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Hello and welcome to this lecture on Turbo Codes. Let us start with the outline of today’s

talk.

(Refer Slide Time: 00:34)

We would have a quick introduction to turbo codes followed by the encoding process.

Then what makes turbo code very interesting is the decoding process from which it also

derives its name. Then we look at a very interesting component of these turbo codes

called interleavers. And finally, we will look at some examples, so that is the outline for

today’s talk.



(Refer Slide Time: 00:57)

What we have done so far we can have a quick recap. We were looking at convolutional

codes and this is the logical end to the topic of convolutional codes, where we looked at

the trellis representation, the matrix description, and finally, the popular Vitrebi decoding

algorithm  for  convolutional  codes.  We  also  looked  at  some  of  the  known  good

convolutional codes. And now we change gears and go onto study the next version which

is the turbo codes.

(Refer Slide Time: 01:28)



So, let us have a quick introduction. So, turbo codes are not very old, but not very new

either. They were first proposed in 1993 by 3 inventors. And the title of the paper was

Near Shannon Limit error correction coding and decoding. So, as the title suggests that

these were supposed to work close to the Shannon’s limit, and that is why it generated a

lot of curiosity. And they also showed a bit error rate performance of 10 raised to power

minus 5 at very low E b over N naught of 0.7 dB, and they used only 1 by 2 rate code.

And this was the starting point for turbo codes.

So, they perform well in low SNR scenarios, and that is where we see them touching the

Shannon’s limit. But, at the other end of the spectrum, if you look at high SNR scenarios,

the traditional codes such as Reed Solomon codes that we have studied can outperform

turbo codes. So, turbo codes are supposed to be used, when we are working in low SNR

scenarios, which we cannot have enough of we do have cases, and we would like to

preserve battery life. So, we can always lower the transmit power, and come into the

regime, where turbo codes become effective.

(Refer Slide Time: 03:00)

So, you will shortly see that turbo codes behave like block codes to some extent, but they

are kind of an in between convolutional codes and block codes. And it is kind of a quasi

mix so to say,. They require the whole block to be received before, decoding can start to

happen. But, rather than computing the parity bits from a system of equations, they use

shift registers just like convolutional codes. In fact, turbo codes are a combination of two



or more convolutional code separated by an interleaver as we will shortly see. So, they

typically use two or more convolutional component encoders, which are separated by an

interleaver. This is called concatenation. So, we can have a series, concatenation or a

parallel concatenation.

(Refer Slide Time: 04:00)

So, this is the basic structure of turbo encoder. As you can see, this is the input. And this

input can go to the first convolutional encoder called encoder 1, and it gets some give

some output.  But,  the same input  goes  to  an interleaver  which  is  basically  shuffling

operation, and is fed to another convolutional encoder. So, both encoder 1, and encoded

2 are convolutional encoder, very very hardware friendly. And we have output coming

from encoder 2.

These three, so it is some kind of a systematic code, you can say that the input has two

parity symbols coming out from encoder 1 and encoded 2, and this together forms the

output  of  this  turbo  encoder.  Whereas,  you  can  see  that  these  two  encoders,  the

convolution encoders can be in several configurations.



(Refer Slide Time: 05:08)

So,  what  are  the  obvious  configurations,  we  can  have  the  parallel  concatenated

conversion encoder, which we just now see. We have seen that this encoder 1, encoder 2

are in parallel, but nothing stops them from putting an encoder 1 then an interleaver in

series, and then an encoder 2. So, you can have a serial concatenated convolutional code,

so SCCC as opposed to PCCC. And you can always have a hybrid a combination of a

serial  and parallel,  you know giving us  the  name hybrid concatenated  convolutional

encoder or HCCC.

But in most of the cases, we will be working with PCCC ok. And what is it interleaver, it

is denoted by pi, it is nothing but a permutation i goes to pi i, which changes an order of

the data sequence of N input symbols d 1, d 2, up to d N. So, it is just a permutation that

happens, because of the interleaver. Earlier interleavers were used to ensure that block

codes can work, where we have a run of errors, burst errors that happen. So, interleaver

were used to separate out the burst errors into random errors, and then the block codes

could work. Here, the interleaver is being used for a very different purpose as we will

shortly point out.



