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Hello and welcome to our next lecture on Cyclic Codes. Let us start with a brief outline

of today’s talk.

(Refer Slide Time: 00:35)

We will revisit the concepts of cyclic codes followed by the generator polynomial and

the syndrome polynomial, then we will go on to study some of the examples of good

cyclic  codes the fire  code,  the Golay code,  CRC codes which are redundancy check

codes. And finally, we will see why cyclic codes are so popular because they are very

very so to say friendly in terms of circuit implementation, then we will talk about the

Meggitt decoder.



(Refer Slide Time: 01:09)

Let  us quickly start  with a quick recap we have already studied the basics of cyclic

codes;  the  generator  polynomial  syndrome  polynomial,  and  finally  the  matrix

representation because cyclic codes form a subclass of linear block codes.

(Refer Slide Time: 01:26)

So, very quickly a code C is cyclic when C is a linear code and any cyclic shift of a code

word also results in a valid cyclic code word. So, cyclic codes are a subclass of linear

block codes we have studied all of that.



(Refer Slide Time: 01:48)

We also saw that it is possible to have one generator polynomial g x which can generate

all the other code word polynomials before that we established a one to one link between

a polynomial and a code word. What we also observed is that g x is necessarily a factor

of x raise n minus 1; where n is the code block length.

(Refer Slide Time: 02:39)

So, these are the 3 properties that we actually observed about cyclic codes; that this g x is

a unique monic polynomial and the multiplication of g x by any arbitrary polynomial of

degree k minus 1 or less results in a valid code word. So we now look at how we use g of



x to generate a code word polynomial c of x, it is simply in the product of an information

polynomial  i  of  x  degree  k  minus  1  or  less  multiplied  with  g  of  x  the  generator

polynomial. We have already established a one to one correspondence between a vector

and a polynomial therefore an error vector can equivalently be represented by an error

polynomial e of x.

So, what we receive is nu x equal to c x plus e x where e x is the error polynomial.

(Refer Slide Time: 03:23)

We now go on to defining a syndrome polynomial s of x what we do is s of x is nothing

but the reminder that you get when you get this nu of x divided by g of x. And therefore,

we can easily see that it is nothing but the remainder what you get when you divide e of

x by g of x right.
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We also studied the matrix representation simply because a cyclic codes form a subclass

of a linear block codes, so we can see a very very symmetric kind of representation of g;

so what does what are the rows of g, each row of g represents a valid code word 

But here we have the first two as g 0 g 1 up to g r right and then followed by all 0’s; the

next row which is again a cyclic shift. Hence, another valid code word it is nothing but g

0 g 1 shifted up to g r and then remainder are added with 0’s so and so forth till k shifts.

And we have finally, the k-th row as g 0’s proceeding g 0 up to g r. So this is a very

interesting structure of a generator matrix for a cyclic code.
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So, if you want to find out the cyclic codes it is just a matter of factorising x raise power

n minus 1.

We quickly look at an example, if you are interested in finding out all possible ternary

codes what does that mean; a ternary code are codes with coefficients over GF 3 and the

block length is specified as 4 then we just factorise x raise power 4 minus 1 over GF 3

and we get this 3 factors, but please note any factor of x raise power n minus 1 is a valid

candidate for a generator polynomial. So clearly we have x minus 1 and of course, we

have to start with the trivial 1 as a factor 1 is a factor of all of those x raise power n

minus 1, then we have x minus 1 x plus 1 as written here x square plus 1 also given here.

But then the product of first 2 terms is also a valid factor and hence a valid generator

polynomial this gives us as x squared minus 1 as a valid generator polynomial; then we

take number 2 and number 3 multiply them out we get another and 1 and 3 and I can get

another one and multiply all of them together which leads to x raise power 4 minus 1

which is the factor of itself and hence these are. So we have actually to a total  of 8

factors  some  of  them  are  trivial,  but  they  are  all  technically  speaking  generator

polynomials  which  will  lead  ternary  codes  ternary  cyclic  codes  over  GF 3  of  block

length n is equal to 4.

Student: Excuse me sir.



Yes.

