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Hello and welcome to our next module on cyclic codes. Let us start with a quick outline

for today’s lecture. We will start looking at the details of cyclic codes how to construct

them,  how  to  look  at  their  properties. We  will  introduce  the  notion  of  generator

polynomial, the syndrome polynomial. And finally move on to the matrix representation.

Please recall that cyclic codes are a subclass of the linear block codes.
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But first let us have a very quick recap as to what you have studied so far. We have

talked about rings and fields, and polynomials, and how these mathematical tools help us

construct cyclic codes.

(Refer Slide Time: 01:11)

We have seen what is a cyclic code. Let us redefine it for clarity. A code C is cyclic, if

number one C is a linear code; and any cyclic shift of a valid codeword all the results in

another valid code word. So, if a 0 a 1 dot dot up to n minus 1 is a valid codeword then a



cyclic shift means a n minus 1 comes in the front and then each one get shifted by 1 to

the right and that is also valid codeword.

So, if you see the first point says that if this is a linear block code then cyclic code is a

subclass.  All  that  we have studied regarding linear  block codes holds true for cyclic

codes, but we have introduced an additional algebraic constraint that is the linear cyclic

shift of any valid codeword is another valid codeword consequently this is a subclass and

it is a much stronger code.

(Refer Slide Time: 02:16)

We have looked at some examples in the last lecture. And here is a quick-one we have a

valid cyclic code here with 4 codewords. And if you can quickly verify, it is a linear

block code the all 0 codeword is a valid codeword then sum of any two codeword gives

another valid codeword. And more importantly any cyclic shift also results in a valid

codeword.
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We then introduced the notion of polynomials, and why they are important. Polynomials

in general are represented as follows f x is equal to f 0 plus f 1 x plus so and so forth till f

m x raise power m, where f m is called the leading coefficient, and m is called the degree

of  the  polynomial. If  f  m  which  is  the  leading  coefficient  is  1,  then  it  is  a  monic

polynomial.

(Refer Slide Time: 03:10)

We  also  looked  at  the  division  algorithm,  where  you  find  out  that  for  a  pair  of

polynomials a x and b x where b x is not equal to 0 in F x. F x is a set of polynomials,



then you can have a unique pair of polynomials  q x and r x, which are nothing but the

quotient polynomial and the remainder polynomial, such that a x is equal to q x times b x

plus r x,  where  degree of this reminder polynomial must necessarily be less than the

divisor b of x. So, we did this example and sometimes we also called the remainder as

the residue.

And  two  important  properties  that  we  will  use  frequently  are  that  the  sum  of  two

polynomials the residue of it is the sum of the residues. And similarly we have a property

for  the  product  of  two  polynomials. We have  seen  that  polynomials  can  be  added,

subtracted, multiplied and divided. And it is seen that the coefficients follow the galva

field over which the arithmetic is carried out. So,  please note that  a  x, b x and f x are

defined  over  some  galva  field,  and  it  is  important  because  multiplication,  addition,

division all will change because if the galva field changes the arithmetic changes.

(Refer Slide Time: 04:33)

We then introduce the notion of irreducible,  which is  came to whether  it  is  a prime

polynomial, whether you can factorise it or not. So we found out that if a polynomial f of

x is contained in the set of polynomials capital F of x, F of x is said to be reducible if it

can be written as a product of two polynomials right. So you can factorise f of x but this

is a product follows the rule of the galva field over which we carry out the multiplication.

So, it is possible that sum f of x is reducible in some galva field but irreducible in another



galva  field. And if  the  irreducible  polynomial  also  happens  to  be  monic  that  is  the

leading coefficient is one, it is also called as a prime polynomial.

(Refer Slide Time: 05:20)

We also introduced the notion of a field where the ring capital F of x by f of x is a field if

and only if f of x is a prime polynomial in F x. So, we look at this example p of x it is a

prime polynomial, and we can construct a field G F 8 with 8 elements using this p x.

Please note that when you carry out capital F of x divided by a small f of x.  And in this

case we are putting at p of x then the residues all the reminders have a degree 2 or less.

So, if the degrees are 2 or less, then we have 8 distinct polynomials here.
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We made some observations. First and foremost is that if you have x n and you take it

mod x n minus 1, it equals to 1. So, we will use this term modulo x n minus 1 that is this

is a polynomial, and we will divide our products, editions etcetera by x raise power n

minus 1, and whatever is the remainder is what we will deal with. So, x n, x raise power

n when you do module x n minus 1, it is unity.

