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Hello and welcome to our next lecture on Convolutional Codes. Let us start with a brief

outline of today’s talk. We would look at the matrix description for convolutional codes.

Though  these  are  different  from linear  block  codes,  we  will  try  to  put  in  a  matrix

description. Then we will look at the decoding strategies for convolutional codes. We

specifically will look at the Viterbi decoding algorithm. Then we would look at some of

the bounds, both performance bounds and bounds on distance. And then we will look at

some known good convolutional codes, so that is the outline for today’s talk.



(Refer Slide Time: 01:08)

Let us start with a quick recap. We have so far studied what are convolutional codes,

what is the meaning of a generator polynomial for convolutional codes. Then we looked

at  the  syndrome polynomial  matrix.  We looked  at  catastrophic  and non catastrophic

convolutional codes. And we defined, the free distance of a convolutional code. We also

looked at how to calculate the free distance using the modified state diagram.

(Refer Slide Time: 01:44)

So, if you remember, all convolutional codes can easily be represented in terms of a

trellis diagram. If you see there are certain number of nodes, which represent the states,



so here there are four states. So, there are two memory units in this convolutional code,

and they corresponds to the state 0 0, 1 0, 0 1, and 1 1.

And on the x axis, we have the time axis. So, every time an input bit comes in, it either

makes a state transition or it does not. But, whatever is written on top of the branches,

represent the output. An input could be either a 0 or 1, because this is an example of a 1

by 2 encoder. So, if a 1 comes in, we take the lower branch; if a 0 comes in, we take the

upper branch.

So, if we have to encode 0 0 1 0, so take the upper branch, because 0, 0 then take the

lower branch 1, and then take the upper branch 0. Read out what is written on top of the

branches, and you have got the encoded bit stream. So, it is very easy to encode using a

trellis  diagram. We have also seen that  any unique input bit  stream corresponds to a

unique path within the trellis. So, the decoding strategy should be to find out the most

likely path in the trellis.

(Refer Slide Time: 03:12)

We also looked at the matrix description of convolutional codes. And what we figured

out, as it is possible to have a generator matrix in terms of the g i j and l, where we have

the input output relationship. So, what we can do is we can have the G l, which is the

generator matrix for the convolutional code, you can represented for a truncated block

length of n, because typically a convolutional code can be thought of as having a code

with infinite block lengths, because the trellis can keep going and going up to infinity.



So, what we have is a matrix description of a convolution code, which can be represented

in the following format. Here, you have G 0, G 1, G 2 and we will describe them what

they are up to G m, where m is the length of the shift register used to generate the code.

So, you can see there is a pattern, then there is a right shift, and then G 0 and so on and

so forth, and we continue.

(Refer Slide Time: 04:26)

So, for in general, when we do not restrict us to a block length of n, the generator matrix

of a convolutional code can be written as follows. And the matrix practically extends up

to infinity, to represent code words of infinite length.



(Refer Slide Time: 04:45)

Similarly, if you want to write a generator matrix,  which systematic  for a systematic

convolutional  code  we  can  write  as  follows.  And  as  you  can  see,  there  are  clear

demarcations, which will give you this the identity matrix, and this is the parity matrix

and so and so forth, you can continue right up to infinity. We will shortly look at an

example, to understand how this was done.

(Refer Slide Time: 05:12)

And once we have this nice looking generator matrix, which is in the echelon form, then

we can easily write the parity check matrix by using the P naught transpose minus I in



the first row, and then P 1 transpose and so and so forth in the next one to have the parity

check matrix.

(Refer Slide Time: 05:35)

Let us look at a quick example. So, here we have a 2 by 3 convolution encoder, if you

can see there i 1 and i 2 are the 2 bits, which are input. And we have c 1 c 2 and c 3 are

the 3 output bits. So, for every 2 bits that come in, we have 3 bits going down. So, the

generator polynomial matrix should be a 2 cross 3 matrix. And if you see, how c 1 is

linked to i 1, you can see that c 1 comes as a summation of this current and a previous 1.