Student: Sir, x to the power 4 minus 1 it is defined over GF 3 so it should not be x to the

power 4 plus 3 or plus 2 it is modulo operation so how can I factorise it.

 So the question being asked is about the factorization of x raise to power 4 minus 1 over

GF 3.  So please  note  that  any x raise  power n minus 1 over  any field  can  first  be

expressed as x minus 1 into x raise to power n minus 1 plus x raise power n minus 2 plus

so and so forth up to x plus 1 this is an identity. So the first term is fixed, there is no

doubt about this one; this is true for any field.

Now, we go further and we see that we are working over GF 3, so we focus our attention

on this second term x cubed plus x square plus x plus 1. Now we try to see whether there

is a linear factor here or not and we substitute, so x plus 1 now 1 plus 2 is equal to 0 in

GF 3; so this x plus one is also equal to x minus 2 so the second term is x minus 2. So we

have to substitute 2 here at x and see whether you get a 0 and if you substitute 2 here you

can check out that yes x is equal to 2 is a factor here and consequently x plus 1 leads to

be one of the factors of x raise power 4 minus 1. Now we divide this x cubed plus x

square plus x plus 1 by x plus 1 and I can get this factor out, so we factorise the second

term into x plus 1 times x square plus 1. So it works out and you can expand this out to

get that this is the second term, so it is a straight forward factorization of x raise power 4

minus 1 over GF 3.

So, all of these 8 factors some are trivial some are not are capable of generating a cyclic

code each; please note we have use the fact that minus 1 is plus 2 because 1 plus 2 is

equal to 0 over GF 3.
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And we have listed out all of these 8 generator polynomials in this table this one contains

first 4 and then the next table will contain the other one. So if you look at g x is equal to

1 whether it is a trivial n is equal to k is equal to fourth, this is not really going to give

me any error correction and it is I for it consists of all the possible code all the possible

vectors here and so there is really no minimum distance really useful for us.

Now, if you look at g x equal to x minus 1 right; so we are looking at the first factor x

minus 1 here, so if you look at that then you can get the degree of g of x is n minus k n

minus k is 1 n is equal to 4 consequently k is equal to 3 and therefore, you can get a 3

cross 4 matrix as follows. Please note, since we are working over GF 3 you can either

right minus 1 or substitute by 2. So it this could as well be written as the first two as 2 1

0 0 0 2 1 0 0 0 2 1 as a valid generator matrix  over GF 3 and the elements  of the

generator matrix are coefficients taken from GF 3.

Similarly, x plus 1 is different and x squared plus 1 again you have n minus k is equal to

2 n is equal to 4 consequently k is equal to 2 and therefore, we have a parallel definition

for a g here.
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We look at the remainder 4 factors and we can write it out as follows: so if you see we

have been able to get 8 distinct generator polynomials and their equivalent generator

matrices from here.

(Refer Slide Time: 11:26)

Now, let us look at the notion of a parity check polynomial, please remember we had the

notion of parity check matrix for linear block codes we are working in a subclass and

therefore, it is a possible to find a parity check polynomials. So we start with a question

do we really have a parity check polynomial corresponding to a generator polynomial g



of x; so we already know that g of x is a factor of x raise power n minus 1, where n is the

block length. So we can always right x raise power n minus 1 as some polynomial h of x

into g of x, because g of x is a factor.

Now, we observe that g of x is a monic polynomial by definition consequently h of x has

to be monic because the left hand side is also monic monic remember means leading

coefficient is unity. Now degree of g of x is n minus k so little bit of observation will tell

you that the degree of h of x must be k, so that their product leads to x raise n as the

highest power of x.

(Refer Slide Time: 12:44)

So,  now what  we do is  we started  with a  cyclic  code  C in  R n  with  the  generator

polynomial g of x and we are denoting F x set of all possible polynomial is divided by

this f x which is the prime polynomial by R n right and here you have h x into g x is

equal to x raise power n minus 1, but in R n so when you take modulo x raise power n

minus 1 you get it as 0. So you have this c of x which is a valid code word polynomial

and if you multiply with h of x you get a x into g of x that is how you generate c of x

times h of x right in R n some modulo x raise power n minus 1, but here we will get this

equal to 0.