Please  note  we  also  observed  that  a  codeword  can  uniquely  be  represented  by

polynomials.  This is how we connect our polynomials to codewords. For example,  if

your codeword is c 1, c 2, c c up to c n and you can write it as c x is c 0 plus c 1 x and so

and so forth. So, the codeword can be c 0, c 1, c 2 up to c n x.

For  example,  c  is  equal  to  207735 this  is  my  codeword.  And  I  have  an  equivalent

polynomial representation as 2 plus 7 x squared plus 7 x cube so and so forth. So,  2

corresponds to the first coefficient, 0 corresponds to the missing 0 into x so that we do

not write, and then 7 x square to corresponds to the third, so in a way the degree of the x

the power of x actually represents the location of the coefficient. And these coefficients

can belong to the galva field under consideration here it is G F 8.
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So, why are we looking at polynomials in the context of cyclic codes. First observation is

if  you multiply  any  polynomial  by  x,  it  tantamounts  to  the  cyclic  right-shift  of  the

codeword elements, because you simply raise the power of x by 1 for each one of those x

s. So, if you had c x as c 0, c 1 x and so and so forth, then x into c of x is nothing but c 0

x plus c 1 x square plus c 2 x square each x has gone up. But now your x is for n is the

highest power,  but  my c x if it were to represent a codeword should have the highest

power x raise power n minus 1. Because the n element from c 0 up to c n minus 1.

So, in order to put this last coefficient in the front to make it a cyclic code, we have to

take modulo x n minus 1. So, just the operation of taking this polynomial, and if I divide

it by x raise power n minus 1, I simply get this c n minus 1 in the front and my cyclic

shift operation is complete. So, there are still n elements in my codeword, but they have

all  undergone  a  cyclic  shift. So,  please  note  we  have  used  this  property. So,  any

polynomial, modulo x n minus 1 can be reduced simply by replacing x is for n by 1 x

was the n plus 1 by x and so and so forth.
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So, we have redefined cyclic codes, cyclic codes in R n is a cyclic code if and only if C

satisfies the condition that this collection of polynomials capital F of x divided by f x is

in R m. So,  if a x and b x are two polynomials belonging to C. So  suddenly we are

talking about polynomials as element of a code, no problem because polynomials have a

one-to-one correspondence with codewords. 

So, if 2 codewords belong to C, I can equivalently state that a x  which corresponds to

codeword 1, and b x which corresponds to codeword 2, they both belong to C. And

consequently sum of two any codewords here in this case codeword polynomials is also

in C. Similarly if I take a x and take any other polynomial r x, and then I am multiply

them then also we get it as a valid codeword.



(Refer Slide Time: 10:50)

We then looked at how to generate cyclic codes. And the steps are given as follows take

any polynomial f of x in R n. And obtain a set of polynomials by multiplying f x by all

possible polynomials in R n. The set of polynomials obtained above correspond to the set

of codewords. So, basically we have some kind of a notion of a generator polynomial;

and the block length will be n.

(Refer Slide Time: 11:26)

So, let us now formally introduce the generator polynomial. Let C be an n comma k non

zero cyclic code in R n. Then there exists a unique monic, this is important unique monic



polynomial  g of x of the smallest  degree C  that is there could be many polynomials

which can do the job. But we are talking about the one with the smallest degree and that

we defined as g of x.

The  cyclic  code  C consists  of  all  multiples  of  the  generator  polynomial  g  of  x  the

polynomial of degree k minus 1 or less. And most importantly g of x is a factor of x raise

n minus 1. Now, this is probably the most important observation here, if we state that g

of x is a factor of x is n minus 1. That means, we have a now recipe to create all possible

cyclic codes. All we have to do is factorise  x raise power n minus 1 in the appropriate

galva field, and each factor is potentially the generator polynomial of a cyclic code. So,

all we have to do  is learn to factorise  x raise power n minus 1 and we have the valid

generator polynomials.

So, let us look at this 1, 2, 3 properties. And we will try to see whether we can prove

them quickly  and will  look at  it  intuitively. So  number  1,  this  a  unique  and monic

polynomial g of x of smallest degree, number 2 that if a cyclic code C consists of all

multiples of the generator polynomial g of x by polynomials of degree k minus 1 or less.

