negative; so greater than or equal to 0; Number 2, symmetry property;

distance between a to b is the same as b to a and triangle inequality right. The sum of the

two sides of a triangle should be greater than the third side right.

So,  first  thing  you can easily  verify that  the Kullback leibler  distance is  indeed non

negative, but let us look at the other two properties. So, the question we ask ourselves is,

Does the KL distance really follow the symmetry property? Just now couple of minutes

back we had this discussion and we saw that there was some asymmetry. So, why do not

we test it out? Question we are asking is D p parallel q equal to D q parallel p? So, we

plug in the values and we check for whether this is the definition of D p parallel q. Is it

really equal to D q parallel p? And if we expand it out, it does not take much effort to see

that it is in really not true.

So, the first conclusion is this Kullback Leibler distance, the distance is a misnomer. It is

a wrong thing to call it a distance, even though the proposals have called it a distance; it

does not follow the symmetry property of a distance. What does it mean? If I say, how

different is distribution p from distribution q? My answer will differ with respect to how

different is a distribution q with respect to p. Nonetheless it is used in practical life.
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Now,  we  look  at  the  second  property  of  the  distance.  Does  it  follow  the  triangle

inequality? Does it satisfy that condition? What does it mean? Let us take 3 distributions.

So,  we talk about  distance  between p and q,  distance  between q and r  and distance

between p and r. And the question we are asking is  the distance p parallel  q plus q

parallel r, sum of the two sides of the triangle greater than or equal to the third side and

again we plug in this values and indeed we find that for simply p x greater than q of x,

we would see that this relation does not hold; it is not universally true.

So, we get that this relative entropy which is nothing, but the Kullback Leibler distance

does not follow the triangle inequality. Let us look at an example



(Refer Slide Time: 22:47)

So, we are curious to find out, how similar two Gaussian random variables; call two

Gaussian distributions are? So, what are my two distributions; p x and q x, then it is an

interesting exercise, p x has mean mu 1 and variance sigma 1 square; q x has a mean mu

2 and a variance sigma 2 square. So, how different are they? We simply find out D p

parallel q, you plug in the value and you can do a little bit of math and you get this

expression.

Student: (Refer Time: 23:30) by doing you summation instead of integration using (Refer

Time: 23:34) presents a plays a continuous case.

Right question being asked is, why use using summation way and integration? We have

defined as a mass function,  you can use integration right.  As we have defined in the

earlier cases. So, if you look at the two Gaussian distributions p x and q x, you get the

relative entropy D p parallel q as follows. So, as expected it is a function of sigma 1

square, sigma 2 square mu 1 mu 2 and so and so forth. You will note that D p parallel q is

not the same as D q parallel p. Nonetheless some interesting observations can be seen.

So, when does this distance become zero? Well obviously, when mu 1 equal to mu 2 and

sigma 1 square is equal to sigma 2 square, this distribution will be 0 that is they are

identical. But if you say that suppose sigma 1 square is equal to sigma 2 square, but mu 1

is not equal to mu 2 right, then the distance is minimum. What does it mean? It means

that the Gaussian spread is the same.
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So, if you look at these two distributions. So, variance is the same, but they are apart

right. In this case KL distance tells us that this is minimum and it is only a function of

mu 1 and mu 2 fine. But it is minimized when the variances are the same, but if you go

ahead and say that if either sigma 1 square tends to 0 or sigma 2 tends to 0, then you see;

then we are in a fix because the distribution the distance becomes infinite. 

So, this is the case, when either 1 becomes in the limiting case, a delta function. So, they

are very different. You can visibly see that this, these are different and somewhere in the

middle if you have one distribution like this, the other one is like this; variances are

different, means are different. They are clearly different.
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On the other side if I put variances are the same, means are different; then the distance

scale distance is less. So, these two probability mass functions, it the distributions are

much more similar  to  each other  than  these two distributions.  Not  only  it  is  visibly

correct, you can also calculate it from the expression for KL distance ok. So, there is a

strong physical connotation attached to how similar or different two distributions are.
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Now, we move on to the average mutual information for continuous random variable and

it is a very elegant way to define it. It is I X semicolon Y is nothing, but the distance



between the joint  distribution and the product  of  the distribution.  So,  it  is  a relative

entropy between the joint distribution p x comma y and the product of the distribution p

x into p y. Clearly if we have p x comma y is a same as p x into p y, we get a direct

obvious conclusion right. If they are independent, then the we have a one notion. But in

general we know that this distance measure is not symmetric. So, Jensen Shannon came

up with an alternate measure of this distance which is symmetric and let us define it also.
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So, we are now looking at overcoming the shortcoming of the Kullback Leibler distance.

We talk about the Jensen Shannon distance. Again it is between two probability mass

functions p x and q x, but it is defined as JSD start standing for Jensen Shannon distance

is  half  of  D,  relative  entropy  p  parallel  m plus  half  D q  parallel  m where  m is  an

intermediate point between p and q.