(Refer Slide Time: 06:38)

So, the if the input data sequence d is d 1, d 2 up to d N, then the permutated data

sequence is d P, where P is the interleaving matrix, and it has a single one in each row

and column on other entries are zero. So, the sparse matrix, and it is very simply an

interleaving matrix multiplied by this vector gives you an interleaved vector.

Obviously, I can have a deinterleaver, which undoes the operation of the interleaver, and

so we denoted by pi inverse, and it restores back the interleaved sequence back to its

original sequence. So, the interleaving deinterleaving matrix is simply the transpose of

the interleaving matrix P transpose. So, using algebra, we can easily show the process of

interleaving and deinterleaving.



(Refer Slide Time: 07:40)

So, we need to ask what is it that the interleaver is doing. Well, the interleaver as the

name suggests  shuffles  the  input  bits,  in  such a  way that  it  the  input  to  the  second

interleaver, the second encoder is different from the first one. So, let us see why with this

will  work.  This will  result  in  high weight  code words.  If  you remember, the simple

convolutional encoder was a linear encoder, so the weight of the code, kind of has a

direct correspondence with the d free.

So, we are concerned with high weight code words leading to better error correcting

capability. Now, you must know that d free corresponds to the minimum free distance,

which means that we are looking at the worst case scenario. It does not mean that all

sequences  have  poor  weight  characteristics,  some of  them are  good in  terms  of  the

distance properties, and hence a higher weight and some of them are poor. What the

turbo code does is it mixes and matches to ensure that you do not end up with a poor

weight all the times say. So, the interleaver 2, which has the parity, which requires an

interleaver for the second encoder will result in a different kind of a output bit stream.



(Refer Slide Time: 09:22)

So, let us look at it in a slightly more detailed manner. So, as you know, you have a

convolutional encoder, we call it encoder 1, and it should give a sequence. Suppose, an

input sequence was coming in, and this encoder it could be rate 1 by 2. So, for every bit

it gives you 2 bits of input.

Now, if we put the same encoder here, but we label is at encoder 2, and it is again rate 1

by 2. If we had given the same input here, I would get the same output, but we do not

want that. So, we put it through an interleaver. And what it does is it gives to this encoder

something, which is permit it.  Now, clearly the output of the second encoder will be

different from what was received earlier.

Student: Is the (Refer Time: 10:54) random.

Question being asked is the interleaver random, random interleaver is one type of several

possible interleaver. And at the end of today’s class, we will talk about the different kinds

of interleaver. But, random interleavers also work very well. So, right now, let us say it is

just  a  random  interleaver.  So,  there  is  no  constrain  it  randomly  permutes  this

combination. But, what is resulted in this one. The output, if this was rate 1 by 2 for

every 1 bit that comes in 2 bits go out ok.

Similarly, 1 bit comes in, 2 bits go out. So, the output here is a path in the trellis, because

this is a convolutional encoder. Now, this path in the trellis, will have some weight. Now,



clearly this encoder, with a different input has another path in the trellis,  because the

input bit stream decides, which path in the trellis you give. And therefore, the output is a

different bit stream.

Now, if one of the paths corresponds to the d free, it  is a poor weight. The d free is

resulting  from the  1,  which  has  low weight.  Then  obviously,  this  being  an  random

interleaver, this output sequence will be different from the first one. So, if this is low or

lowest  possible  weight,  this  will  not  be infinite,  this  could be very most like a high

weight. So, if we can combine these 2 on an average, we will come out of winner. So, a

low weight path gets combined with a high weight path, and together they balance out,

and we do not kind of have a path, which has low weight, because effectively, the worst

case analysis leads to the d free ok. But there are many paths, which are high weight.

So, a chance of them combining leading to a path with a good weight is very high, and

that is why a random interleaver just works.