So if I multiply g of x with any arbitrary polynomial of degree k minus 1, then I get a

valid codeword polynomial. And finally, the most important one g of x is a factor of x

raised by n minus 1. So let us look at 1, 2, 3 individually.

(Refer Slide Time: 13:45)



So, number 1 says that there exists a unique monic polynomial  g of x of the smallest

degree C. So, to prove or disprove this, we have to see that suppose both g x and h x are

monic polynomials in C of the smallest degree, fine, I mean either this is true or g of x

and h of x have been able to find one more candidate,  and then it  will no longer be

unique.

Then g x minus h x is also in C. Why, because g x is a valid polynomial you multiply it

with 1, it should give itself and any multiplication with a polynomial of g x should give

you a valid codeword polynomial. So, g of x valid and h of x is another candidate, so the

difference of these two should also be a valid codeword polynomial. Therefore, we say

that g x minus h of x is also in C. But  please note both of them are monic and if you

subtract them then the degree goes down. And therefore, we violate the smallest degree

constraint. So, this gives a contradiction.

(Refer Slide Time: 14:56)

We now look at number point number 2, the cyclic code C consists of all multiples of the

generator polynomial g of x the polynomials of degree k minus 1 or less. So, let us say a

of x is an element of C all right, so it is a valid codeword polynomial. Then we know that

a of x can be always written as sum q of x quotient polynomial times x g of x plus r of x,

with degree of r of x should be necessarily be less than g of x. So we can always right it

like this from the division algorithm.



But if you flip it around and put r x then r x is nothing but a x minus q x times g x right.

But this r x must be an element of C must be a valid codeword polynomial. Why because

a x we started off with a valid g of x and q of x right,  so they are also valid codeword

polynomials. With a degree of g of x must be minimum amongst all codewords right, but

this is only possible if r x is 0. And consequently a x must be equal to some polynomial q

of x into g of x. So that means multiplying g of x by some arbitrary polynomial q of x

should be equal to a of x the valid codeword polynomial.

So, for a code defined over G F q, there are q raised k distinct codewords. And these

codeword correspond to multiplying this generator polynomial g of x with the q raised

for k distinct polynomials, q of x, where degree of q of x is less than k minus 1. So, in

this way we show that I can generate the entire code space by simply multiplying my g

of x with any arbitrary polynomial of degree k minus 1 or less.

(Refer Slide Time: 17:07)

We now look at the third  property  g of x is a factor of  x n minus 1. So,  by division

algorithm, x n minus 1 should be written as sum q of x times g of x plus r of x, where the

degree of this reminder polynomial should be less than the degree of g of x right. But

you can again take it on the other side and r x can be written as x minus 1 minus q of x g

of x again modulo x raised for n minus 1. But if you take it comes out to be minus q x g

x. But please note q of x is a  polynomial  minus q of x is  also a polynomial,  so if you



multiply it with g of x, we also end up getting another valid codeword polynomial, hence

it is an element of C.

But then we have quickly generated a codeword r of x whose degree is less than that of g

of x by this right. And this violates the minimality of degree of g of x which we showed

earlier unless r of x is 0, which means if you put r of x is 0 here, then x raised to n minus

1 can always be written as the product of g of x times some q of x consequently g of x

must necessarily be a factor of x raised n minus 1.

And therefore, it is you factorise x raised n minus 1 and you get q x times g of x, g of x is

definitely a generator polynomial of a cyclic code and so it is q of x. Because it itself is a

factor of x raised n minus 1. So, we tried for one and we got the other one free.

(Refer Slide Time: 19:01)

So, a cyclic code C may contain polynomials other than the generator polynomial which

can also generate  C.  So,  but  the  polynomial  with the  minimum degree  is  called  the

generator polynomial. This we had mentioned earlier. And the degree of g of x is n minus

k. And therefore, when you multiply with another polynomial of degree k minus 1, you

get up a resultant polynomial with a degree n minus 1. So, if you look at it, we explicitly

we can write it.
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So,  we  say  that  any  codeword  polynomial  C  of  x  is  nothing  but  some  arbitrary

polynomial a of x times g of x. But please note that this is a codeword polynomial, so its

degree is n minus 1. Because the degree n minus 1 states that I have got C 0 plus plus C

1 x plus C 2 x squared plus so and so forth to C n minus 1 x raised n minus 1. So, I have

from here C 0, C 1, C 2 up to C n minus 1. So, I have a linear block code of block length

n. So, degree should be n minus 1.

