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Hello, and welcome to our next a module on Reed Solomon Codes. Let us start with a

brief outline of today’s talk. We would understand what we mean by Reed Solomon

Codes. Then, we will look at the encoding for Reed Solomon Codes.

(Refer Slide Time: 00:41)

We  will  realise  that  Reed  Solomon  Codes  are  very  very  amenable  to  hardware

implementation. We will look at how to do it efficiently using hardware, when we will

look at how they perform over real channels. And finally we will spend some time on

nested codes.



(Refer Slide Time: 01:04)

So, let us see what we have done so far. We have been looking at the general class of

BCH codes where we have started with the primitive polynomial, looked at the extension

fields, the notion of minimal polynomials, generating generator polynomials, and then

finally the BCH codes.

(Refer Slide Time: 01:20)

Now,  if  you  look  at  where  we  are  in  terms  of  Reed  Solomon  Codes,  we  clearly

understand that Reed Solomon codes are a subclass of BCH codes. We pointed out in the

earlier  lecture  that  the  umbrella  code  is  the  linear  block  code, cyclic  codes  form a



subclass of linear block codes, BCH are special subclass of cyclic codes, and finally, we

are going to study Reed Solomon Codes.

(Refer Slide Time: 01:56)

So, they are an important subset of non-binary BCH codes. We will realise shortly that

there is no point in forming binary Reed Solomon Codes. They will have no meaning.

We will look at effective non-binary BCH codes and the applications are at many places

including lot of storage devices using CDs, DVDs, barcode, they all use Reed Solomon

Codes because of it is burst error correcting capability. Wireless channels and mobile

communications  also employee Reed Solomon Codes.  So do satellite  communication

and deep space communications  including we have this  digital  TV and digital  video

broadcasting, DVB standards and  ADSL,  xDSL also use some form of Reed Solomon

Codes. So, they are present everywhere. There is very strong class of codes.



(Refer Slide Time: 02:52)

And we are going to understand how they work today.

So, what is very important is that the BCH codes with n equal to 1 is the category of

Reed Solomon Codes. That is the extension field G F q raise power m and G Fq, the sub

base field they are the same. So, the field maps on to itself. So, n which is the primitive

block length will be q raise power m minus 1  but  m happens to be 1, therefore it is q

minus  1. Now, we  have  already  understood  from  BCH  codes  that  the  minimal

polynomial of any element b in the same field G F q is a linear factor like this. So, the

symbol field the subfield and the error locator field the extension field are the same since

m is 1; all minimal polynomials are linear.

So, it is very easy to find the minimal polynomials for the Reed Solomon Codes and by

that same notion, the generator polynomial g of x is nothing but LCM of f 1 x, f 2 x, up

to f 2 t x. We have seen this general formulation for BCH codes but these are nothing but

just x minus alpha, x minus alpha squared, x minus alpha raise power 2 t minus 1, up to x

minus alpha 2 t. So, we really do not have to work hard to find the minimal polynomials,

neither do we have to find the LCM because none of them repeat and it is quickly, it

yields the g of x for Reed Solomon Codes.
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Now, we are talking about the t error correcting Reed Solomon Codes and the degree of

the generator polynomial we just saw will always be 2 raise power t from this previous

example. Please note: that there are 2 t linear factors, so  all the x is multiply. So, the

highest power will be x raise power 2 t. So, we also know that for any BCH codes, the

highest power of x, the degree of the polynomial g of x is n minus k. Therefore, n minus

k equals to 2 t. And therefore, we can in general also write g of x as starting with x minus

alpha raise power i, not necessarily an  x raise power alpha  raise power 1. It can  start

from anyone and go up to 2 t plus i. And this will be the generator polynomial in general

for and R S Code.
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Let us look at a quick example. We are interested in finding out a double error correcting

Reed Solomon Code. We need the block length. Let n be equal to 15 and we need the

Galva Field G F 16, needless to say the base field and extension field as the same. So, we

have G F 16 as the working Galva Field.

