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Hello and welcome to module 2. Let us start with a brief outline for today’s talk. We

would visit average mutual information that we covered briefly in the last class.

(Refer Slide Time: 00:28)

Then we will introduce the concept of entropy, then we will move over to something

very interesting conditional entropy followed by joint entropy, and then we will look at

some examples.



(Refer Slide Time: 00:45)

So, let us start with a brief recap what we did in the last class and we will see if there are

any questions. We introduced the concept of uncertainty and related it to information, we

found an inverse relationship between the probability of occurrence of an event and the

information associated with it. Then we went on to define the notion of self information

very important it has lots of practical implications. Then another very useful quantity that

we looked at was mutual information; we will briefly go over it once again and then we

graduated to average mutual information.

(Refer Slide Time: 01:30)



So, let us quickly recap what we learnt about self information. So, we always start with a

discrete random variable; if there is no randomness, there is no information. Because we

believe that if there is certainty this absolute knowledge about something that it really

does not convey any information. Just like tomorrow the sun will rise in the east a good

sentence no information for us. So, we would like to communicate whatever is there

which is uncertain.

Now, we have defined already the self information as 1 over P of x i log of that gives you

i x i. So, it is minus log of P x i it is an inverse relation and in the last class we argued

rather strongly why the logarithmic measure is the only useful measure. Please note the

base of the log can be 2 and the units are bits if the base is e; the units are nats.

So, we made that observation in the last class, but it is the log which is important.

(Refer Slide Time: 02:41)

 We also looked at mutual information; now we suddenly have 2 random variables x and

y now x can have several possible outcomes x 1, x 2, x 3 up to x i or even more; y on the

other hand is another random variable y 1, y 2, y 3, yj up to yn and we can link x i to yj

simply as i x i semicolon yj equal to log P x i given yj over P x i.

Now please note that here we have a conditional probability;  we would like to know

what is the probability  of x i given yj, but at  the same time if  you do a little  bit of

mathematical jugglery; you will realize that P x i given yj can simply be written; if you



do  these  basic  steps  as  P by  j  given  x  i  divided  by  y  j.  Therefore,  we  made  this

observation that I x i semicolon yj. So, mutual information between x i and yj is the same

as I yj semicolon x i; so, it works both ways.

In the last class, we had observed that mutual information can indeed be negative. So,

even though it is information; there is a notion of a negative quantity being attached to it.

How does it help? Well, if we want to say that I received yj and what is the chances that

x i was indeed say sent or in other words if you observe yj and you would like to know

how much information it conveys about x i. Well, it is a relative quantity; so, it can be

positive 0 or negative.

(Refer Slide Time: 04:47)

But when we average over all possible outcomes where we talk about average mutual

information things are different. If you remember I X semicolon Y; so, we have made a

change now it is capital X which represents this random variable X. Of course, it can

have several outcomes x 1, x 2, x i, x m.

And Y is again capital Y; it is not yj and it can be y 1, y 2, y j, y n and we are talking in

general about x and y it is not a particular x i related to a particular yj. So, clearly we

weighted with this joint probability; so, P x i comma y j weighting; so, multiplied. So,

what do we multiply it; with I x i semicolon yj which is the mutual information and we

do a double summation over all possible cases and we land up with this expression.



Now, what is interesting is that this average mutual information I X semicolon Y is non

negative; it is greater than or equal to 0. And this equality is achieved only if and only if

the X and Y random variables are statistically independent. That is to say that X does not

communicate any information about Y and vice versa; if X semicolon Y information of

that I X semicolon Y is 0, it also implies that I Y semicolon X is also 0.

So, it is to say that suppose somebody gives me a channel and the channel on one side

has an X and on the other side has a Y; then if it  has 0 mutual information,  average

mutual information then it does not communicate any information from the other side as

well. So, this is an important observation average mutual information cannot be negative.

So, channel can at most give you some information about what was sent, but it cannot be

negative; this is the take home message from average mutual information.

(Refer Slide Time: 07:23)

Now, we come to this notion of average self information please record we have already

talked about self information, but now we move on to average self information. It has a

lot  of  practical  applications  consider  a  discrete  random  variable  X  with  possible

outcomes x i i equal to 1 2 3 up to n and the average self information of this event X is

equal to x i can be defined as H of X.

So, now, we take H of X as the definition for average self information. We take I x i and

again weight it with the probability of x i and add it;  over standard way to take the



averaging and we come up with this quantity. This log measure as before is if the base is

2 we say the units are bits.

Now, what do you interpret X as? Where first important information is that H of X which

is the average self information is also called entropy; we will decide why is this name

good or bad, what is the physical correlation to that, but assuming for the time being that

H of X can be termed also as entropy; it is nothing but the expected value of log of 1

over P x i of P X. So, log 1 over P X is basically the self information and since we are

talking about entropy being the average self information. It is nothing the average of that.

