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Hello, and welcome to our next lecture on Cyclic Codes.

(Refer Slide Time: 00:32)

Let us look at a brief outline of today’s talk. We would consider what is a ring and how

they are related to fields, then we will look into polynomials and use them as building

blocks for our cyclic codes. We will look at the division algorithm and then using these

mathematical tools we would introduce the concept of cyclic codes. Finally, we will have

some examples.



(Refer Slide Time: 00:59)

Let us look at a quick recap as to what we have done already. We have spent quite some

time looking at linear block codes, we figured out why they work. We looked at some

specific  examples  of  Hamming  code,  the  LDPC codes,  MDS codes,  and finally  we

looked at the probability of residual errors.

(Refer Slide Time: 01:23)

Having said that we now move on to this new subclass of codes called cyclic codes.

Now, let us define it first. So, code C is cyclic, if number one – C is a linear code. So, we

are now looking at a subclass of linear block codes. Whatever theory we have learned so



far is applicable to cyclic codes because C is itself a linear block code, but what is more

is that any cyclic shift of a codeword is also a valid codeword, all right. So, if a 0 a 1 a 2

up to a n minus 1 is a codeword contained in a cyclic code C, then if you put a n minus 1

in the beginning and then shift each one of them by 1 1 1 you would end up getting

another  codeword which is  also valid.  So,  any cyclic  shift  is  also a valid  codeword,

hence the name cyclic codes.

So, clearly the first bullet tells us that if you take this linear block code then cyclic codes

are necessary a subset of linear block codes. So, all the techniques that we have learned

so far are applicable to cyclic codes, but as we will see cyclic codes have tremendous

error  correcting  capabilities  in  terms  of  burst  error  corrections  also  they  are  very

hardware friendly.

So, these cyclic codes are a much more powerful class of linear block codes.

(Refer Slide Time: 02:59)

So, let us look at a quick example, let us look at a binary code there are four codewords

in this code 0000, 0101, 1010 and 1111. The first step is to verify whether it is a linear

block code and then we will look at the cyclic shifts. So, if you see the all 0 codeword is

contained the sum of any two codewords gives a valid codeword and therefore, we can

say definitely this is a linear block code.



Now, we do the third check whether if you do a cyclic shift if you put the 0 1 this 1 here

and the 0 here, you get this one and then any cyclic shift will give you back this one

leads onto itself and so on and so forth. So, any of the four code words undergoing any

number of cyclic shifts ends up being another valid code. So therefore, this is definitely a

cyclic code, but if you look at a slightly different example where it is an equivalent code,

but it is definitely not cyclic.

So, because the cyclic shift of this does not yield another valid codeword and therefore,

you can verify that this is maybe a linear block code, but it is not a cyclic code and these

two  codes  are  equivalent  in  terms  of  the  distance  properties  both  of  them  have  a

minimum distance of 2.

(Refer Slide Time: 04:27)

So, let us now foray into the word of polynomials which have a very strong linkage to

cyclic codes. So, we are going to take a mathematical detour for the next few slides build

up some mathematical  tools  and then  use it  for  describing  cyclic  codes  much more

efficiently. So, let us look at a polynomial most of us already know this, but just for the

sake of clarity f of x can be written as f 0 plus f 1 x plus so and so forth up to f m x m

and f 0 f 1 are the coefficients and the highest order will be the degree of the polynomial.

So, please note, if I define this polynomial over GF q; that means, the coefficients here

are taken from GF q they are the elements of GF q and we already know Galois field

with q elements we know the properties. So, this also means that if I can add subtract



multiply divide two polynomials because the coefficients get added subtracted multiplied

hence and so and so forth. Therefore, I will follow the arithmetic of GF q to do those

things. As I said f m is the leading coefficient here for the highest degree and m is the

degree of the polynomial and it is often denoted by deg f of x.