So, you have this D for the first delay element, and D squared second delay element they

added together right. So, you have in the first link between the first G 1 1 is D plus D

squared. Similarly, c 2 is linked with i 1 only via the 2 delay unit, so D squared. So, here

is a D squared, so you have c 2 linked with i 1. So, this second entry is G 1 2 is nothing

but D squared and so and so forth. So, since c 2 is also connected to i 2. 

You will have a G 2 2 also entry here, since all are connected there are no 0s. So, we

have learned how to write  the  generator  polynomial  matrix.  Given any circuit  for  a

conventional encoder, we can quickly write down the generator polynomial matrix in this

case. But, from here, we will go to the generator matrix.



(Refer Slide Time: 07:21)

So, if you see that we have the g 11 as D plus D squared, g 12 as D squared and so and

so forth up to g 23 as D. So, we have written them down right here.

(Refer Slide Time: 07:33)

And we now look at those matrix G 0, and we look at the constants the coefficients of D

0 in the generator polynomial. Since, there are no constant terms in any of the generator

polynomials, the G 0 is nothing but all 0 matrix.



(Refer Slide Time: 07:51)

Now, we  want  to  write  G  1.  Please  note,  what  we  are  trying  to  do  is  write  these

coefficients here. So, we are trying to figure out this G 0, G 1, G 2 and so and so forth up

to G m. Once we have that they nothing but right shifted versions. And please note, each

one of them is a matrix. So, what we have done is we have figured out what is G 0. Now,

if you look at G 1, we are looking at the coefficients of D 1 D raise power 1 in the

generator polynomials. So, 1st row, 1st column entry of matrix G 1 corresponds to the

coefficient D raise power 1 in g 1 1.

So, we can go back, and we look at there is 1, so there is D raise power 1, so coefficient

is 1. And similarly, we go ahead and look at it. If for g 1 2, we look at the 1st row, 2nd

column entry corresponds to the coefficients of D 1 and so and so forth. So, if you look

at it, you see that there was 1 coefficient present with D, then there was none for the 2nd

1, then there is a 3rd 1 here. So, we just go back, and check here that clearly there is a 1

D raise power 1, so coefficient is 1. There are no D raise power 1s here, there is a single

1 here. So, the 1st row should read 1 0 1; the 3rd 2nd row should seed 0, because there is

no D raise power 1 present here, so 0 1 1.

So, if you go back 1 0 1 0 1 1. Similarly, if you have to write G squared, then you have

yes it is present. So, it is 1 1 1 1 0 0, because D squareds are not present in these two. So,

1 1 1 1 0 0, so that gives you G 2. So, it is very easy to write G 1, G 2 and so forth up to



G m. But, please note in our case m was equal to 2, so we stop here, and we start writing

our coefficients.

(Refer Slide Time: 10:07)

So, this is G 0, this is G 1, G 2, and then 0s continue forever. And then you start with 0 0

0 matrix. And then it is a shifted version, this is G 0, G 1, G 2, and so and so forth G0, G

1, G 2. So, you will now have a generator matrix for the convolutional encoder.

(Refer Slide Time: 11:05)

Now, we come to the most important part of convolutional code, which is the decoding

part. We have seen that the encoding is very easy, very hardware friendly, extremely easy



to perform in terms of a trellis code. So, the computational complexity is minimal at the

encoding side. But, if you look at the decoding, we have a little bit of difficulty, it is a

slightly involved process as we will figure out.

So,  there  are  three  important  decoding  techniques  for  cognition  coders.  Threshold

decoding, sequential decoding, and the most famous Viterbi decoding.

The sequential decoding technique was originally proposed by Wozencraft,  and 1957.

And  it  has  an  advantage  that  it  can  perform  very  well  with  long-constraint-length

convolutional code, but it has a variable decoding time. So, it is not so suited for real

time operations.