Now, since there is a double error correcting code, we need to specify t equal to 2. Now

we have to construct G F 16. So, we can use this a primitive polynomial to construct it

and g x can be written as a linear factors. Now t is 2; so, 2 t is 4. So, we have x minus

alpha, x x minus alpha squared  multiplied with the x minus alpha cubed multiplied by

the x minus alpha raise power 4 and this should yield to us the g of x. So, we can write it

out in terms of alpha and alpha powers. And therefore, this is x raise power 4 plus alpha

raise power 13 x cubed  plus alpha raise power 6 x squared  plus raise power 3 x plus

alpha raise power 10. This is the generator polynomial for a double error correcting Reed

Solomon Code.
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So, if you look at this generator polynomial, we make the following observation that this

encoding procedure will take 11 symbols; why? Because it is a 15 comma 11 code, 15

comma 11 see n minus k is a highest power of g of x, n minus 4 is, n minus k is 4 n was

specified to be 15 consequently, we obtained k is equal to 11. So, it takes an 11 symbols

and this  tantamounts  to 44 bits  because there are 4 bits  per symbol,  because we are

working over G F 16. So,  this encoder takes in 44 bits equivalently 11 symbols and

converts them into 15 symbols which is equal to 60 bits.

(Refer Slide Time: 08:01)



So, let us look at some of the properties of Reed Solomon Codes. First and foremost to

observe is that Reed Solomon Code are maximum distance separable codes. So, they are

really good codes. Let us understand this. So, we claim that Reed Solomon Code is an M

D S code and the minimum distance is n minus k plus 1. So, d star equals to n minus k

plus 1; how do we prove that? So, let us say the design distance of the Reed Solomon

Code, d is equal 2 t plus 1 because you know BCH codes are designer codes. We can

start with the design distance that we want to make it for.

So, d star should be greater than or equal to the design distance 2 t plus 1, but you know

that for Reed Solomon Code, the highest degree is 2 t for g of x which should be equal to

n minus k; thus by the general understanding of cyclic codes  and Reed Solomon Code

forms a subclass of cyclic codes. Consequently, d is equal to 2 t plus 1 should be equal to

n minus k plus 1 because 2 t is nothing but n minus k. But we have the singleton bound

which says that d star should be less than or equal to n minus k plus 1, that the singleton

bound. Here we have d star should be coming out to be greater than equal to n minus k

plus 1, here d star is necessarily should be equal to n minus k plus 1.

So, from these two conditions, the only possible solution is d star is equal to n minus k

plus 1. So, therefore, M D S code which requires d star to be n minus k plus 1 is the

requirement that is satisfied and Reed Solomon Codes are M D S codes. So, in general,

they are very good codes.

(Refer Slide Time: 10:05)



So, what does this maximum distance separable code mean? Intuitively it say the code

words  are  as  far  possible  as  possible  algebraically  in  the  code  space. That  is  the

maximum distance separable. You cannot separate them out any more. And this also

implies that there is some kind of a uniform word distribution in the code space. Now we

must observe one thing is that for a given minimum distance, in order to have a high

code rate, one must work with larger Galva Fields. We will soon see this when we go to

table of all good Reed Solomon Code and we will see how the code rate plays a role with

respect to the error correcting capability.

(Refer Slide Time: 10:57)

So, let us look at some typical Reed Solomon Code parameters. We have here q is equal

to 2 raise power m. So, this is the Galva Field over which we are working. So, we start

with non binary. So, G F 2 raise power 2, G F 2 raise power 3 and so and so forth. So,

you have taken up to 256 but we can keep going. We have n values. So, you specify the

n. Now, once you specify the n and the Galva Field over which we work, then what we

have to do is specify the number of errors you need to correct.

So,  next comes the specification of t. The moment you specify  n  and t for any Galva

Field, rest of the job is mechanical because just take the linear factors and multiply them

out. How many linear factors? 2 t; so in the first case you are now getting k equal to 1

and d star is equal to 3 and the code rate is 1 by 3 because you can see that k is equal to 1

and n is equal to 3. But you can go to higher and higher Galva Fields and for example,



the moment  you go to n is  equal  to  7 but you are in working over  G F 8, you get

immediately 1, 2 or even 3 error correcting code are possible because you need to have

those many linear factors. Subsequently, if you go to G F 16 you can have up to 7 error

correcting codes, 7 errors can be corrected in one code word.