(Refer Slide Time: 13:15)

So, if you look at this a little bit more carefully, you have now an input to an encoder,

which is supposed rate 1 by 2, so you will have an output, which has 2 bits out. But, this

goes through an interleaver, and goes through another encoder again read by 2. Again it

has 2 bits coming out of here.



So, you have 1 bit going in, and you have 1, 2, 3, 4 bits. And it is not a surprise, because

you have rate 1 by 2, and rate 1 by 2 leading to an effective rate 1 by 4. Now, this is

pretty expensive in terms of the extra bits we are padding, because we are resulting in

rate  1 by 4.  So,  it  is  possible  to  so to  say, drop 1 bit  at  a  random, which is  called

puncturing.

So, we can possibly drop 1 of them. And if really this is this guy is actually a systematic

encoder, then this first bit is identical to this one, but not this one, because this comes

from an interleaved version. So, you can drop any one of them. So, I can lead this rate 1

by 4 to back to 1 by 2, if I cancel out both of them, or I can take it to 1 by 3, if I just

cancel just drop one of them. This is the puncturing process. So, I am introducing errors

by myself, but what the strong encoder, decoder can do is to recover from this error, self

introduced error.

(Refer Slide Time: 15:26)

So, we come back to the slides. And we now focus our attention on the decoding part,

because we have just now understood that encoding is very easy it is fairly hardware

friendly. So, the encoder determines the capability for error correction, it is a decoder

that determines the performance, there is a difference. There is a difference between the

capability and actual performance.

So, you can have several kinds of decoders, and we will discuss two of them briefly at

the end of this lecture. So, there is a decoder, which will decide the performance. So, the



performance depends on the algorithm used. And turbo decoding is an iterative decoding

process,  please  note  this  is  a  basic  difference  between  decoding  a  Viterbi  based

convolutional  code,  and this  turbo  codes.  Turbo codes  require  an  iterative  decoding

process for example, the maximum a-posteriori algorithm MAP or the soft output Viterbi

algorithm SOVA for decoding.

So, soft output algorithms, out-perform hard decision decoding algorithms, because they

have available a better estimate of what the data sent was actually. And soft output yields

a gradient of information as opposed to hard decision decoding, which is like choosing 1

or 0 right in the beginning, leading to the loss of information.

(Refer Slide Time: 17:00)

So, let us look at the structure of the turbo decoder all right. So, here if you see, we have

the three output bits  coming into the decoder. And if  you look at  the various blocks

within the decoder, you have a decoder 1, you have a decoded 2, even interleaver, and

also a de-interleaver, and then again there is an interleaver.

So, first we have to understand how it works in a very basic manner. The job of the

decoder  is  to  guess  what  would  have  been  the  real  thing,  and  mimic  the  encoding

process, so you have an interleaver itself.  So, so encoder, interleaver, encoder, and it

compares it with the received vector, finds the difference, adjust the estimate. And then

again  does  encoding  process,  compares  with  the  received  vector,  compares  the

difference. And then does it several times rate converges or a threshold is met, and then



you get the final estimate, and declare the result. So, it has to be an iterative guessing

process.

(Refer Slide Time: 18:24)

So, let us talk quickly about the decoding process. A turbo decoder generally uses an

MAP algorithm in at least 1 of his component decoders. What is MAP? It is a maximum

a-posterior algorithm. The decoding process begins by receiving the partial information

from  the  channel,  and  passing  it  to  the  first  decoder,  as  we  saw.  The  rest  of  the

information, which is the parity bit 2 goes to the second decoder.

So, if you recall, what we have done is we have got. If you go back to the drawing board,

we have the original bit coming in, so it is a systematic. And then I discard one of them,

and I get Y k 1. And I discard this 1, and I get Y k 2. So, yes I had a rate 1 by 2, I threw

out 1, I am confident I will be able to recover from this self imposed error, I discarded 1

here, I got back here. So, I have on this side, I rate 1 by 3. So, I am going to work with

these 3 bits at the decoder.

Now, please note, X k, Y k 1, will be fed, this called the partial information, this will be

fed to decoder 1. And this really corresponds to encoder 2, so it will be fed to decoded 2.