The second technique, which is the threshold decoding is also known as the Majority

Logic Decoding, was proposed by Massey 1963; And the threshold decoders of first

commercially produced decoders for convolutional codes, so they had a lot of merit. But,

the optimal Viterbi decoding developed by Andrew Viterbi in 1967. Really has been the

mainstay has been the choice best decoding technique, which was used in the industry

today.

(Refer Slide Time: 12:06)

So, why is Viterbi decoding so popular well it has some very good advantages, a highly

satisfactory bit error rate performance, very high speed of operation, very easy hardware

friendly to implement, and low cost. So, these are the reasons why Viterbi coding has



become very very popular. The threshold decoding in comparison to Viterbi decoding

had an inferior bit error rate performance. So, the threshold decoding is closes practically

to block decoding.  And it  requires  the calculation  of syndromes.  And syndrome is  a

sequence,  because the information  and the check bits  occur  at  as sequences.  So,  the

syndrome is a sequence.

(Refer Slide Time: 12:57)

But let us now focus on the Viterbi decoding algorithm, which is a fixed time decoding

algorithm. So, the decoding time does not really vary in terms of the input that is coming

in. It is also extremely hardware friendly, it can be easily put on (Refer Time: 13:17), but,

its  computational  requirement  is  high.  So,  there  is  no  free  lunch,  and  it  grows

exponentially as a function of the constraint length. So, in real life, the constraint length

of 15 or less is typically, the ones for which Viterbi decoding is popularly used.



(Refer Slide Time: 13:35)

So, let us spend some time looking at this optimal decoding strategy. And we will spend

a few slides looking at how and why Viterbi decoding does an optimal decoding. So, this

optimal decoding technique results in a minimum probability of error. So, let us say the

probability of r giving c, where r was the received vector, and c was what was sent, so

that will be the conditional probability of receiving r given c was sent.

And we can see that the optimal decoder is the maximum likelihood decoder with the

decision rule to choose the code vector estimate c hat ok. For which the log-likelihood

function ln p r given c is maximum. See we want to maximize this probability of r being

received given c was sent. And we would like to use the log-likelihood function. So, if

you consider  a  binary  symmetric  channel,  where the  vector  elements  of  c  and r  are

denoted by c i and r i, because if we if you remember, we are decoding a long sequence,

and this is encoded using a trellis diagram.

So, for the entire chain, so p r given c is nothing but the product of p r i given c i, and n is

the length of the sequence. This product necessitates the use of a log function in front,

and we have this log-likelihood function, ln p r given c, and the log converts a product

into a an addition, so that makes life simpler for us.



(Refer Slide Time: 15:30)

So, let us assume that r i is received given c i was sent the probability is p, r i not equal to

c, so that is the probability of error, and 1 minus p and r i is equal to c. So, p stands for

the probability of error. And suppose the received vector differs from the transmitted

vector at exactly d positions ok, so there are d errors that have happened. Then we can

simply plug in, and the log-likelihood function, now looks like ln p r given c, r as a

sequence of received bits, and c is the sequence of transmitted bits, it just comes out to

be as follows. And this is coming directly from this log-likelihood function, and you can

write it as follows.

(Refer Slide Time: 16:29)



So, we assume that probability of error p is less than half right. And we also known as at

N log 1 minus p is a constant for all code vectors. So, now, we can make a statement that

the maximum likelihood decoding rule for binary symmetric channel is to choose the

vector  estimate  c  hat,  which  minimizes  the  hamming  distance  between  the  received

vector r, and the transmitted vector c. So, our aim is to have a decoding strategy that

minimizes this hamming distance.

So, for soft decision decoding in additive white Gaussian noise with single sided noise

power N naught, the likelihood function can alternatively be written as follows. So, this

we have  studied  in  our  communication  theory  course.  But,  so  far  for  hard  decision

decoding with d errors, we have already derived the expression.

(Refer Slide Time: 17:26)

So, the maximum likelihood decoding rule for Additive White Gaussian channel right.

With soft decision decoding is to minimize the squared Euclidean distance between r and

c;  And the Euclidean distances  given as  follows. So,  the Viterbi  decoding works by

choosing that trial  information sequence,  where the encoded version is closest  to the

received sequence. 