Now, if you look at this polynomial the degree here should be k minus 1, we just now

saw. And here in order to ensure that the degree here is n minus 1, here the degree should

be n minus k. Therefore, the product of a polynomial with degree k minus 1 and degree n

minus k, so this would add up and you will get a polynomial of degree n minus 1. So,

consequently we should be able to write in general g 0 plus g 1 x plus g 2 x square and so

and so forth till g n minus k x n minus k. So, we come back towards slides and we note

that degree of g of x is n minus k.
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Let us do a quick example to understand what we did so far. Suppose we have to find all

binary codes of block length 3. So, block length 3 means n is equal to 3. So, we have to

factorise x raise power n minus 1 where n is equal to 3 and which galva field should we

consider binary code means G F 2. So, two things are important, the block length must

be fixed, otherwise we do not to what x raised n what does n mean. And once we fact we

have to factorise we definitely must know where do we do our math, So we need to

know the galva field. So, given the block length and the galva field we are ready to go.

So, we have to factorise x cubed minus 1 over G F 2.

So, if you factorise it, you get these 3 generator polynomials. These are the 3 factors that

you can write out. Because you can write x cube minus 1 is equal to x cube plus 1 simply

because over G F 2 1 plus 1 is 0, so 1 is equal to minus 1 all minuses minus signs can be

replaced by plus signs. So, x cubed plus 1 is equal to x plus 1 x square plus x plus 1. So,

it is actually 1 is always a factor x plus 1 x square plus x plus 1. So, I have got 1. 

Well, 1 is also a valid generator polynomial because it is a factor of x raised n minus 1, 1

is a factor everything. But it gives a trivial code it gives really 0 0 0 0 0 1 and so and so

forth. If you must be appears to you can verify that this is a linear code, and it is also a

cyclic code any cyclic shift is a valid code. But this is really a trivial example it has no

interest in properties.



But  then  you  look  at  factor  x  minus  1,  this  1  leads  to  the  code  0.  So,  one  of  the

polynomials if you look at x minus 1 it will give you these four codes polynomial code

words.  And if  you have x square plus x plus 1,  you have got  this  two, so this  is  a

reputation code. So, x square plus x plus 1 is a generator polynomial for a reputation

code of block 3. Now x cube plus 1 it itself is a factor. And so, this again gives a useless

code.

(Refer Slide Time: 24:40)

So, let us see how we use g of x. So, as we have mentioned any codeword polynomial

can be generated using an information polynomial i of x and a g of x. Now, since any

vector  can  be  effectively  represented  as  a  polynomial  the  error  vector  can  also  be

represented as an error polynomial. So, when we send our valid codeword through an

error prone channel, we receive sometimes a received vector which is not the same as c

of x. In fact, we receive v of x as c of x plus an error vector e of x. So, any sequence of

bit is which can be represented as an error sequence can be represented also as an error

polynomial.
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Now, we introduce the syndrome polynomial. Please note syndrome decoding was very

much a part of linear block codes and here we have just the parallel definition. So, we

define the syndrome polynomial s of x as a remainder of nu x under the division by g of

x. What does it mean, if you have s of x as a syndrome polynomial, you take the received

vector nu of x, and take divide by g of x whatever is the remainder is the syndrome

polynomial.

And if you can write it explicitly, it is R g of x which is you taking the remainder with

respect to g of x, and what is v of x, you send the valid codeword polynomial c of x plus

e of x. But it can be represented using this properties of residues as R g c of x plus R g e

of x. But we know that whenever we divide a valid codeword polynomial by a generated

polynomial you get 0 ok. It is a perfect multiple that is how you generate a c of x. So,

this first term goes out of the window and what you get is R g of x e of x.
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So, let us look at a quick example, consider a generator polynomial g of x is equal to x

square plus 1 for a ternary cyclic code over G F 3. So, first thing that we need to verify is

whether this g of x is indeed a factor of x raise power n minus 1 over G F 3. But for that I

need to know the block length n is equal to 4. So, first thing we need to do is can we

actually factorise x raised to a 4 minus 1 over G F 3. And we should be able to get g of x

is equal to x square plus 1 as one of the valid factors alright.