And we will have a message information passing algorithm, which should they will share

the information together, try to guess what could have been sent, so as to give me X k, Y

k 1, and Y k 2 that is the strategy.



So, we go back to our original slide, and we see that the decoding process begins by

receiving the partial information X k and Y k 1 and passing to the first decoder within the

turbo decoder. And the rest of the information parity 2, which is Y k 2 goes to the second

decoder, and waits for the rest of the information to catch up.

While  the  second  decoder  is  waiting,  the  first  decoder  makes  an  estimate  of  the

transmitted information, because it knows what the encoder was encoder 1 was, and it

makes  an  estimates  right.  And then  interleaves  it  to  match,  the  format  for  parity  2,

because the decoder 2 can work with only an interleaved data. So, it makes an estimate,

hoping it is right, does the interleaving, and gives it to decoded 2, to generate its output.

(Refer Slide Time: 21:20)

Now, the decoder 2, the decoder 2, the second decoder takes the information both from

the  first  decoder,  and  the  channel,  and  re-estimates  the  information.  This  second

estimation is looped back to the first encoder, where the process starts again, so it is

message passing. Therefore, it is clearly an iterative process, and we keep doing it, till

we converge. And we know that ok, this is the best bet I had in terms of the receive

message. So, clearly it needs some time to converge.



(Refer Slide Time: 21:55)

So, this is what we had sent, this Y k goes to Y k 2 goes to decoder 2, Y k 1 and X k 1 X

k goes to decoder 1, it gives an estimate, so it interleaves, and passes on to decoder 2; so

that it can mimic, the encoder 2, and then it together does a deal interleaving and passes

the message. So, it goes on and on.

(Refer Slide Time: 22:22)

So, graphically let us see what is happening. Let us start with the input data. And input

data is sent from the channel to the first decoder, we have seen that, which makes an

estimate based on the information, and then it transfer the estimates to the first decoder,



receive the information for the channel to the second decoder, makes a new estimate

based on the information, and transfer the estimate to the second decoder. The reason this

is exactly what we are discussed, why we have put it in this way is to show an iterative

decoding process ok. And finally, when we are happy or in the convergence happens, we

show the output.  And this  loop must keep on going, till  we are ready to declare the

results.

(Refer Slide Time: 23:15)

So, why is it called a turbo decoder, well if you see the turbo engine, it also has an engine

here, and exhaust gas discharge here, and it somehow has a loop like this, which works.

And therefore, this is called the turbo decoder. This is how the name has come why is it

called a turbo decoder. It has a, or it is some similarity with a little bit of imagination

with this turbo engine.



(Refer Slide Time: 23:50)

Question now is we had this very nice Viterbi decoding algorithm for conversion coder.

Here we have two conversion encoders, why cannot we use Viterbi to decode. Well, the

problem is that we do not have the luxury of a single trellis anymore. Why, because even

though the first encoder uses a trellis diagram, this input to the second one is based on a

permitted sequence, and therefore, it corresponds to some other trellis.

So, the Viterbi algorithm works by systematic elimination of paths in the trellis, but the

question  is  which  trellis  ok.  But,  we  do  not  have  this  luck  for  turbo  decoder  and

therefore,  that iterative decoding must work. So, we must appreciate  that Viterbi can

work, if you specify a deterministic trellis, not that a trellis that keeps changing. So, this

presence of this interleaver has really complicated this decoding process.



(Refer Slide Time: 25:00)

So, let us just now spend some time looking at 2 popular decoding algorithms. So, before

the discovery of turbo codes, a lot of work was done in the area of suboptimal decoding

strategies for concatenated codes. So, anyway the work was going on.

Now, the  symbol-by-symbol  maximum a posteriori  MAP algorithm by Bahl,  Cocke,

Jelinek and Raviv, which is called the BCJR algorithm, was published in 1974. But, it

was there on the library shelves not much was being done, till in 1993, it was reused by

Berrou et al to do turbo decoding. So, what we will discuss today is this BCJR, actually a

modified BCJR decoding algorithm for turbo decoding.