So, if you are using hard decision decoding, then it is in terms of the hamming distance,

if you are using soft decision decoding, we are using in terms of the Euclidean distance,

squared  Euclidean  distance.  So,  for  hard  decision  decoding,  will  be  using  hamming

distance as a measure of closeness between the two sequence. So, when we say, we are



looking at a decoding strategy to pick out the most likely sequence that was sent, then we

are finding out the closest sequence with respect to the received sequence.

(Refer Slide Time: 18:29)

Let  us  understand this  using  a  simple  example.  So,  suppose we have  a  rate  1  by 3

convolution encoder. So, you can see that the input is a single bit, and output are 3 bits.

And the number of states in the trellis should be 4, because there are two elements in the

memory.

(Refer Slide Time: 18:54)



So, constraint length is 2. So, here we have a Viterbi decoding example, where there are

four states. And if you see on top of each branch, there are 3 bits written, simply because

the output is 3 bits for every single bit comes that comes in. So, this input bit can be a

white that a 0 or a 1. So, in the trellis diagram, you have two branches coming out from

every node, 0 means take the upper branch, 1 means take the lower branch.

So, suppose we have to encode 1 0 0 1, so 1 means take the lower branch, 0 means take

the upper branch, 0 means take the upper branch, and 1 means take the lower branch. So,

you read out what is written on top of the branches, this is the rate 1 by 3 convolutional

encoder. We will use this as an example to demonstrate how Viterbi decoding is done, in

terms of the optimal decoding strategy that we worked out.

(Refer Slide Time: 19:57)

So, without loss in generality, let us say the all zero sequence was sent right. But, what

we have received is a sequence with a few errors, it is very clear easy to see that the ones

denote, where there is have been seen. So, we do not know at the receiver what was sent,

but at the transmitter suppose the all 0 sequence was sent. Congressional encoders are

linear, so we can work this example out with respect to the all 0 sequence, and we can

generalize this example.

So, this is a rate 1 by 3 encoder, so we work in groups of 3. So, first 3 bits is processed as

stage 1, then the next 3 bits, next 3 bits and so and so forth, simply because n naught is 3.

So, we just take this long receive sequence, and subdivide it into groups of 3, so 3, then



next 3, next 3, and next 3. Now, the objective is to find out the most likely path through

the trellis that resulted in this one right. Since, the path must pass through nodes in the

trellis, we will try to find out, which nodes in the trellis belongs to the most likely path in

the trellis.

(Refer Slide Time: 21:33)

So, let us quickly understand this rational by looking at a trellis here. So, if you see, we

have nodes in the trellis. And since, the number of states is four, we have four nodes at

every stage, and this continues up to infinity.

Now, clearly there are paths in the trellis, which corresponds to an input sequence. And

some sequence has been transmitted, which results in a particular path, so we do not

know, which one is it, but it will keep going and so and so forth, and this continues up to

infinity. The problem is that as we go along the time axis, the number of path grows

exponentially, this is seen, because if we have to match and find out, which is the most

likely path.

Then we have to keep track, save in memory all the paths compare with each and every

path, the hamming distance and find out, which is the most likely path. So, what the

Viterbi algorithm does is it makes a very simple observation. It says the correct path

must pass through the correct nodes. So, even though the paths may grow exponentially,

the number of nodes are fixed, there are only four nodes at every stage.



So, instead of keeping track of each and every path, we try to figure out what are the

most likely nodes from which this optimal path is passing, and we keep a track of nodes.

And how do we do that, how do we prevent the number of nodes growing exponentially

well. We have to stick to the number of nodes here, so if you see, if you look at this

particular node, there are two paths that are coming through this one. Now, only one of

the path is correct, so at this node, we will take a call as to which path is more likely. If it

is an optimal path, then it will be optimal at this point, so you can always choose the

better path and prune this tree.

So, at any stage, if you look at a node, we can take a decision at the node. And choose

and retain, the most likely path through that point, and throw away all the other paths.