Now, a polynomial is called monic if its leading coefficient is unity. So, f of m if it is 1

then this also becomes a monic polynomial. Please note in polynomials which are binary

you do not have to worry about it because it is either a one or a 0 and 0 means it does not

that term does not exist, but for a general case GF q you will need to have fm equal to

one for a monic otherwise for example, GF 4 this fm can be either a 1, 2 or 3, but for

monic it needs to be 1, the highest coefficient.

So, let us look at an example here a polynomial over GF 8. So, the valid coefficients

could be 0 1 2 3 up to 7 and GF 8 is 2 raised power 3 is 8. So, it is a prime power and

hence GF 8 exists if you look at this polynomial the highest power is x raised power 6

and  the  leading  coefficient  is  1,  hence  it  is  a  monic  polynomial  the  degree  of  this

polynomial clearly is 6.

(Refer Slide Time: 07:12)

Now, polynomials do play a very important role in the study of cyclic codes as we will

see now if you say F of x be a set of polynomials. So, suddenly we are talking about a set

of polynomials in x with coefficients in GF q. So, x is that indeterminate right and F

capital  F  of  x  is  the  set  of  polynomials.  Now, clearly  this  set  of  polynomials  is  a



collection and the polynomials in this set can be added subtracted or multiplied in the

usual manner and the arithmetic will be carried over GF q.

So, F x is an example of an algebraic structure called a ring. We will soon see; what are

the properties of a ring and whether it is a field or not is what we will have to verify and

check under what condition this collection becomes a field.

(Refer Slide Time: 08:13)

 

So, look at some properties of the polynomials some of them we know and we use them

without even realizing then if you see f of x and g of x are two polynomials contained in

this set of polynomials F of x capital F of x then degree of the product is a sum of the

degrees we know all of this. But, please note that degree of f x and g fx when you add

them up is not necessarily the maximum of degree of f x and degree of g of x for a

simple  reason  that  if  both  of  them are  monic,  then  they  will  cancel  each  other  out

possibly.

So, if you see 1 plus x square is my polynomial f x and g x is 1 plus x plus x square and

if you add them up look the degree has actually gone down. So, this is what we know,

because if you do binary arithmetic GF 2 then 1 plus 1 is 0 and x square plus x square

cancels out. And therefore, the highest power of x is 1.
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Let us look at another example these are basically refreshing our memory we know most

of these stuff consider a simple polynomial f of x 1 plus x and defined over GF 2.

So, all the arithmetic that we do will be over GF 2. So, we can square it how does it look.

So, f x square is you take this and multiply it over and 1 plus 1 gives 0 and therefore, 1

plus x plus x plus x squared is nothing but 1 plus x square, but just consider 1 plus x as

the polynomial over GF 3. So, I am now going to square this, but not over GF 2, but GF

3. Now, GF 3 can have coefficients 0, 1 and 2 my polynomial happens to have just one

coefficient as 1. So, I would like to square it. So, 1 plus x plus x plus x square is what

you get by squaring it, simple multiplication by itself and now you end up with 1 plus 1

and if you look at the table GF 3 which is also modular 3 arithmetic because 3 is a prime

number I get 1 plus 2 x plus x squared.

So, same polynomial  squared over GF 2 and GF 3 gave different  results.  So,  this  is

important to observe that the field is important.
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Now, let  us  quickly  go  over  this  addition  and multiplication.  So,  you can  take  two

examples it is best to show by examples I have got f x and g x over GF 3. So, please note

the coefficients are from 0, 1 and 2. So, g x and f x and their degrees are also different,

but I can always add these two polynomials and we can do it like this explicitly. So, this

is a coefficient of x raised power 0, I add them up and then I add the coefficients of x,

there is a missing x here, there is an x here only x and so and so forth and you get an

answer like this.