(Refer Slide Time: 26:00)

So, what is this algorithm? It is just in the next few slides will put into mathematics, the

intuitive understanding that we have developed for this turbo decoding that information

passing between encoder 1 and encoder 2. So, first of all, this modified BCJR decoding

algorithm is a symbol-by-symbol decoder.

So, the decoder decides that U k is plus 1. So, let us talk about binary, so plus 1 and

minus 1 instead of 1 and 0. So, the decoder decides U k is plus 1, if probability of U k is

plus 1 given Y the received vector greater than probability the U k is equal to minus 1

given the received vector. So, this Y volt phase is Y 1, Y 2, Y n is the noisy received

word it could have errors in it.



(Refer Slide Time: 27:00)

So, what we do is a decision U k hat, is the sign of L u k. What is L u k, is a log a

posterior probability. So, LAPP, we will use this as a way, which is a log likelihood ratio,

which we have just now seen the probability of U k is equal to 1 given the noisy stream

Y versus U k is equal to minus 1 giving the received vector. And if it is now a question of

a sign, if the numerator is larger, the sign is positive, the numerator is less, probability is

less; the sign is negative.

So, we are now only working with the sign ok. So, it is a very smart way to convert this

log a posteriori probability ratio. So, we are now going to work with this ratio and the

signs itself. So, it is pretty decent to do this. So, now we just go into the trellis, and for

the encoder 1, and encoder 2. And we look at these probabilities. So, we are trying to

find out given this vector Y, what is the probability that U k is 1.



(Refer Slide Time: 28:19)

And similarly, we define these two ratios, and in this in terms of the state of the encoder

right.

(Refer Slide Time: 28:30)

So, we can do a little bit of maths, and we have these forward and backward gains, which

are intermediatory terms as alpha, tilde, and beta, tilde with some boundary conditions.

So, we can go into the details of this BCJR algorithm.



(Refer Slide Time: 28:48)

Basically, to define exactly what is the log a posterior probability in terms of these alphas

and betas. So, this is the LAPP ratio.

(Refer Slide Time: 29:00)

So,  based  on the  sign,  then  the  decoding  can  happen right,  that  is  how you do the

estimate. Now, we look at the second decoding algorithm, I will again give you a hint as

to how it is done, this is called the iterative MAP decoding, is different from the BCJR

algorithm that we studied before.



And here, let us look at the methodology. So, you have these three inputs that are coming

in. And we have now, the MAP decoder 1, then we have an interleaver giving in to MAP

decoder 2. So, you can estimate this capital D 1 and capital D 2, and then we have a de

interleaver, which passes to decoder 1. We have looked at this block diagram earlier, and

then through the interleaver you look at 2 and so and so forth. And finally, you give the

output. So, we are using two MAP decoders, operating cooperatively. That is the iterative

MAP decoding algorithm.

(Refer Slide Time: 30:00)

Again we will have to use some kind of a likelihood function. So, D 1 and D 2 are two

decoders. And we have S is the set of 2 raised power m constituent encoder states. Y

vector is the noisy received word. Then we can use the Baye’s rule to write L U k as

follows and second term representing the a priori information here. So since, probability

of U k being 1 and U k equal to minus 1 typically is equal then the a priori term is

usually zero for conventional decoders, ok.



(Refer Slide Time: 30:45)

So, what D 2, second decoder, does it receives the extrinsic information from D 1, and

the decoder decoding iteration proceeds with each of the two decoders passing the soft

information along to the other decoder at each half-iteration. So, the idea behind this

extrinsic information is that D 2 provides soft information to D 1 for each U k, using

only information not available to the decoder 1. Similarly, D 1 does for D 2. So, they

keep  passing  partial  information  without  declaring  the  result  till  the  convergence  is

reached.

(Refer Slide Time: 31:26)



So, we can define again, the intermediary terms will not go into details, as to how these

message passing is actually done. But, again we have a ratio depending on the states of

the algorithm that we have studied earlier. And it is quite similar to that we have done for

the BCJR algorithm.

(Refer Slide Time: 31:48)

So, you can work this out, and you have these expressions for conducting the iterative

MAP decoding.