So, this you can check for yourself is symmetric. So, JSD p parallel q is equal to JSD q

parallel p. So, Jensen Shannon distance is also referred to as Jensen Shannon divergence

or information radius and literature. So, those terms are used interchangeably. And this

value is limited between 0 and 1 under the condition that the base of the log is 2.

So, why are we doing all of this? There has to be some practical utility for all of these

mathematical exercises. So, far we have built in some tools to understand, what is the

best way to represent symbols?
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So, in the next few slides, we will explore; what are the ways to efficiently represent in

other  words  efficiently, code  symbols  generated  by  a  source?  In earlier  lectures,  we

talked about, what could be a source? It could be a man tossing a fair coin and shouting

out 1 0 0 1 1 0 or he could be tossing 2 independent coins and saying 1 0 0 0 0 0 0 1 and

so and so forth or he could be tossing unfair coins or he could be typing his SMS, that is

a source or a monkey typing of keyboard, that is the source; all of these are sources.

They generate symbols it could be a b x y z p q or 1 0 0 1 or it could be voltages all of

them are symbols for me and I need to represent them efficiently. What is the primary

motivation?  Data  compression,  efficient  representation  leads  to  compression  of  data.

Suppose  we  have  a  discrete  memory  less  source  and  its  outputs  assemble  every  t

seconds. So, each symbol is selected from a finite set of symbols. 

So, again we make this assumption that the set is finite, we will move to infinite sets also

and  we  can  always  define  the  average  self-information  or  entropy  of  this  discrete

memoryless source from the theory we have developed so far. And you can always show

that this is upper bounded by log to the base 2 L. So, let us get some definitions in order.
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We will represent symbols. So, suppose we want to represent the letters of the English

alphabet, so A can be represented as 1 0 0 1, B can be represented as 0 1 0 0 and so and

so forth. So, a vector which represents a symbol is actually called a codeword. So, if A is

represented as 1 0 0 1, then the codeword for A is 1 0 0 1 ok.

(Refer Slide Time: 32:44)

So, let us look at it in a simple manner. So, A it is represented as B and so and so forth.

So, this is a codeword; however, the set the set of codewords is called a code. So, this is

a code. In this example a code is a set of codewords, 1 codeword for A, 1 for B, 1 for C



and 1 for D. So, code is a set of vectors called codewords. So, we have seen in an earlier

example that we can encode the letters from an English alphabet and we need a certain

number of bits. Here I have shown in my earlier example, a 4 bit representation, I can

have a 5 bit representation clearly. If there are 26 characters in the English alphabet, then

I have to have minimum 5 number of bits, otherwise I cannot have unique representation.

And we have also observed in our previous lectures that certain number of alphabets,

certain alphabets are more frequent a, e, s, t; some are less frequent x, q, z, j and so, it

does not make sense to represent all the alphabets with equal number of bits. What is the

rationale behind it? Bits are expensive. To transmit a bit, I need power, I need bandwidth,

I need time. All three are very precious quantities for me in my modern communication

systems. If x does not appear frequently, why should I allocate certain number of bits? Or

if A appears more frequently, maybe I should use fewer number of bits to represent it.
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This  brings  us  to  the  notion  of  variable  length  code.  Remember  a  code  is  a  set  of

codewords. So, in the example that I have shown earlier, I only had fixed length code

where A, B, C, D all of them had four bits, but now maybe we should be looking at and

the  notion  of  variable  length  code.  What  is  the  necessity  for  this?  When the source

symbols are not equally probable, it makes sense to use fewer number of bits to represent

more  frequently  occurring  symbols  and  vice  versa  and  therefore,  we  would  use  the

notion of variable length codes.
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Let  us  look at  an  example.  Suppose  we have  only  the  first  8  letters  of  the  English

alphabet A to H in our vocabulary. So, you go only you going to use A, B, C, D, E, F, G

and H. H it is a very convenient example, log to the base 8, log to the base 2 of 8 gives

me 3. So, conveniently I can have fixed length code, 3 bits per symbol right from 0 0 0 0

0 1 up to 1 1 1 and I have got the first fixed length code. It is no brainer ok.

At the same time I would say, hey how about representing them with unequal number of

bits. Why do not we do a variable length code? So, I have an example. A is 0 0, B is 0 1

0, C is 0 1 1 so and so forth. I run out of certain number of bits and then I have to use 4

bits also, but I am not too bad. I am using 2 bits and 4 bits and 3 bits. So, maybe I will

come out.
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So, how about looking at a practical example? Since I have only 8 letters in my alphabet,

let us make a small sentence. A BAD CAB, it only uses only 4 first 4 letters. So, if you

take a bad cab and use the first code, what is a code? Is a set of codewords. So, the table

1 is a code, table two is also a code. Table 1 is a fixed length code, table 2 is a variable

length code. 