So, consequently h of x behaves like a parity check polynomial; what does it mean? Take

any received vector and if it is a valid code word polynomial then you multiply it with h

of x and take modulo x raise power n minus 1, if you get a 0 you can be rest assured that



it is a valid code word polynomial therefore, it behaves like a parity check polynomial.

So valid code words when multiplied with h of x gives a 0, whereas if it is not then you

have  some  errors;  error  detection  is  extremely  easy  with  this  we  will  explode  this

concept shortly.

(Refer Slide Time: 14:40)

Now, since we had defined a parity check polynomial we also have a parity check matrix

definition. So it is very easy to define a matrix once we have the parity check polynomial

please note the sequence of steps, we have x raise n minus 1 and x raise power n minus 1

can be factorized to give you h of x and g of x. And then h of x is the coefficient can

easily be written in this form. So if you consider little bit more graphically then you have

if you look at your slide so we have this x raise power n minus 1.
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And the first step is you factorise it into h of x into g of x ok. Now this leads to your

coefficients h 0 plus h 1 x plus h 2 x squared plus h k x k and this g itself would lead to

your  coefficients  some  g  0  plus  g  1  x  plus.  Now  immediately  you  can  take  this

coefficients and write out your h matrix as h k h k minus 1 so and so forth till h 0 0 0 0 0.

And similarly 0 h k h k minus 1 h 0 then you have this h k up to h 0. And similarly you

have a G matrix which you can write g 0 g one up to g n minus k 0 0 and then a right

shift. So the point is your starting point is x raise to power n minus 1 for which once you

know n and you know the Galois field you are ready to factorise; once you factorise you

get a great deal because you get g x and you get h of x 3.

Here, please remember h of x is also a factor so it is another generator polynomial and

for this g x serves as the parity check polynomial, so it is kind of a dual here and once

you get these coefficients you can immediately write out h and g. So it is a very easy way

to get a generator matrix and parity check matrix in the case of a cyclic code and that is

why we spend enough time learning how to factorise over any arbitrary Galois field so

we come back to our slides.
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And now having developed this notion of cyclic codes let us look at some examples here,

we start off with a very very interesting example of a fire code. Now one of the very

good selling features of cyclic course codes is the burst error correction; so a fire code is

a cyclic burst error correcting code over GF q with the generator polynomial given as g x

is equal to x raise power 2 t minus 1 minus 1 p x. What is a p x; where p x is a prime

polynomial over GF q whose degree m is not smaller than t and p x does not divide x

raise power 2 t minus 1 minus 1 so this is relative prime to p of x.

The block length of fire code is the smallest integer n such that g x divides x raise power

n minus 1 so you have to construct this fire code this is a mechanism how to construct it.

So what is the beauty is a fire code can correct all burst errors of length t or length t or

less. So a burst of error is of length t  means that the first and the t-th error bits are

definitely in error and the remainder may or may not be in error. So if you again look at a

description here and we now define burst errors.
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Suppose I have a bit stream a long enough bit stream, we take a sequence of bits and if

this is t then this is a burst of error if the first one and the last one are definitely in errors

and intermediate bits may or may not be in error, but this is defined as a burst error of

length t. So all of them can be in error so your code should be able to correct that or

detect that if it is designed to do so or maybe the alternate bits are in error, but the stretch

is over t and necessarily the first one and the last one must be in error; this is how we

define a burst of length t.

(Refer Slide Time: 21:47)



So we come back towards slides and we continue with our fire code with t is equal to 3 is

equal to m and a prime polynomial over GF 2 of degree 3 can be written as p x is equal

to x cube plus x plus 1 you can check whether it is a prime polynomial you substitute x

equal to 1 you do not get a 0 you substitute x is equal to 0 you do not get a 0. So there no

linear factors of the type x and x minus 1 and then you can verify that this is indeed a

prime polynomial.

Now, in our construction in the previous one x raise power 2 t minus 1 minus 1 we have

already figured out what is this p x is p x is x cubed plus x plus 1 now 2 t minus 1 right.