So, we discard. So, we keep pruning this and M-ary tree and so. The exponential growth

that is expected of the paths is not seen, because we just keep a track of which of the

nodes, which are optimal. So, this is the most critical observation, which helps us keep

the  whole  mathematical  operation  of  decoding  tractable,  and  we  do  not  run  out  of

memory, because we do not grow exponentially.

So, we now go back to our slides and try to see how this example illustrates this point.

So, we go back and see, and make this observation. Since, a path must pass through the

nodes in the trellis, we will try to find out which nodes in the trellis belong to the most

likely path right. This is the key observation.

(Refer Slide Time: 25:23)



So, you see at every node you have two incoming branches which simply determines,

which of these two branches belongs to a more likely path, and discard the other. This

process of discarding paths at every stage, keeps in check the number of paths, because if

their path was suboptimal at that stage, there is no way it will become optimal later ok;

this is a principle of optimality.

So,  we take this  decision based on some metric,  and that  metric,  we know for  hard

decision decoding is the hamming distance. In this way, we have to retain just one path

per node, and the metric of that path ok. So, in this example, we will have to retain only

four paths as we progress with that decoding. Since, we have only four states in our

trellis, and it will be four only, it will never grow.

(Refer Slide Time: 26:20)

So, let us consider the first branch of the trellis, which is labeled 0 0 0. And we find the

hamming  distance  between  this  branch,  and  the  first  received  frame,  but  if  you

remember,  we received  0  1  0  as  the  first  3  bits.  So,  we measure  that  the  hamming

distance  with  this  path,  and all  0  path you get  1.  This  is  your  branch metric.  Upon

reaching the top node from the starting node, this branch accumulates a metric of 1 unit.

But,  we have another  option,  so we looked at  the next  branch.  So, we compare the

received frame with the lower branch, the terminates on the second node from the top



(Refer Slide Time: 27:00)

Here, it is 1 1 1, so the distance between 1 1 1, and 0 1 0 is 2, so that is the branch metric

for that one.

(Refer Slide Time: 27:10)

So, if you go back to a trellis, what we have done here is we started always from the base

0 0.  We compared the received vector  with the first  branch here,  and we founded a

hamming distance of 1, because it was labeled 0 0 0. The second this branch was labeled

1 1 1, we compared our hamming distance of the received branch, and what is written on



this 1, and we got a distance of 2. So, we write here that for the two paths that we have

progressed through, we have a branch metric 1 and 2 and a path metric of 1 and 2 here.

But, if you know we can keep continuing to the next step, and then again find out the

hamming distance between the second frame received, and what is written on top of this

branch.  Second  frame  received  compare  it  with  this  branch,  second  frame  received

compare it with this branch, and second frame received and compare it with this branch.

So, again we will have four branch matrix here, and we add it up to yield the path matrix.

So, we will have path metric four of them written here.

(Refer Slide Time: 28:23)

So, let us proceed here. And what we find is that the 2nd frame received is 0 0 0, and

what is written on this branch is also 0 0 0. So, between the received, and what was

written on the top of the trellis, there is 0 additional hamming distance. So, the branch

metric is 0, but already there was a burden of 1, so 1 plus 0 the total branch matrix for

the two add up, and give you the path metric of 1. We do not stop here. 

We look at the second possibility, because anybody could be a winner. So, 1, and if this

branch was sent, you have this return here, but this lower branch has written on up on top

of it 1 1 1 in the trellis diagram. But, what we have received in the 2nd frame is 0 0 0, so

we have a branch metric of 3 leading to 3 plus 1 path metric of 4.



Similarly, if you look at this 1, here you compare it, and you get an additional hamming

bit of 1 here, so 2 plus 1 3 and 2 plus 2 4. So, at the end of two steps of the Viterbi

decoding encircled are the path matrix for the four cases, branch 1 leading to path 1, path

2, path 3, and path 4, but we cannot declare the results yet. So, we keep going.