So, if you use the fixed length code, you have how many characters? 1, 2, 3, 4, 5, 6, 7, 8;

so 7 into 3, 21 bits is what I expect from the fixed length code. But if you look at the

variable length code, I have got fewer number of bits; looks like we have a winner right.

We have been able to save 3 bits percentage wise that is not too bad.
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So,  let  us  look at  another  variable  length  code for  the  first  8  letters  of  the  English

alphabet because this time I am really excited, I am going to squeeze out fewer number

of bits will be used to represent ABC and D so and so forth.

Student: So, if it always (Refer Time: 38:40) variable length code will reduce the number

of bits may be in some cases you can also increase.

So the  question  will  asked is,  does  variable  number  of  code,  the  variable  length  of

codewords always reduce the representation? So, answer depends on a, how efficient is

our code and b, what is the frequency with which the letters are appearing. So, we will

give an example where a variable length code can actually lead to expansion and not a

compression.  So, that can also happen, but we talk about on an average.  Yes,  on an

average a variable length code. 

So, the most 3, most important 3 words are on an average. What are you saying on an

average? Yes on an average a variable length code, if designed properly will be able to

compress, but once in a while for a very special set of input characters, it can lead to

expansion. But hey we carry out our communication over millions of bits and it averages

out. So, we turn out a winner.
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So, if you complete this example, if this much more constricted code A only 1 bit, B only

1 bit, C 2 bits and so and so forth and only when I am first I am run out of 1 and 2 bits, I

go to 3 and 3 bits. And then I again encode a bad cab, I just have a 9 bits, but the problem

is the decoding part. You cannot decode it. 

At least not uniquely because if you look at it a bad cab is truly 0 1 0 0 1 0 0 0 1, but it

can be broken up into different sets and it becomes A BAD AAD or A BAAB AAAB. So,

clearly it  is  not uniquely decodable.  Since I  do not know a priori,  how long are the

codewords; since they are variable length? I do not know at the decoding end. What was

actually sent? I am in trouble unless I have a smart way to overcome this deficiency.
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 So, let us revisit variable length code 1 and variable length code 2. If you remember

variable length code 1, did give us a reduction, but not by much and variable length code

2 give  us  a  major  reduction,  but  it  could not  be uniquely  decoded.  So,  you look at

variable length code 1, can it be uniquely decoded? Well the answer is yes. The answer is

yes because if we make a simple observation that no codeword is a prefix of any other

codeword.

So, variable length code 1 has a very very unique characteristic. What is it? No codeword

is a prefix that is no other codeword starts with any other codeword. No codeword is a

prefix of any other codeword and hence decoding is absolutely unique and instantaneous.

The moment you find a valid codeword has come, you declare the result because there is

no point in looking further because no codeword is a prefix of any other codeword.
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This interesting property is called the prefix condition and the decoding strategy is very

simple  as  soon  as  a  sequence  of  bits  corresponding  to  any  one  valid  codewords  is

detected, we declared the resemble being decoded.

So, we now formally define, what is a prefix code? A prefix code is one, in which no

codeword forms the prefix of any other codeword and since I can instantaneously declare

the  results  as  we  go  along.  These  are  also  called  instantaneous  codes.  So,  let  us

summarize what we have learned today. 

We started  with  information  measure  for  continuous  random  variables;  we  made  a

distinction between discrete random variables, continuous random variables. We could

extend  the  definition,  but  not  the  physical  interpretation  because  the  average  self-

information of contained in a continuous random variable is actually infinite.
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We then talked about differential entropy and we observe that even though, you cannot

really talk about in real terms; the information content of a continuous random variable.

You can talk in terms of a differential mode. So, X is a continuous random variable, Y is

a continuous random variable. So, h X minus h Y may not be infinite. Even though h of

X and h of Y, each of them are infinite and hence this word name differential. So, it only

makes sense any meaning, when it is taken as a difference of 2 h X and h Y ok; hence the

name differential.

We talked about the average conditional entropy for continuous random variable, then

we  have  raised  the  very  interesting  question.  How  do  you  say  two  probability

distributions  are similar  or different? What is the similarity  measure? And we talked

about relative entropy is also called the Kullback Leibler distance, we also observed that

it is a distance measure, but it is a pseudonym, it is a misnomer only the non-negativity is

satisfied.  It  does  not  follow the  triangle  inequality  nor  does  it  follow the  symmetry

property of a distance measure.

So, to overcome that we talked about the Jensen Shannon distance which is symmetric

and  finally,  we  introduced  the  notion  of  prefix  codes;  that  is  the  first  step  towards

efficient  representation of symbols and ultimately we have look at  ways to compress

data,  speech,  images  what  have  you  right.  So,  that  is  one  of  the  fundamental



contributions of source coding. It let us you calculate the theoretical limits to which I can

compress my data and no further. That is where we will go in our next module.

Thank you.