But what we can do is make some basic observations. Let us separate the first of all the

different Galva Fields and then make an observation. So, the best in the class code rate is

if you can see, improve some 0.33 going up to 0.86 for Galva Field G F 16 up to 0.93, 32

and up to 256.96. So, we are going closer and closer to 1. We are getting very very

efficient  code; efficiency is simply because we are going to higher and higher Galva

Field. But within that same class, so if you are looking at G F 256, we can have 5, 15 or

even  50  error  correcting  codes  but  you  can  see  that  the  code  rate  would  drop

subsequently. But you have enough possibilities to have very efficient codes here.

Let us look at another thing, suppose, we are intruded only 5 errors been corrected per

code word. So, we have G F 16, 5, but the code rate is 0.33. You have got G F 32 again t

is 5, so, we have 0.67; again for 256 t error correcting code t equal to 5 but the efficiency

is 0.96. So, you can see a pattern, you can we have much munch fore. So, invariably, any

useful practical Reed Solomon Coded are above G F 256 or even higher in real life.

(Refer Slide Time: 14:32)

Let us look at an example of a Reed Solomon 255 comma 223, this is a popular Reed

Solomon Code with 8 bit symbols. So, each symbol is 1 byte and Galva Field is G F 255.



So, what it means is, it takes in 223 bytes of data, pads up with 32 parity bytes and then it

yields  256 byte long code word. So, n minus k is 32. So, a 2 t is  32 or t is 16. So, we

worked it out the  other way round and so, immediately by looking at R S 255 comma

223, I can just  looking at this n comma k, I  can predict  that t is equal to 16. So, it  can

correct 16 errors right but these are 16 symbol random errors. So, consequently, this code

can correct up to 16 bytes anywhere in the code word. So, this is pretty strong.

(Refer Slide Time: 15:42)

So, how strong really are Reed Solomon Codes? That is the question we need to ask

ourselves. So,  they are definitely extremely pronounced effect  on the efficiency of a

digital communication channel because of their strong error correcting capability. So, let

us take a very simple calculation back of the envelope calculation. Suppose we have

operation which is transmitting 1 million bytes per second ok. So, this is a data rate of a

high speed communication link. So,  approximately, we have about 4000 blocks of 255

bytes each per second ok. So,  this if you multiply them, it is roughly of the order of 1

million bytes per second. So, we have consequently 4000 blocks of 255 bytes. So, these

are code words. So, 4000 code words per second are being sent right.

Now, suppose,  1000 random short  errors  less  than  17 bits  in  length  per  second  are

injected into the channel, this is just an example. So, about 600 to 800 blocks per second

would be corrupted right. So, if this was not protected, then all the blocks are most of the

blocks would require retransmission. But let us suppose we want to apply Reed Solomon



Codes right, then what we do it for every 255 bytes, we pack them up and we get  this

255 byte long code words and so, we are padding up with 20 parity bytes. If you employ

this and look at the error correcting and detecting capability, we would see that reed

transmission will not be required for 800 years at the rate of 1 million bytes per second.

That is how strong it is, that is the part of the story. And this R S code will also make

errors in detection but the meantime between in correctly decoded blocks will be over 20

billion years.

So, in a  real practical world, this application of this 255 comma 235 code practically,

makes it a very very useful almost error communication, even I working at this high rate

of 1 million bytes per second and this efficiency is also not too bad. Of course, we can

improve the efficiency the code rate of this code by going to higher Galva Fields. So, the

point is that Reed Solomon Codes are very strong practical codes.

(Refer Slide Time: 18:30)

So, let us look at the encoder representations and we would like to encode the following

generator polynomial. So, this is the epsilon g nought, g 1, g 2, up to dot, dot, 2 t minus 1

up to this monic, x raise power 2 t.  So please note: we have arranged it. So, that the

highest power of x is to the right. This is a very easily implementable form in hardware.
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So, how does the hardware encoder for Reed Solomon look like? So, please note there is

a shift register, there is some coefficients which will pump in the values for g of x and

then you have two switches; switch 1 and switch 2. And the way to work is the first there

will be k clock cycles wherein this will be a systematic codes which consequently means

that the input data goes directly to the output.