(Refer Slide Time: 29:54)

And we look at  the  3rd  Viterbi  algorithms  decoding  stage,  and we compute  further

matrix for the branch. So, what you receive again is 1 0 0 1, and here what is written on

top is 0 0 0. So, the branch metric is 1, path metric was already 1. So, path metric plus

branch matrix give you 2 ok. Similarly, you can do for all four, and you can keep adding.

What is interesting is now two branches are converging at every node. Each of these

paths, which are converging at every node has its path metric with it.

Now, we simply discard the 1 with a larger path matrix, because it is already suboptimal

at that stage. And we retain the 1, which is having a lower path metric. So, we discard.

So, we do the pruning act for every branch and every node here. So, consequently, we

have written down the minimum branches and minimum path matrix here.



(Refer Slide Time: 31:21)

So, at the end of 4th stage, we repeat this operation, and we keep doing it here. So, we

have at the end of 4th stage a path metric of 2, 3, 4, and 5, clearly we can see that this

first branch has accumulated minimum hamming distance, and is the most likely winner

up to this point ok. So, what it says is we have received a certain sequence.

Suppose this all 0 sequence was sent, then the hamming distance is 2. Suppose this 0 0 0

0 0 0 1 1 1 was sent, then the hamming distance sequence to sequence would be 3.

Similarly, if you look at these this 1, it will be 4. So, we have already highlighted the 1

with a minimum path metric. And suppose you look at this path, then it will be 5. So, we

as we have 4 choices, but we have already know, which 1 appears to be the winner.



(Refer Slide Time: 32:25)

So, the minimum distance of this code d star is 6. So, the number of errors it can write

per frame is equal to d star minus 1 by 2, this is the smallest integer less than or equal to,

so that is 2. So, in this example, the maximum number of errors per frame was 1, so it

could be corrected.

(Refer Slide Time: 32:57)

And we look at the surviving paths for first case, and we say that if all the surviving

paths cross the same nodes, then a decision regarding the most likely transmitted path

can be made up to the point, where the nodes are common. So, please note, we have



introduced this notion of discarding paths, and whatever remains are the surviving paths.

So, you can choose a time, when you can declare the results, and we will show it by a

decoding window.

So, to build a practical Viterbi decoder, because we can keep going on and on, but one

must choose a decoding window of width w; after which we will say, enough is enough,

time to declare the result.  So, at  a given time frame f,  the decoder examines  all  the

surviving pass to see, if they agree in the first branch. This branch defines a decoded

information frame, and is passed out to the decoder.

So, if you see in the previous example, it is too early to declare the result, but if you see

that these two are the most likely paths, and they agree in the first two branches. So, you

can start declaring the results, or you can wait till the end of the decoding time frame,

and then declare the results.

(Refer Slide Time: 34:31)

So, in the example, we see that by the time we reach the 4th frame, all the survival pass

agree in their first decoded branch, and this is called a well defined decision. See, we go

back and we can see that they start agreeing in the first branch, and so we say that ok, we

are pretty confident that yes that is exactly what was sent.

So, the decoder dropped the first branch, after delivering the decoded frame, and takes in

a new frame of the received word for next iteration, so it slides the window. If again, all



the surviving paths pass through the same node of the oldest surviving frame, then this

information frame is decoded.

(Refer Slide Time: 35:22)

So, let us talk about the decoding window now. If the decoding window w is chosen long

enough, then a well defined decision almost always be reached. A well designed code

will lead to current decoding with a high probability. So, we have not talked about how

to design good codes, but yes if you have to maximize the d free, if the d free is high,

then with a  reasonably large decoding window, you can almost  always get  the right

answer. So, a well  designed code carries meaning only in the context of a particular

channel. So, different kinds of channel may require different design constraints for your

Viterbi for your convolutional encoder.