Similarly, I can multiply them it is a long multiplication and I carry it out and again use

the arithmetic for the GF 3 table and if I do this I can simply get an answer as a product

and product highest power is 5 highest power is 4 and it is no surprise that the product

has the highest power x raised power 9. So, the degrees have added, ok. So, this is a

simple example that you can carry out addition and multiplication, but each time I do the

sum or the product I take care of the table belonging to the correct Galois field.
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So, we have already established that field is important and if you square over GF 2 and

GF 3 the same example, but we are trying to emphasize that the same operation over

different fields will give a different answer. So, field is indeed very important.

(Refer Slide Time: 12:31)

Now, let us look at the remaining part which is the division algorithm. What does it say?

Well, it states that for every pair of polynomial a x and b x contained in F x. So, what is

this capital F of x it is nothing but a collection it is a set of polynomials, all right. We

have already seen that we can add subtract multiply.



Now, the question is can we divide? So, clearly division by 0 0 is not acceptable. So, I

have got b of x not equal to 0 and then what we would like to do is they we say that this

algorithm states that there exists a unique pair of polynomials q x which is called the

quotient; and r x called the remainder such that a x which is one of the first polynomials

is nothing but quotient into b x which is the divisor plus r x which is the remainder and

degree of r x must be less than the degree of b x which is the divisor. So, it is stated as an

algorithm it is more like a simple theorem.

So, the remainder is also called as the residue and residue succinctly it is written as R b

of x. So, I am dividing with b of x what am I dividing a of x. So, if you divide a of x by b

of x the remainder or the residue is called r of x. How is it written? a x is equal to

quotient times b x plus residue. So, we will use this notation many many times during the

subsequent slides.

So, let us look at some important properties of residues since I can add two polynomials

the residue of a x plus b of x for f x is nothing but the residue of a x when divided by f x

plus the residue of b x when divided by f x. So, this is nice, it can help us solve some of

the properties and solve some of the theorems that we will encounter in the future and

the product also holds true. So, if I have a product a x into b x and I will take the residue

with respect to f of x it is nothing but the product of the residues and the residue with

respect to f of x. So, that is how we get. We will use these two properties over and over

again, alright.
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So, let us look at a simple example. Let us take ax is equal to a polynomial x cubed plus

x plus 1 and I have got b x is equal to x squared plus x plus 1 and I am going to carry out

all of this arithmetic over GF 2. So, it is a long division. I write x cubed plus x plus 1 this

is the divisor, this is the dividend and I just multiply it out when I multiply it with x, I get

another polynomial because product of polynomials is defined I subtract it out and I get

an residue r of x.

So, this simple example shows that we have got with us this quotient and the remainder

and we can clearly write your a x the dividend equal to x plus 1 quotient into b x divisor

plus the remainder other residue x, ok. So, this will be required many many times when

we do cyclic codes because please remember we are taking a mathematical detour we are

still trying to study cyclic codes, but these tools that we are revising or gathering with us

will  help us solve cyclic  code problems much more easily please note one thing the

degree of r x must necessarily be less than the degree of b x otherwise I could have

divided one more time I keep doing till the degree is less than b of x, strictly less than.
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We talked about this term called congruent modulo. So, let f x be a fixed polynomial

within this collection or set F of x. Now, two polynomials g of x and h of x both contain

in F x are said to be congruent modulo f x f x was a fixed polynomial in F x and capital F

of x. So, if this is true if g x is equal to h of x mod f x and we have this g of x minus h of

x is divisible by f of x. So, let us look at this example. Please note we are trying to define

congruent modulo f of x.

So, I am taking this h of x and do modulo f of x that is you divided by f of x and

whatever remains and that should be g of x then they are called congruent modulo. So,

let us look at a quick example let us say g of x is x raised power 9 plus x square plus 1

and h of x is x 5 plus x square plus 1 and my fixed polynomial is x raised power 4 plus 1

and I will do all the arithmetic over GF 2.

Now, you can see that if g x minus h of x we saw this earlier is divisible by f of x then

they are written congruent modulo.
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Now, we quickly go to rings of polynomials and then eventually fields of polynomials.