So please, coming to this hardware. So, for every time, I clock in the input, it goes out.

So, the first k symbols are the same because it is systematic. The rest n minus k symbols,

I will close this switches and get the encoded version which is multiplied with g of x.
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So, if you look at the steps; switch 1 is closed in using the first k clock cycles to allow

the  shifting  of  the  message  right;  n  minus  k  shift  registers. Now, this  k  cycles  the

contents of the shift register and the feedback loop is continuously changing. This shows

the information symbols being shifted in as well as a addition prior to each elements of

the  shift  register. So,  what  has  happened  is  the  switch  1  is  closed  and  switch  2  is

connected here. So, by the time this data is being clocked, please note these value of the

shift registers are also continuously changed.

(Refer Slide Time: 20:49)



Now,  the  switch  2  is  down  for  the  first  k  cyclic  k  is clock  cycles  allowing  the

simultaneous transfer of the message symbol directly to the output register leading to the

systematic Reed Solomon Code. After the transfer of the k-th massage symbol to the

output register, switch 1 is opened and switch 2 is moved to the up position. So, what we

do is in after this k symbol, switch 2 is move to the up position because we would like to

read out what is present in this shift register  right  and this one is open. So, no more

further changes will be happening.

So,  what  is  residing the shift  register  elements  are  actually  the parity  symbols. This

symbol ready to be shifted out and appended to the information symbols already stored

in a buffer which will create the entire code word. So,  please note the very efficient

hardware implementation, first k clock cycles and second k clock cycle things happening

in parallel  right. So, during  the remaining n minus k clock cycles, we clear the parity

symbols contained in the shift register by moving them to the output register and we are

ready to encode the next code word. So, total number of clock cycles is equal to n and

the  contents  of  the  output  registers  are  actually  the  final  code  word  polynomial

corresponding to the k information symbols.

(Refer Slide Time: 22:23)
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So, let us look at a very simple example. This is a from a standard. IEEE to do dot 15 dot

4 a standard, it is an R S 63 comma 55 encoder. So, it can be very easily implemented in

on an G F a. So, here n minus k is 63 minus 55 equal to 8 is equal to 2 t consequently it

is a 4 symbol error correcting code. So, we multiply it out very easily, x minus alpha, x

minus alpha squared so and so forth up to x minus alpha raise power 2 t, 2 t happens to

be 8. So, we have these 8 linear factors multiply it out and immediately, you have the g

of x and the corresponding shift register portion of the hardware encoder is given here.

These are the coefficients of your g of x. So,  this  is a simple example, how we can

include in R, R S encoder this notion of the generator polynomial.
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Now, we come to the question of real channels. How do they perform over real channels?

So, word of caution, one may be tempted to believe that as we decrease the code rate of a

Reed Solomon Code, the B E R performance which improve monotonically because you

would believe that you have you have padding an extra bits.  They are overhead bits

hopefully, your B E R performance which improve.

However, in real world communication, the modulation scheme also plays a role with

respect to B E R. Thus both modulation and coding mechanisms have to be considered.

So,  we are now touching base with reality just because you have encoded a symbols

using an Reed Solomon Encoder, offer  that  matter any encoder is does not mean that

your bitter rate will keep going down. If you increase the redundancy, we must consider

the modulation part. So,  you have to know that one of the mechanisms improves the

error performance while the other would work to degrade it. So, modulation, we have to

high  modulation  scheme  would  cause  more  errors  to  happen  and  this  edition  of

additional parity bits reduces the B E R. So, they are working opposite to each other.

So, let us see, the improving mechanism is coding the greater the redundancy, the greater

will  be  the  error  correcting  capability  of  the  code  but  if  you  pack  in  too  many

redundancy,  you  have  to  switch  to  higher  modulation  schemes  which  will  make  it

counterproductive.
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So, let us make some observation that the degrading mechanism is the energy reduction

per  channel  symbol  compared  to  the  data  symbol. That  results  from  increased

redundancy and faster signalling in a real time communication system. So, your energy

per symbol also degrades. The reduce symbol energy causes demodulator to make errors

ok. So, just packing in additional bits, padding it with additional parity bits would overall

reduce the symbol per the energy symbol and causing it to have a poor performance.