(Refer Slide Time: 32:00)

And you have this forward and backward parameters alpha k tilde and beta k tilde.



(Refer Slide Time: 32:06)

So, for the algorithm, if you go back to the intuitive understanding of how it works, each

decoder must have full knowledge of the trellis of the constituent encoders. But, since

transmitter and receiver are friends it is not a difficult thing to have. So, you must know

that  trellis  states  for  the  decoding  to  happen.  So,  each  decoder  must  have  a  table

containing the input bits and the parity bits for all possible state transition ok. So, the

state  transition diagram must  be available,  and based on that  the  alpha and beta  are

calculated.

Also  care  should  be  taken  that  the  last  N bits  of  the  N-bit  information  word  to  be

encoded must force encoder 1 to state 0, so that for the next block we can start a fresh ok.

There should be no ripple effect. The performance of iterative decoding improves, if the

information that is sent to each decoder from the other decoder is less correlated with the

input information data sequence, this is just an observation.



(Refer Slide Time: 33:15)

So, just let us compare, how turbo decoding performs. So, if let us put the axis in place,

so the x axis represents the signal to noise ratio in dB, the Y axis represents the bit error

rate. So, if you see, the greenish curve is no coding is used. So, depending upon the

signal to noise ratio, you have a raw error rate, which is really unacceptable. And then if

you use this reed Solomon code, you are somewhere here, depending upon what is your

signal to noise ratio. So, as you can see that this x axis is SNR, so reed Solomon codes

work well at reasonably high SNR then.

If  you look  at  turbo  product  codes,  they  are  slightly  here.  But,  if  you look at  thus

recursive systematic convolutional turbo code, this is the performance cover that it really

works at low SNR. And here is the Shannon’s limit by the way. So, relatively speaking, it

is  much  closer  to  the  Shannon’s  limit,  and  you  can  get  a  remarkable  performance.

Suppose, you are working at 10 raised power minus 5, this is the 10 raised power minus

5. Then with respect to uncoded, you can have a humongous 8.5 dB coding gain, because

of this RCS turbo encoder.



(Refer Slide Time: 34:52)

So, let us look at an example, how effective it will be in real life. Suppose, we are doing

deep space communication where we are having this inverse square law being followed

with respect to the distance, so this means that the turbo coded signal can be received

with  2.65 that  is  under  root  7  times  farther  away from with respect  to  the uncoded

signals,  because  it  requires  1-7th  of  the  transmit  power  for  the  same  transmitting

distance.

So, even if you have large distances are use of a turbo coder, would really require you to

use much lesser power. And these are power limited channels, so it really makes sense.

As we saw, in this previous diagram of a recursive systematic convolutional RSC turbo

encoder, this is the diagram for a bit error rate of 10 raise power minus 5; we have this

minus 8.5 dB. So, this is the coding gain, which is like under root 7, and which gives you

thus humongous saving in power. So, the battery life tentatively lasts 7 times longer ok,

or from the distance it is almost 2.6 times, the distance that can be sent the signal from,

so  as  to  get  the  same  performance.  So,  it  is  pretty  impressive  in  terms  of  the

performance.



(Refer Slide Time: 36:30)

Now, we come to this interleaver, which has made a life difficult for decoding purposes,.

But, let us talk briefly about the interleavers, what is the importance, what are the types,

how can we design them. So, superior performance of turbo codes over convolutional

codes is achieved only when the length of the interleaver is quite large. So since, the

interleaver  must  be  present,  so  the  interleaver  works  with  a  block.  Therefore,  this

convolutional code lies between block codes and convolutional codes. We worked with a

block size at a time.

So, most random interleavers work well. On the other hand, for some applications, it is

preferable to have a deterministic interleaver, to reduce the hardware requirements for

the  interleaving  and  deinterleaving  process.  For  short  block  length  interleavers,  the

performance of turbo codes with a random interleaver  degrades substantially  up to a

point, when its BER performance is worse, then the BER performs with convolutional

code standard convolutional codes with similar computational complexity.