The  random errors  introduced  by  the  channel  should  be  within  the  error  correcting

capability of the code. So, the Viterbi decoder can be visualized as a sliding window,

through which a trellis is viewed. And the window slides to the right as new frames are

processed, and older results are declared. The surviving paths are marked on the portions

of the trellis,  which is visible through the window. As the window slides, new nodes

appear on the right, and some of the surviving paths are extended to the new nodes,

while other paths disappear.
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So, this is like a visual of the decoding window. There is an semi infinite trellis,  the

decoding windows already passed through the first  4 frames,  and it  has declared the

result. And it has some of the surviving paths, and it keeps moving the window of size w,

and as it go moves forward, it keeps declaring the results and continues. So, that is how it

can be visualized.

(Refer Slide Time: 37:07)

Now, it may be possible that in some cases, the decoder reaches a well defined decision,

but a wrong one, it is possible right. If the number of errors are more than it can correct,



it will go and declare a result, which is incorrect. If this happens, the decoder has no way

of knowing that it has taken a wrong decision. Now based on this wrong decision, the

decoder will take more wrong decisions, so error propagation will happen. But, if the

code is a non-catastrophic code, the decoder will recover from the errors. So, we have

already studied catastrophic and non-catastrophic codes. So, this is the implication of

that.

(Refer Slide Time: 37:46)

So, this is an example of an incomplete decoder in the Viterbi decoding process.

(Refer Slide Time: 37:55)



Now, let us spend some time looking at the distance bounds. So, we have already looked

at encoder, and the decoder for convolutional codes. Now, we have already talked about

d free. And then quickly let us look at some of the bounds on this d free or minimum

distance of the codes. So, upper bounds can be computed on the minimum distance of a

convolutional code that is a rate R is equal to k naught over n naught, and a constraint

length nu equal to m k naught.

These bounds are similar in nature, and derivation to those for block codes, but some of

the bounds are not really tight, but still it gives us a fair idea right. So, for a rate R and

constraint length nu, let d with the largest integer that satisfies H, which is the entropy

function, d over n naught nu that is less than or equal to 1 minus R.

(Refer Slide Time: 39:00)

So, this is the entropy function H of x minus x log to base 2 x minus 1 minus x log to the

base 2 1 minus x right. And for a binary code with rate 1 by n naught, the minimum

distance d min satisfies this constraint d min is less or equal to n naught nu plus n naught

over 2. So, we basically get a feel that this n naught has to be large, and the constraint

length has to be large in order to have larger minimum distances, it gives us a feel for it.
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And there is a Heller bound for d free, which is given as follows minimum j greater than

or equal to 1 n naught by 2 n naught is the output frame, codeword frame 2 raised power

j over 2 raised by j minus 1 nu plus j minus 1 nu is the constraint length. To calculate the

upper bound, on the right hand side should be plotted for different integer values of j, so j

is an integer. And the upper bound is the minimum of this plot.
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Now, let  us  look  at  some  performance  bounds.  So,  far  we  have  looked  at  distance

bounds. Now, we talked about performance bound in terms of the bit error probability P



b. So, we will first define, the first event error probability, which is the probability of an

error for sequences that merge with all 0 correct paths for the first time at a given node in

the trellis. So, that is called the first event error probability. So, we are trying to not find

an exact expression for the bit error probability P b, but an upper bound on the error

probability.
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Again this is again to give us a feel for the subject. So, let us c prime differ from the all

zero path in d bits. What is c prime, it is the sequence received, what is transmitted, all

zero path, without loss in generality, because we are looking at a standard linear code,

which is convolutional code, and d errors have happened. 

So, a wrong decision will be made by the maximum likely decoder, if more than d by 2

lower integer errors occur, where x is the largest integer less than or equal to x. So, the

channel transition probability is p, then the probability of error can be upper bounded as

follows.
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Now, there would be many paths with different distances that merge with the correct path

at a given time. Please remember, there could be many paths that are in the trellis with

different  distances.  And  we  have  defined  the  first  error  probability  as  the  1,  which

merges  back with  the  all  zero  path.  So,  we have  an  upper  bound on the  first  error

probability by summing all the error probabilities of such possible paths, so you have

done that. 