Again, let us be patient and we will quickly link to cyclic codes, but this is interesting

stuff. So, if a x and b x belong to F of x capital F of x divided by small f of x, then the

sum a x plus b x in F x capital F of x divided by f of x is the same as in capital F of x.

What does it mean? Well, we are looking with looking at two polynomials, right and we

are going to look at the sum of these polynomials, but every time we do so, we are taking

it modulo f of x small f of x. So, what is critical is this very interesting polynomial.

Student: (Refer Time: 19:11).

F of x we are still going to do operations of addition and multiplication contained in this

set capital f of x, but now all the operations will be done modulo small f of x that is

whatever is the residual remainder after dividing with small f of x is the answer. And this

you can check degree of a of x is less than degree of f of x why because we are taking

modulo f of x similarly, degree of b of x less than f of x and therefore, degree of a x plus

b x is less than degree of f f of x.

Similarly, the product a x and b x is a unique polynomial of degree less than degree of f

of x, right to which a x into b of x is congruent modulo f of x. So, what are we trying to

do? We are looking at a ring of polynomials. What is a ring? Ring is a set of elements

with  certain  properties  including  additive  inverse,  associativity  and  distributive

properties 0 and 1 being contained in the set and so and so forth it follows the first eight



of first seven of the eight properties required for a Galois field. So, we are not talking

about this ring.

So, this capital F of x divided by f of x this is this shows that everything taken modulo f

of  x,  this  is  a notation  because the numerator  is  a set.  So,  this  is  called  the ring of

polynomials over f of x modulo small f of x, this is the notation and we will be using this

notation. Now, under some special conditions for f of x the small f of x this ring actually

translates to a field.

(Refer Slide Time: 21:15)

So, let us consider this ring again capital F of x divided by this polynomial x squared

plus x plus 1 again our arithmetic will be over GF 2. So, this ring will have polynomials

with highest degree 1. Why? Because whatever be your collection of polynomials where

you take modulo x square plus x plus 1 the highest power can be at best x raised power

1.  So,  what  are  the  polynomials  possible  here?  Well,  there  are  only  four  possible

polynomials here.
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So, let us look at it with a small example what we are trying to do is take this F of x and

take all the polynomials modulo this. So, we have not put any restrictions on how big

this set is. You can have infinite number of polynomials here you can make them as large

as possible, but I will take each one of them and divide by x square plus x plus 1 and

whatever is the residue is the set which I am looking at.  And if you look at this the

residue will be some polynomial with a coefficient times x plus another coefficient times

x raised power 0 which is nothing but x plus.

Now, since we are looking at GF 2 we will have two possibilities for this location either

a  0  or  a  1  again  two possibilities  0  or  a  1.  So,  we can  have  at  most  four  distinct

polynomials here which are they 1 x plus 1, 1 x plus 0, 0 x plus 1, 0 x plus 0 and if you

write it out clearly, we are looking at the polynomials x plus 1, x, 1 and 0. Now, this is a

finite set. So, from an infinite set just because we took this modulo F of x operation we

are we ended up with only four distinct polynomials.

Now, they can be added multiplied subtracted as we want provided we are following this

rule. Now, if you go back to the slides we see that this ring contains 2 raised power 2 is

equal to 4 elements and each element is a polynomial. Please remember that elements

can be anything and here we chose them to be polynomials 0, 1, x and x plus 1 like we

just saw and we can try to build the addition and multiplication table for this one. So, I

can  add  and  multiply.  So,  this  is  the  addition  table  and  this  the  multiplicative



multiplication table and you can check that there is a 0 in every row and column which

shows that there is an additive inverse for each of the four elements, but if you try to see

for one there is a problem because a multiplicative inverse is not necessarily present.

So, in therefore, what we would like to do is go to another example.