So, there is a trade-off and somewhere,  there will  be an optimal  solution and before

which the second mechanism wins out and very low rate codes would again have poor

performance. So, there is a trade off mechanism happening.
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Let us look at this. So, if you look at this curve, on the x axis, we have the code rate ok,

the efficiency of the code and on the y axis, we have the energy per E b over N naught.

So, it is the normalised S N R and we looking at a typical error rate of 10 raise power

minus 5. So, what does it take to achieve this P b equal to 10 raise power minus 5 and if

you look at, we are looking at Reed Soloman 31 comma k code.

So, if you change the k, your code rate changes. So, by changing the different values of k

for this Reed Solomon 31 comma k, I  move along the x axis and we can eventually

compute E b over N naught and get plot  these performances  over  different  kinds of

channels. So,  we  have  a  Gaussian  channel,  we  have  a  Rician  channel,  we  have  a

Rayleigh channel. These 2 are fading channels, Rician channels when you have a direct

line of sight, Rayleigh channels when you do not have a direct line of sight from the

transmitter  to the receiver  and Gaussian channel  as you know is a standard  e w g n

channel.

So, if you just consider the Gaussian channel, the optimal  point where you have the

minimum E b over N naught because your performance be measured in terms of E b

right 10 raise power minus 5. So, all this curves are for the same performance level, but

here,  you required the minimum  E b over N naught  energy is  the  minimum S N R

requirement for this code rate. If you go beyond that again,  you have to pump in more

energy per symbol. So,  all  of them go through a minimum. So, this  is  an important



observation from a real world channel. I will agree we would have believed that as the

code rate goes down your performance would necessarily increase with the E b over N

naught.

(Refer Slide Time: 28:33)

Now, let us spend some time from the Energy Perspective. Today, energy is essential in

the design aspect of all communication systems, beat for the green telecom perspective,

increase  battery  life  or  better  performance,  energy  consumption  by  communication

system is  a  interesting  and important  design  constraint. If  you look at  situation  like

wireless sensor networks where we are necessarily limited by the energy available, we

must take it into consideration. If you consider the hardware implementation of the error

control coding block and the modulator block, the energy expended can be categorised as

follows.
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There is a computation energy for channel encoding and decoding. This is important. So

far,  we  just  believe  that  multiplying  over  various  Galva  Fields,  adding,  do  all  that

computation requires negligible energy, but that may not be true. You could possibly end

up spending a lot of energy just doing the computation; encoding and decoding. I mean,

it is possible that you are spending more energy encoding and decoding, than saving in

terms  of  getting  that  same  better  rate. Then  there  is  a  circuit  energy  required  for

modulation and demodulation.

And  then  you  have  the  signal  energy  the  radio  energy  which  is  actually  used  for

transmitting all  of those bits  including the redundant  bits. So,  at  short  distances, the

energy consumed in the transceiver circuitry and computation is comparable to the signal

energy; why? Because  the  required  radio  energy, the  actual  energy  for  the

electromagnetic radiation is very small and it becomes comparable to what we spend

inside the circuit in terms of the circuit energy and the computational energy.

So,  the  overall  design  objective  should  be  to  minimise  the  total  energy  including

computational  energy, circuit  energy  and  the  radio  energy. If  you  take  all  of  them

together and maximize the performance or minimise the total energy, then we have an

energy perspective to the whole thing.
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So, they have to make sure that for a particular coding and modulation configuration, we

have to optimize the energy consumption. So, the optimal pair of energy of coding and

modulation will also depend on the distance between the transmitter and receiver; why is

that; because  the  radio  energy depends  on  the  distance  between  the  transmitter  and

receiver.

(Refer Slide Time: 31:23)

So, let us look at this example. This is an example using a Reed Solomon 31 comma k

code. So, k can be changed and there by changing the error correcting capability. So, in



this graph, you have on the x axis the error correction capability t and the y axis, the total

energy per data bit in micro joules.