And if you remember, the number of paths, were easily found out by the modified state

diagram, and T D was expression we had found out, so we now, obtain the upper bound

P less than or equal to T D, where D is equal to 2 under root P 1 minus P. So, this is a

very quick way, we already had found out how to calculate T D modified state diagram,

and then you can quickly get an estimate on the upper bound on the probability of error.
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So, what we can do is if you are talking about P b, we upper bound P b in terms of the

pair wise error probability. And with a little bit of algebra you can look at that del T by

del I, where this is the augmented modified state diagram T D I again evaluated I equal

to 1 and D is equal to 2 under root P 1 minus P. So, that gives you an upper bound on the

P b.
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Now, we change gears and we talk about an octal representation. And we will now look

at some of the known good convolutional codes. So, in literature they are succinctly



written in terms of the octal representation. So, we show it by an example. It is just a

matter of a representing the generator polynomial matrix for convolutional code.

Suppose rate is half nu is 4, and we say the octal notation for this convolutional coded is

15 and 17, what does it mean. Well we are trying to say something, we are trying to tell

you the components of the generator polynomial matrix. So, octal 15 is 15, 15 is nothing

but 1 dash 5 that is nothing but 1 dash in binary 1 0 1. So, we have this first 1 as 1, and

then 1 0 1 if you see is the coefficient for D, D squared and D cubed. So, this first 1 is the

coefficient for D raise power 0, so you have 1 1 0 1 just look at the coefficients of D

raise power 0 D raise power 1 D raise power 2 D raise power 3. So, the g 1 will be 1 D D

cubed.

Similarly, 17 can be broken up and as 1 dash 7 is 1 dash 1 1 1, all  coefficients  are

present, so it is 1 1 D raise power 1 1 times D raise power 2 1 times D raise power 3, so

it is 1 plus D plus D squared plus D cubed, it is just a representation. So, this g 2 was

written as 17, and g 1 was written as 15. So, if I say, the encoder is 15 and 17, I am just

writing G D as 1 plus D plus D cubed 1 plus D plus D square plus D cube, it is a rate 1

by 2, so you only need 2 entries for this generator polynomial matrix. So, it is a very

simple octal representation for this G D. And this G D, we know very well how to write

using a circuit.
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So,  here  we  show,  known  good  convolutional  codes.  both  catastrophic,  and  non-

catastrophic codes with rate 1 by 2, and we write down the maximum free distance. We

already understand how octal is written. This is the example, we did just now if 15 and

17 is the octane generator, then what it means for the rate 1 by 2 for that the d free is

given, and the subsequent Heller bound is given. So, we see, the Heller bound is pretty

good for most of these cases.

So, what it means is that if I have to look at a rate 1 by 2 convolutional encoder, and if I

have reasonable amount of compute power, because nu, which is the constraint length

directly has a implication on the decoding complexity. If nu goes up, the states in the

trellis goes up exponentially, and then I have to keep track of more number of nodes,

while  we  do  Viterbi  decoding.  So,  we  choose  the  constraint  length  based  on  our

computational strength at the decoder. And if you see, at the cost of higher constraint

length, we have a better d free leading to more error correction.

(Refer Slide Time: 46:58)

Similarly, if you look at rate 1 by 3 encoder, we have again constraint lengths, and octal

generator. But, clearly there should be three entries now, because it is rate 1 by 3, so

there should be 3 G 1 D, G 2 D and G 3 D for the generators. And again you have got

this d free constraint here. So, rate goes down, and you have a higher d free here. And

these are the best in their class. So, they have been found by computer searches, and this

is the best d free that you can get with this.
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So, now we summarize what we have done in today’s class. We started off with the

matrix  description  of  convolutional  codes.  Then  we  looked  at  different  decoding

strategies, and we focused on the Viterbi decoding strategy for convolutional codes. Then

we looked at bounds on minimum distance, and also performance bounds. Finally, we

looked at some good known convolutional codes. We of course looked at some examples

on the way. 

So, with that we come to the end of this lecture.