So, well it it really is quite obvious because I can take x raise power 4 minus 1 equal to x

square plus 1 into x squared minus 1. So, clearly x raise to a 2 plus 1 is indeed a factor.

So, we have cyclic codes here n is equal to 4, the k must be 2 because the degree of g of

x is n minus k. So, n minus k is 2, n is 4, so k must indeed b 2. So, what we are trying to

look at is a 4 comma 2 cyclic ternary code ok. This is what we have set out to do to

construct a 4 comma 2 cyclic ternary code with this generator polynomial g of x given as

x squared plus 1.

Now, if  it  is  ternary  and k  is  equal  to  2  then  there  are  total  of  q  raise  for  k  valid

codewords q is 3 to k is 2, so there are 9 codewords in our lookup table this is what we

were looking at.
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So, if you write at the table using the generator polynomial, you take g of x and take all

possible i x, which is information polynomials of length k. So, i is equal to 0 1 2 alright,

because it is a ternary x, x plus 1, x plus 2, 2 x ,2 x plus 1, 2 x plus 2 this is a all possible

polynomials of degree k minus 1 or less. What is k, k is 2, k minus 1 is 1, so degree 1 or

less. So, this is all I can do alright. So, explicitly if you want to see you will looking at

your i of x.
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And i of x can have degree k minus one. And therefore, I have got 2 places to fill. And

this first one can be 0, 1 or 2 and the second place can also be 0, 1 or 2. And therefore,

we have 9 polynomials, and this would correspond to 9 codewords. These are clearly

information polynomials and this is the lookup table.

So, if you go back you have everything starting from 0 0, 0 1. Please remember we have

k equal to 2 and we are working at G F 3. So, we have 0 0, 0 1, 0 2 and we can go right

up to 2 1 and 2 2. And on the other hand, when we have the codewords c, there we look

at 0 0 0 0 because n is equal to 4, and we are looking at 4 comma 2 cyclic code. So, you

get 0 1 0 1 and you go right up to 2 1 2 1 and 2 2 2 2.

So, we come back to our slide and look at the entire table and we make a very interesting

observation. This cyclic code has done nothing, but repeated the first two symbols one

more time. So, 0 0 becomes 0 0 0 0, 0 1 becomes 0 1 0 1, 1 2 becomes 1 2 1 2. So, it is it

is  in  some  sense  some  kind  of  a  repetition  code  just  repeating  the  entire  block

information block one more time. Looks to be pretty trivial, but we have to see whether

it is a useful code or not, or whether it is just a toy example.
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But first note that it is a valid cyclic code sum of any two codewords is another valid

codeword you can do that math it is over G F 3, so modulo 3 arithmetic can work. So, if I

take for example, 0 2 0 2 and add it up to 1 0 1 0 I get 1 2 1 2 which is present right here,

and if I can take 2 1 2 1 add it up to 2 2 2 2, 2 plus 2 you can do a math for 1. So, 1 0 1 0



which is  another valid  codeword right  here;  so,  you can check that  sum of any two

codeword is a another valid codeword all 0 codeword is present. So, it is a definitely a

linear block code, but most interestingly any cyclic shift of a valid codeword is another

valid codeword. So, it is indeed a cyclic code that has been generated using this generate

a polynomial x squared plus 1.

(Refer Slide Time: 33:51)

So, you continue with this example and 2 are dismay we find that the Hamming weight is

2. See hamming distance and hamming weight should be the same because it is a linear

block code, so I just pick up these 2 candidates 0 1 0 1 or 0 2 0 2; 2 non-zero elements.

So, weight is 2. So, clearly your hamming weight for this minimum weight for this linear

block code which is cyclic is 2.

So, these are equal to 2 means at best it can detect one error and correct zero errors. So,

is it useful. So, we make another observation, we observe that the codeword polynomial

if it is valid should be divisible by the generator polynomial. Say for possibly we can

detect more number of errors then suggested by a minimum distance calculation, how is

that.
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So, assume that g of x is being used as a generator polynomial and without losing any

without  loss  of  generality  we  can  say  that  the  transmitted  codeword  is  in  all  zero

codeword. It is a linear block code. So, you can always do an example with an all zero

codeword and generalize it.