So, please note that the short block interleaver right that the block length interleaver must

be large enough to give you the gain. Otherwise, we will go back to normal, and the

advantage will wear off, because you are actually puncturing and throwing out some of

the  bits,  right.  So,  for  short  block  length  interleaves,  the  selection  of  the  type  of

interleaver does have a significant effect on the performance.



(Refer Slide Time: 38:11)

So, let us quickly spends some time on the interleaver designs. The two major criteria for

interleaver  design.  One  is  the  distance  spectrum  properties,  which  is  the  weight

distribution of the code; I mean that is how we started off with why are we adding an

interleaver, because for the same input bit stream, if the input bit stream leads to a low

weight sequence, then the interleaver should shuffle the bit stream, such that the resultant

output should be a high weight output. Number two criterion is the correlation between

the soft output of each decoder corresponding to its parity bits, and the information input

information sequence should be such that the advantage of decoding is achieved.

So, the second criteria of the correlation between soft output of each decoder and the

information sequence, is called the iterative decoding suitability criteria. So, that is how

we design interleavers. So, they have been designed by trial and error or there are some

design rules. And once you fix an interleaver, you are good to go.



(Refer Slide Time: 39:30)

What about the random interleaver. Well, you do not have any effort in designing it is

simply a  random permutation pi.  So,  if  you define S-random interleaver, is  a  ‘semi-

random’ interleaver, which is constructed as follows. So, it is a compromise between a

random interleaver deterministic. Each randomly selected integer is compared with S,

where S could be 1,  2,  or  3 or  and so on and so forth,  previously selected  random

integers.  If  the  difference  between the  current  selection  and S previous  selections  is

smaller than S, the random integer is rejected. So, it is a way of picking random data.

This process is repeated until N distinct integers have been selected. And thereby, you

end up with a S random interleaver.
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Let us look at an example, how it is used in real life. So, the 3GPP, which is the third

generation partnership project proposes, the use of turbo code interleaver and algorithm

is given in this slide. So, the input sequence can be starting from 40 to over 5000 ok, so

we have to input this large size of a sequence.

So, let us summarize the algorithm. So, step 1, you have row-wise data input to an R

cross C rectangular matrix, with zero padding right, and K is less than R cross C. So, I

have  to  fit  in  those  many  bits  into  a  matrix.  So,  R  and  C  represents  the  rows  and

columns. Now, intra-row permutation of the rectangular matrix is carried out, based on

recursively reconstructed base sequence S. Then step 3 is inter-row permutation of the

rectangular matrix, based on a well defined inter-row permutation pattern T, so you can

specify T.

And then finally, a column-wise data output of the rectangular matrix. If you remember,

the most basic form of an interleaver is, you feed in the data row-wise, and read it out

column-wise right. But, here we put in the data row-wise, and then do row permutations

of two types, and then read out the data column-wise.
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Finally, what are the advantages and disadvantages of the turbo codes? Well, let us start

with advantages; remarkable power efficiency in Additive White Gaussian Noise, and

flat-fading  channels  for  moderately  low  bit  error  rate.  Please  note,  moderately  low,

because if you put the BER too low, then the convergence does not happen, and we do

not get good results. And that design tradeoffs suitable for delivery of multimedia data

services.

What are the disadvantages, long latency, because it is an iterative algorithm? We have to

wait till  the entire block is received iterations happen and decoding is declared. Poor

performance at very low BER, so BER cannot be below a threshold, otherwise we will

keep iterating and not converge. Because, turbo codes operated at very low SNR, channel

estimation tracking is critical to the decoding process, because the efficiency of this turbo

codes is at low SNR suddenly. So, yes that is kind of a disadvantage.
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Now, let us summarize what we have done today. We started off with a brief introduction

to turbo codes,  we looked at  what is the structure of turbo codes,  how concatenated

convolutional encoders can be converted into turbo codes. We looked at the encoding

process. And finally, we looked at two decoders, and then looked at the importance of

interleavers  for  turbo  decoders.  Finally,  we  looked  at  some  examples,  to  show  the

efficacy of this turbo encoders and decoders.

With that we come to the end of this lecture.