Now,  we  have  by  this  differentiates  that  the  different  components; what  are  the

components of energy; the computation energy, the circuit energy and the signal energy

which is the radio energy. So,  the darkest is the signal energy followed by the circuit

energy; the lightest is the computation energy. So, if you see that the total dark line is the

total energy; so the different components there and as we increase the error correcting

capability all of them.

(Refer Slide Time: 32:25)

Increase consequently leading to an increased total energy per data bit, in terms of micro

joules. Now, if you look at it from another perspective, suppose on this axis you have the

code word length, on this axis you have the error correcting capability and on the z axis

you have the total energy per data bit in terms of the micro joules. So, we are plotting the

total energy verses the code word length and the error correcting capability together. So,

you can get a feel that for example the optimal energy comes here for R S 127 comma

121.

So, it is not obvious just by looking at the n and k of a Reed Solomon Code, what is the

best  code  Reed  Solomon Code to  pick. It  is  not  just  the  error  correcting  capability

because in an earlier table, we had plotted with respect to the error correcting capability



t; that table is not itself sufficient if you are considering the energy perspective. You have

to look at the other aspects of the energy as well.

(Refer Slide Time: 33:44)

Now, we come to the notion of Nested Codes. So, one of the ways to achieve codes with

large block length is to nest codes. What do we mean by that? In this technique, we

combine a code of small alphabet size and a code of a larger alphabet size. So,  we are

combining two codes and nest them. We will have a notion of an inner code and an outer

code.

So, let a block of q-ary symbols be of the length small k, capital K. So, k K is a length of

a block. Now, these two k would correspond to the two different codes; one with a small

alphabet size and one with a large alphabet size. So, you can write this as k sub blocks,

capital K sub blocks of small k symbols making it k into capital K symbols all together.

So,  each sub block can be viewed as an element of a q raise power k  q-ary  alphabet

alright. So,  a sequence of capital  K such sub blocks can be further encoded with an

capital N comma capital K code over G Fq k, alright.

So, we with two step process; now, each of the N q raise power k q-ary symbols can be

viewed as a k q-ary symbols that can be encoded with an n comma k q-ary code. So,

therefore, you nesting it out. So, the nested code has two distinct levels of coding. So, it

is coding over coding.
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So, let us look at how we are trying to do it. At the centre of it is the q-ary channel, so,

you have a notion of the inner code. What does the inner encoder do? It takes n comma k

code over G Fq. So, it is q sorry k symbols and converts it into n symbols. And then, this

guy is encoded further using this n k code. So, together, this is the outer code and inner

code form the nested code. You have to reverse the process on the decoding side. So, you

have a inner decoder which decodes it small n comma small k code and then there is a

outer decoder which decodes capital N a comma capital K codes. So, you have a coding

over coding and this is also used in practice.

(Refer Slide Time: 36:38)



So, let us look at some examples. So, suppose, we have an inner code the R S 7 comma 3

double error correcting code over G F 8 and we have an outer code the Reed Solomon

511 comma 505 triple error correcting code over G F 8 raise power 3. So,  if you nest

these codes ok, so this is a small k 3 this is a capital K 505. So, small k into capital K

should be 1515. So, the nesting code the super code is 3577 comma 1515 code over G F

8. Now is it good; well this code can connect any random pattern of 11 errors and the

code word is 3577 symbol long. And what is the symbol? Symbol is an element of G F 8.

So, this is a simple example of nesting R S 7 comma 3 with R S 51 comma 505 leading

us to a big nested code of 3577 comma 1515 code over G F 8.

(Refer Slide Time: 38:02)

So, now let us summarise what we have done so  far. We introduced in this lecture the

concept of Reed Solomon Codes which is the subclass of BCH codes. We looked at the

encoding procedure. Specifically, we looked at the hardware implementation, it is very

easy to encode Reed Solomon Codes using shift registers and two switches. Then we

moved on to real channels and the performance over real channels for Reed Solomon

Codes. We  also  considered  the  importance  of  overall  energy  optimisation  while

designing the error control codes. And finally, we talked about nested codes.

With that we come to the end of this lecture.