So we would like to correct burst up to length 3, so 3 to the 6 minus 1 5. So x is for 5

minus 1 into p of x is written as this so this is immediately are generator polynomial for

the given fire code. Now, this generator polynomial should be able to correct burst up to

length 3; g of x has degree n minus k is equal to 8 the block length is a smallest integer n

such that g of x divides x raise power n minus 1.

Because it needs to be a cyclic code, so we try make a few attempts and we get n is equal

to 35. So n minus k is 8 n is 35 consequently k is 27; so we find our fire code of size 35

comma 27 with the generator polynomial given as follows. Now you can check that this

code rate for this fire code is 0.77 and it is more efficient than another cyclic code which

has a code rate of 0.6 for examples. So fire codes are pretty efficient and as we increase t

their efficiency tends to 1. So we will get better and better fire code in terms of the code

rate if you have t which is the number of burst errors it can correct larger.
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Now, we  look  at  another  example  the  Golay  code,  we  start  up  with  refreshing  our

definition of perfect codes if you recall for perfect codes we have this condition so we

wanted the equality for the hamming bond n is the block length q is the Galois field GF q

and n is block length t is a number of errors it can correct. So if you try out with different

integer values of m n t and q. And since we are looking at binary q is equal to 2 we

would get n equal to 23, k is equal to 12, m is equal to 2 raise power 12 and t is equal to

3 satisfying this condition. So maybe there is a possibility that n is equal to 23, k is equal

to 12 so 23 comma 12 code exists. So Golay was to was the first one to find this and 23

comma 12 perfect code exists and this is the called the binary Golay code.

Now, we will explode this perfect code as a cyclic code so the first step is the moment I

get a hang on n n is equal to 23 I quickly write x raise power 23 minus 1 and try to

factorise it, where over GF 2 because it is a binary code.
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So, let us try to factorise this x raise power 23 minus 1 and with a little bit of effort you

can  write  out  these  factors.  So  immediately  we  have  this  as  a  possible  generator

polynomial  and  other  possible  generator  polynomial  yet  another  possible  generator

polynomial, while this one is a trivial. And these two are of interest. So n minus k here is

11 so if you go back we should be able to get n minus k as 11 here so indeed we have

hope to get a perfect cyclic code which is the binary Golay code.

So, please note that for a non-trivial scenarios g 1 x is the first polynomial and g 2 x is a

second polynomial  both  are  the  generator  polynomials  of  the  binary  Golay  code  23

comma 12.
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So, we start with this anyone g of x, so degree is 11 k is 12 so we have found out a cyclic

code which is also a perfect cyclic code, right.

Now, in  order  to  prove that  it  is  a  perfect  code  well  we should  also  show that  the

minimum distance is 7, why because t if you see in our previous slide we wanted t equal

to 3 it should be able to correct 3 errors and we have got n 23, k 12, but d needs to be the

t needs to be shown equal to 3. So one way is to write out the parity check matrix and

show that no 6 columns are linearly independent for this you have to employ a simple

computer program and you can prove that the code rate is 0.52 and this is an indeed

triple error correcting code.

But this relatively small block length of this perfect code practically makes it not so

practical for a real life operations code rate is also pretty poor. So even though it is a

perfect code rate wire it is almost 50 percent of the bits are over head bits.
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We also have a ternary Golay code so if you have x raise power 11 minus 1 and you try

to factorise you get these two factors n minus k is 5 and k gives k equal to 6. So we have

an  11 comma  6  ternary  cyclic  code  which  is  the  ternary  Golay  code  the  minimum

distance of this code is 5.

(Refer Slide Time: 29:15)

Now, let us look at another class of codes which are called the cyclic redundancy check

codes also be if you called as CRC codes; very practical very useful touches our lives on

a day to day basis ok. This employees the property that cyclic codes can detect errors



very  easily,  so  these  are  check  codes  these  detect  they  are  not  in  the  business  of

correcting the codes ok. So we can have a k bit block of bits and the n comma k CRC

encoder generates n minus k bit long frame check sequence.

So, you have the first k bits as the information bits and then n minus k the over head bits

are the frame check sequence bits.