So, the received word is nothing but the error polynomial because c of x is 0 we are

sending the all zero codeword. So, the received vector is the e of x. Now in order to

detect  where  please  note  at  talking  about  the  detection  problem  not  the  correction

problem we want to detect whether there is an error or not. So, detection will require us

to divide the received vector by g of x, that is to divide e of x by g of x.

Now if it is a 0 then we get the conclusion as it is a valid codeword even though e of x is

an error or if we look at the e of x carefully if it has odd number of terms with no matter

what you do division by g of x which is only two terms, will leave behind one term. It is

just basic division in order to cancel out all the terms of e of x right. We should have an

even number because each time g of x when I divide I cancel out I try to cancel or two of

them.

So, if you have e of x containing odd number of terms, I will always end up with a non

zero  answer.  Regardless  of  how  many  such  terms  are,  but  please  note  each  term

corresponds to one error, so we are actually going to possibly detect more number of

errors than one as suggested by the minimum distance.
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Let us carry this example forward. So, suppose we have 3 errors, so the error polynomial

looks like x cubed plus x plus 1, it means that the error is at location 1 location 2 and

location 4. Please note it is a 4 comma 2 codewords, so there are 4 locations for error to

happen because the codeword is of the length and is equal to 4. So, here we have 1 1 0 1

is the polynomial responding to this error vector.

So, we have the cyclic code g of x is equal to x square plus 1 and d star is equal to 2, so

even though theoretically it seems we can only detect 1 error, if you try dividing e of x

by g of x we will get a remainder a non zero answer and consequently we will raise a

flag and say that yes indeed we have detected an error.

So, the theory says that not more than 1 sure 2 errors can never be detected, but 3 errors

yes is it can detect, 4 errors probably not. So, this gives us a glimpse as to how strong we

can make our error control codes in terms of using cyclic codes in terms of detecting

errors.  So,  again we are talking about  detecting not correct,  so they can be used for

checks  most  likely  we call  them cyclic  redundancy check.  So,  c  r  c  codes  are  very

popular in detecting errors.
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So, we now shift gears slightly and we come back to a original flavour of linear block

codes. If cyclic codes are indeed subclass of linear block codes then we should be able to

represent them in terms of a generator matrix. So, we have a standard way to represent a

generator matrix for a cyclic code. Please note the structure. So, g 0, g 1 up to g r and so

and so forth with 1 cyclic shift and so and so forth and we have k rows and n columns.
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So, please note that the n minus r rows of the matrix are linearly independent because of

the echelon form of the matrix please note that. So, it is a simple observation, so they are



linearly  independent.  And  these  code  words  are  actually  the  rows  are  actually  the

codeword.  How is  that  well  g  of  x  is  always a  valid  codeword polynomials,  so the

corresponding vector which is g 0, g 1, 0 up to n. So, the length is n, but the degree of g

of x is n minus k. So, their r goes up to n minus k only.

So, we have the first one is a valid codeword, the second one is 1 cyclic shift, third one is

another factory shift up to k cyclic shifts and that constitutes a entire generator matrix.

So, we can write that g of x valid x g of x another valid codeword x square g of x of

course, as a cyclic shift by 2 and so and so forth, and sum of any 2 of them each 1 is a

valid codeword is also valid codeword. So, indeed g of x and all of it is saltlick shifted

versions which form the rows can generate the entire code space. So, indeed we have g c

of x is q of x time g of x for some polynomial q of x.
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So, we are explicitly writing that any polynomial times g of x can be written as sum of

shifted codewords. And therefore, you can prove that the matrix G is indeed a generator

matrix just because the rows are valid codeword polynomials. And we know that the

dimension of the generator matrix is k cross n; and the degree of g of x is n minus k as

we established.



(Refer Slide Time: 42:07)

So, with that we come to the end of this lecture. So, let us quickly summarise what we

have read so far and studied. So, we have looked at cyclic codes in more detail. We have

introduced the interesting concept of a generator polynomial what should be it is degree,

why it generates the entire code space. And then we looked at syndrome polynomial and

why  it  is  possible  to  detect  more  number  of  errors  than  predicted  by  the  d  star

philosophy. 

And finally, we looked at the matrix representation and this is where we will continue in

the subsequent lecture. We also looked at some examples to show that yes it can indeed

do better than the error detection predicted by d star. With that we come to the end of this

lecture.