(Refer Slide Time: 25:21)

So, now we look at another example F of x divided by this polynomial x squared plus 1

again defined over GF 2 and again the elements will be 0, 1, x and x plus 1 and again I

can write the addition and multiplication tables for these two and what we look at it is

that  the first  example of F x divided by x squared plus x plus 1 was actually  field.

Whereas, this one is just a ring because of the absence of a multiplicative inverse, if you

see this multiplicative table x plus 1 does not have a multiplicative inverse whereas,

every other one has a multiplicative inverse. So, each element 0 is of course, excluded

from  a  multiplicative  inverse,  but  x  plus  1  element  does  not  have  a  multiplicative

inverse.

On the other hand, if you look at this ring each one so, x is a multiplicative inverse of x

plus 1 and 1 is a multiplicative inverse of 1 and x is a multiplicative inverse of x plus 1

and so on and so forth. So, you have additive inverse and multiplicative inverse for every

element and therefore, this ring is actually a field whereas, this ring remains a ring. So,

what is interesting is this f of x small f of x sometimes ends up giving us a ring and



sometimes ends up giving us a field. So, F x divided by x square plus 1, this is not a field

where is F x divided by x square plus x plus 1 is also a field.

(Refer Slide Time: 27:14)

So, now it come and connect these two concepts about why one gives a field and the

other one does not give a fields. So, let us explore what properties of this f x lead us to

generating a field. So, the condition that we will soon see is that this polynomial f of x

must be irreducible which is in Layman’s language non-factorizable, we cannot factorize

it but, let us see what do we mean by that.

(Refer Slide Time: 27:49)



So, we define a polynomial f of x in capital F of x which is a set of polynomials is said to

be reducible if f of x can be written as a product of two polynomials where a x and b x

are elements of f of x right.

So, now if f of x is not reducible then it is called irreducible. So, if it is not factorizable

then  it  is  means  that  it  is  irreducible.  Over  and  above  if  with  this  non  factorizable

irreducible polynomial happens to be a monic, the leading coefficient is 1 then it is also

called as a prime polynomial, ok. So, monic additional condition of being a monic makes

it a prime polynomial. So, a monic irreducible polynomial is a prime polynomial.

(Refer Slide Time: 28:46)

So,  factorization  as  some of  the  facts  we know and we can quickly  go over  it.  So,

polynomial f of x is a linear factor x minus a, if f of a is 0, this we know and then

polynomial f of x in capital F of x set of polynomials of degree 2 and 3 over GF q is

irreducible if and only if f of a is not equal to 0 for all a in GF q. So, we can quickly test

these out and over any field we have this general expansion x raised power n minus 1 is

x minus 1 times x raised power n minus 1 plus x raised power n minus 2 up to x plus 1,

ok.
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So, what we do is we quickly go over the next two slides and looking at that this ring of

polynomials F x divided by f small f of x is a field if and only if this small f of x is a

prime polynomial, that is a monic irreducible polynomial, it cannot be factorized over the

GF q we are working at and the proof is pretty simple we to prove that a ring is a field

we must show that every non zero element of the ring has a multiplicative inverse and

that is what we do here. And we can show that the greatest common divisor GCD of two

polynomials f of x and s of x can be written as follows and then we show that since f of x

is irreducible in capital F of x, we can write the GCD of f of x and s of x as 1.

(Refer Slide Time: 30:34)



Now, we invoke the properties of residue and we do some basic maths and we can easily

verify that you can indeed have the condition of a multiplicative inverse.

(Refer Slide Time: 30:54)

So, the theorem had if and only if so, the only if part can be proven like if you have f of x

has a degree 2 at least 2 and is not a prime polynomial this is the assumption and then we

will contradict this assumption, ok.

So, we know that a polynomial of degree 1 is always irreducible. So, we can write this f

of x as some r of x plus s of x for some polynomial r of x, and then we look at this ring F

of x divided by small f of x then a multiplicative inverse r inverse x exists. Since all the

elements other than 0 should have a multiplicative inverse and then we substitute this

here. So, r of x r inverse s, s of x here and we do some basic maths and we have assume s

of x is not equal to 0 which leads to a contradiction implies that the ring is not a field.