(Refer Slide Time: 30:16)

And please note as we have discussed before what we received in this case suppose V of

x  is  nothing but  what  you sent  T of  x  plus  an  error  E of  x  so  E of  x  is  the  error

polynomial and the way to find out is we divide with using the generator polynomial p of

x, but what we get is t of x is perfectly divisible by P of x we have done this before

leading us to have only E of x by P of x.

Now we can design a generator polynomial smartly that it catches lot of errors. In fact, if

the even number of terms in P of x then odd number of terms in E of x can be caught and

so and so forth. So the polynomial P of x is called the generator polynomial for the CRC

codes and CRC codes are also generally known as polynomial codes.
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.

Some of the popular CRC codes have entered into international standards and here we

have listed 4 popular CRC codes both CRC 16 and CRC CCITT are popular codes for 8

bit characters and.

For example 16 bit FCS can catch all single and double errors and all errors with odd

number of bits all burst errors of length 16 or less. So they are very very effective and

catching  burst  errors  and so and so forth I  mean this  is  just  the properties  of  these

polynomials how they divide and what error patterns they can catch. CRC 32 is a part of

the STS the synchronous transmission standards. So the point is these CRC code which

are the subclass of cyclic codes are very practical and very powerful in correcting burst

errors well they can detect definitely and some of them can correct burst errors. 
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Now we come to a very very important selling future of cyclic code which is that they

are very amenable to circuit implementation.

So, shift registers can be used very easily to encode and decode cyclic codes ok. So what

is  encoding  and  decoding  of  cyclic  codes  well  we  already  have  a  polynomial

representation all we have to know is how to represent polynomials and put them in shift

registers and then how do we multiply which actually comes from the FIR circuit theory.

So the shift property of the shift registers can easily convert one code word into next

simply because shifting right shift cyclic shift of a valid code word is another valid code

word. So cyclic shifts are very very easily implemented in circuits and therefore, cyclic

codes  are  very  comfortably  represented  using  shift  registers.  So  we  will  focus  and

implementations for codes over GF 2 raise power m so you can have binary and even

non binary representations.
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So,  beside  the  shift  register  part  we  sometimes  require  for  a  non  binary  case  a

multiplication by a scalar, addition and multiply. So addition is  nothing but a binary

addition and multiplication is nothing but an and gate so circuit implementation is really

the key to fast, cheap, efficient implementation of large cyclic codes.

(Refer Slide Time: 34:11)

So, here are some of the tools that we use the circuit hardware tools, so you have the n

stage  shift  register,  we  have  a  scalar  multiplier,  we  have  a  simple  adder  and  a



multiplication of 2 bits for example, so we have all of these vary fast, cheap hardware

available in today’s technology and therefore, cyclic codes are exceedingly important.
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So, we take an example of how GF 2 can be used to represent GF 2 raise power m for

example, if you have to represent GF 8 so cyclic code non binary cyclic code over GF 8

then the elements are simply represented and in their binary form. So these are the 8

elements of GF 8, but they are easily represented in binary.

(Refer Slide Time: 35:13)



So, for example, if you have to represent 1 0 1 which is nothing but a polynomial x

squared plus 1 why because coefficients of x square is 1 coefficient of x is 0 missing so x

is missing and coefficient of x is for 0 1 is here. So if I substitute 1 0 1 here then this

represent  represents  x  square  plus  1,  so  I  can  represent  any  polynomial  using  the

coefficients in a shift register.

(Refer Slide Time: 35:50)

Now, the other thing that is required in circuit  implementation of cyclic  codes is the

product of 2 polynomials. So far we are very comfortable representing a polynomial as a

vector and vector as a polynomial there is a one to one correspondence. Now suppose we

want  to  multiply  2  polynomials  using  circuits  how  do  we  do  it;  so  my  candidate

polynomials are a x squared plus b x plus c multiplied by for example, x squared plus x

and then we have to take it modulo some p of x so you can multiply it out and you can

get these coefficients.

And if you simplify it you can write it as follows and if I would implement this using a

circuit.  Well,  so I will take a b and c as coefficients here and I can always make an

observation here and say ok. Let us say the first this should be my answer how do I work

it the answer should have a coefficient for x squared, a coefficient for x and a coefficient

for x raise power 0. So let us first focus on the coefficient for x squared, so it should be a

plus b plus c, so this arrow should have a plus b plus c.