Therefore, we get this proof for a reducibility.
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So, let us look at the example which helps us understand the theorem a slightly better.

So, let us consider this polynomial p of x which is x cubed plus x plus 1 over GF 2. Now,

this is a prime polynomial, but we would rather verify that with is a prime or not. So, it is

very easy let  us see whether there are any linear factors. So, just substitute 0 and 1,

because there are the two elements if you substitute p 0 you get a non zero answer same

with p 1 non zero answer. So, there are no linear factors of the type x minus 1 or x and

this is monic and therefore, p of x is a prime polynomial.

So, now what we can do is  we will  shortly learn to construct  extension fields using

subfields.  For example,  we have GF 2 and we can construct  GF 8 using this  prime

polynomial. Please note that: if you have capital f of x divided by of p of x then the

highest power is 2. So, let us look at this example.
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if we look at F of x and we divided by p of x please note that p of x is nothing but x

cubed plus x plus 1. So, anytime I take the residue the highest power can at most be a

square.  So,  all  polynomials  are  some coefficient  square plus  some coefficient  x  plus

some coefficient. Now, we are working over GF 2 consequently this is a 0 or 1, 0 or 1, 0

or a 1 and therefore, you have got these 8. So, you can have these places filled up right

from 0, 1, x, x plus 1 and then you have x square x square plus 1 x square plus x and x

square  plus  x  plus  1.  So,  you  have  got  these  eight  elements.  These  eight  elements

basically form elements of GF 8 and we will show that we migrated from GF 2 to GF 8.

Now, we come back to the slides and we say that it  is easy to construct the addition

multiplication tables for this field.



(Refer Slide Time: 35:18)

Now, we do a few observations because we should not forget an end goal which is to link

it to cyclic codes and we are almost there just a few more mathematical tools and then

we are ready to go. So, please note that x raised power n is equal to actually 1 modulo x

n minus 1. So, this x raised power n minus 1 will become a very interesting polynomial

for us.

Now, we first make our link any codeword can be uniquely represented by a polynomial

and how do we do that well suppose my codeword is c 1, c 2, c 3 up to c n then we can

write it very easily as c of x as c 0 plus c 1 x plus c 2 x squared up to c n x n; so here of

course, I did not start with a c 0 which is missing, but if I remove this c 0 here. So, c 1 x

c 2 x square and so and so forth up to c n, there are total n elements here, here n plus 1.

So, we can choose to either go from c 0 up to x raised power n minus 1 or c 1 to x raised

power n either which way we will have n elements n coefficients corresponding one to

one to the elements of the code.

So, if you have for example, over GF 8 the codeword c equal to 207735 well you can

always write it one to one for this. So, here there are n equal to 6 the block length is 6 the

highest power I need to go is n minus 1 and clearly this is the unique representation of

this codeword in terms of a polynomial. So, from this point onwards we will refer to

codewords as codeword polynomials because for cyclic codes it is very easy to say that.
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Now comes the most important link why are we talking about polynomials for the past so

many minutes. Firstly, multiplying any polynomial by x corresponds to a single cyclic

right shift of the codeword element because simply you are increasing the power by of x

by 1 and so, it results in a cyclic shift right more explicitly in R n by multiplying c x by x

we get so, c 0 which did not have a x now I have c 0 x c 1 was coupled with x raised

power 1, now it get x squared. So, you just simply shift and this R n means take modulo

x n minus 1 x raised power n minus 1 the moment you do x raised power n minus 1 this

highest power which became n goes back to the front.

So, it is a cyclic shift this is the property of doing modulo x raised power n minus 1

please recall that x raised power n is equal to 1 if you take mod x raised power n minus

1. So, this will be our staple for the next few slides all operations all products additions

would be done modulo x raised power n minus 1, because that puts us in the domain of

cyclic codes.

So, any polynomial modulo x n minus 1 can be reduced simply by replacing the x n by 1

x n plus 1 by x and so on and so forth. This is the critical observation.
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So, now we are back to cyclic codes a code C in R n. So, R n means we will take modulo

x n minus 1 is a cyclic code if and only if C satisfies the following condition F of x

divided by small f x is in R n. So, a x, b x if are two elements of C. What does it mean?

Well, C is a code. Code is a set of codewords.

Now,  my  codewords  are  now  codeword  polynomials.  So,  a  x  is  one  codeword

polynomial, b x is another codeword polynomial. Sum of two codewords is also valid

codewords. Not a surprise because C is a linear block code and if a x is a codeword and r

x is some polynomial then a x into r x is also a valid codeword, ok.
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So,  let  us  understand  this  thing.  So,  the  first  part  is  very  simple  sum  of  any  two

codewords  is  also  a  valid  codeword.  The  second  part  can  be  understood  simply  as

follows; well, if you look at multiplication of a valid codeword with r x then it is nothing

but r x is nothing but a polynomial given by this. So, individually when I multiply I can

say ok, first we take a x and I multiply with r 1 x. Well, what is multiplication with r 1 x

1 cyclic shift, but we know cyclic shift our valid codeword is another valid codeword

and then I multiply this valid codeword a x with r 2 x squared x squared means two

cyclic shifts. Well, two cyclic shifts is also a valid codeword and so and so forth. So, r n,

x n pertains to n cyclic shifts and multiplication by a scalar.

So, each of these operations is leading to a cyclic shift of a x which is a valid codeword.

So, each of this operation is transforming ax into another valid codeword and some of all

these codewords is a valid codeword because some of any two codewords should be a

valid codeword for a linear block code. Consequently, the product of a x into r x should

be a valid codewords. Hence, should be an element of C that is the proof.



(Refer Slide Time: 42:01)

So, now we have a very simple way to generate cyclic codes because in the previous

slide  we  observed  that  this  product  of  some  valid  codeword  with  any  arbitrary

polynomial is a valid codeword. So, can we have a notion of a generator polynomial

which when multiplied with an information polynomial gives a valid polynomial that is

the basic idea. So, how do we generate cyclic codes? Take a polynomial f of x in R n,

obtain a set of polynomials where multiplying f x by all possible polynomials in R n.

Remember R n is modulo x raised power n minus 1. The set of polynomials obtained

above correspond to the set of codewords belonging to a cyclic codes of block length n.

(Refer Slide Time: 43:00)



So, let us take a simple example. So, let us take r x is equal to r 0 plus r 1 x plus r 2 x

square and we are doing it over GF 2. So, we have got a total of 8 polynomials since we

are taking F x divided by x cube minus 1 which means that the highest power of this

residue can be squared. So, there are 8 possible polynomials, and then we can multiply

each one. So, if you say x square plus 1 you multiply by 0 you get a 0 by 1 by x and so

and so forth you can try out all the possible combinations and then you get only four

distinct codewords coming out of it. So, just now you generated your first cyclic code

using this notion of multiplication of a polynomial over R 3. What are these four distinct

codewords? The four distinct codewords as we just now saw are 0 1 plus x 1 plus x

square and x square plus x.

So, these can correspond to these four codewords as we know in terms of the binary

digits and you can check whether they are linear block codes and whether they follow the

cyclic property.

(Refer Slide Time: 44:42)

So, with that we come to the end of today’s lecture. We have understood what do we

mean by a ring specifically a ring of polynomials and how and when a ring becomes a

field.  Then, we had a detour into polynomials  how do we add multiply subtract and

divide and then we linked it up to cyclic codes. Well, we just have scratched the surface,

now that we have these mathematical tools ready we are ready to explore this domain of

cyclic codes; we have first looked at a few examples.



With that, we come to the end of this module.