So, these are just standard hardware implementation, so this shift register tap from here I

tap  from here  and  I  tap  from here  gives  the  first  coefficient.  Now this  one  should

correspond to the coefficient  for x,  but  they should be b plus c  that  is  very easy to

implement I take a tap from b c put an adder and put it and put an arrow here and same

for a plus b; so I have an a plus b here. So this simple circuit in an instant multiplies this

polynomial. So it shows how easy and efficient it is to carry out, but we must note that

our understanding is that this is the coefficient for x square the coefficient for x this is the

coefficient for x raise power 0 same with here.

(Refer Slide Time: 38:16)

So,  if  you  have  to  multiply  2  polynomials  in  general  one  of  them  is  a  generator

polynomial and other one is the information polynomial to get the code word polynomial

and now we are really in business because this is exactly how circuit implementation for

cyclic codes must work. So b of x is nothing but a x into g of x and you multiply it out

and you get this coefficients and then you can quickly work together to put any a of x

comes in we loaded into your shift register.

So, this is the incoming vector which is represented as a polynomial or the vectors the

elements  are  loaded  here,  I  already  have  the  coefficients  quickly  they  multiply  and

instantaneously you get a b x at the speed at which the circuit works. So you load in your

information word you get the symbol out so it is really a real time operation.
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The other part of good cyclic code is the division part we need to divide to carry out this

checks CRC does that all other cyclic code error detection routinely involves dividing by

g of  x  or  some polynomial.  So division  process  can  also  be expressed  as  a  pair  of

recursive  equations,  so  let  Q  x  and  R  x  be  the  quotient  polynomial  and  remainder

polynomial of the r-th recursion step with the initial condition that Q x is 0 and R x is a

x.

So, you can write out these 2 recursive steps by dividing with respect to g of x and by

forming this recursions you can always get the answer. So the circuit implementation of

this division by g of x is written again like this again very very easy to implement in

hardware.
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So, if you are suppose given the task to find out a shift register based implementation by

dividing by this  specific  generator polynomial,  then here is the circuit  which will do

division by g of x.
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We finally, come to the flowchart of how we do the decoding using a Meggitt decoder

for cyclic code. So first what you do is take the received word and store it in a buffer,

buffer of what; it is nothing but shift register. Now we have a very efficient divide by g

of x operation, so we subjected to the divide by g of x operation then the remainder in the



shift  register  is  compared  with  all  the  possible  pre  computed  syndromes  what  is

remainder in the shift register is what to divide and get after division by g of x.

If it is all 0’s then you have correctly decoded and it means that no error had happened,

but if it is non zero then you have to compare, once again comparison in hardware is

extremely easy so you have got very fast comparators available; so this is again very

very  easy  and  efficient  to  do  it  in  hardware.  Now  once  you  compare  an  identifier

syndrome it corresponds to a correctable error pattern, so we have a look up table again

in hardware. So once the syndrome match it found the error is subtracted out from the

received word all in hardware and then the corrected version of the received word is

passed on to the next stage for processing.
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So if you want to represent the Meggitt decoder by a flowchart you have a received word

first step is divide by g of x operation we have looked at some examples, you compare it

with all the test syndromes and you get an error word hopefully it is in your list and what

you do is take that error word here and then subtract out the error word and you get the

corrected word. So this each and every step here is easily durable in hardware. Therefore,

cyclic codes are so attractive because they are very easily implemented in hardware.
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With that we come to the end of this lecture. Let us summarise what we have done; so we

started off with the generator polynomial and with that we also found out the syndrome

polynomial.  Then  we looked at  some examples  of  fire  code  very  strong burst  error

correcting code, we looked at the perfect code the Golay binary code, the Golay ternary

code, then we looked at cyclic redundancy check CRC codes very efficient in detecting

errors, burst errors. And then finally, we looked at how to implement the cyclic codes

using circuits, we also look at the flowchart of the Meggitt decoder.

With that we come to an end of this lecture.