H of X as I  mentioned is  called  the  entropy because it  has bearings  from statistical

mechanics.

(Refer Slide Time: 09:15)

So, just let us spend a couple of minutes on this quantity called entropy and we will lead

it  to information.  So, the term entropy has been borrowed from statistical  mechanics

right; in statistical mechanics entropy is used to show or depict the level of disorder in a

system ok. And people normally say the entropy of this universe is increasing, stars are

moving far away from each other, the orderliness moves away. And it is a fact of life if I

leave  my room unattended  in  a  few hours  it  becomes  completely  disorganized  with

papers and everything, but coming back to our subject at hand.

In information theory, if there is lot of uncertainty, there is lot of randomness then we say

that there is a higher level of disorder and hence a higher value of entropy ok. Please



note: that probabilities lie between 0 and 1; so, every one of the quantities log 1 over P x

i is positive and their weighted sum is also positive and hence H of X is necessarily

greater than or equal to 0 ok. Now, just for the sake of information the Chinese character

for entropy looks pretty complicated. If you remember they have a picture for everything

and this is the picture they could think of for disorder just a side comment.

(Refer Slide Time: 11:00)

Now, let us understand the concept of entropy from a simple example. So, let us consider

a  discrete  binary  source  ok;  now  this  emits  a  sequence  of  statistically  independent

symbols. What could this source be? I can imagine it to be a person sitting on a chair,

tossing a coin and every time the coin gives a head or a tail the person shouts 0, 1, 1, 0, 0

depending upon whatever is the outcome of the coin tossed.

Now I am not saying the coin is a fair coin, it could be a biased coin with a probability p

for head and minus 1 minus p for tail. So, this is a source this is a discrete binary source

that gives you bits. Now, if I ask this gentleman sitting on this chair tossing this coin to

toss this coin once every second. So, he shouts 1, 0, 0, 1, 0 every second.

So, the rate at which this source is generating bits mind you not information is just 1 bit

per second right, but this is this entropy which will tell me what is actually the source

rate. There is a distinction between the bit rate and the source rate; we need to make that

difference.  But let  us start  with finding the entropy of this binary source; how much



uncertainty is there? So, we plug in the value H of X is minus p log to the base p minus 1

minus p log to the base 2 1 minus p.

(Refer Slide Time: 12:54)

So, this quantity we just read out is called the binary entropy function and we will find

his application at several places. So, for instance if you plot on the x axis the values of p

and on the y axis the corresponding H of X; we see an interesting bell curve ok; which

reaches a maximum at 0.5. So, if you focus you will see that H of X is achieved for p

equal to 0.5; remember the coin tossing experiment where p represents the probability of

occurrence of head or tail if you want.

So, let us spend a minute figuring out this curve first thing is up to 0.5, the H of X

increases. It rises pretty sharp in the beginning and then it starts flattening out there is a

physical interpretation to that. So, when p is equal to 0; p is equal to 0 is the probability

of head is 0; it is always a tail it is the Sholay coin right; it is tail on both sides.

Well, there is no uncertainty regardless of whether you toss it 1 time or 10 times, you are

always going to get a tail and consequently there is no information contained in it. This

gentleman who is my binary source is sitting on the chair tossing this tail only coin and

he is screaming 0 0 0 0 0; he may shout as much as he want, but he is not communicating

any information. There is absolutely no information in that sequence of bits it’s all 0’s it

is a big chain of 0’s.



Now, we change it a little bit more and we now have some probability of occurrence of

head p is equal to 0.1 or 0.2. And suddenly the uncertainty jumps up the uncertainty

jumps up and yes H of X is nonzero. So, it starts from 0.2 bits, goes up to point 4 bits and

by the time I am close to probability of 0.2; I am nearing above 0.6 of the entropy which

at most will be 1.

So, it is a fast rise and then it gradually flattens and reaches a maximum at 0.5; it tells me

that if the guy is tossing a perfectly fair coin; half the time head comes up, half the time

tail comes up there is a maximum uncertainty. There is no way I can guess what was

going to come up next he just has to toss the coin.  And indeed only in this case the

entropy  H  of  X  is  1  bit  and  only  in  this  case  do  we  need  1  bit  to  represent  that

information.

Now flip the probabilities on the other side make head more probable this curve stops

increasing, takes a downturn and starts going down right up to P equal to 1 when we

have the H of X again going back to  0 right.  So,  this  is  our famous binary entropy

function.

(Refer Slide Time: 16:36)

Now, let us see; what are the practical uses of this definition we just put together. So, I

would like to know what is  the entropy of English or entropy any language for that

matter. The question  is  it  a  fair  question to  ask;  entropy of  a  language well  for  me

entropy is uncertainty is there an uncertainty in English? Of course, there is that is why



you buy a book and read it because you do not know what is there ok. If you know

already there is no uncertainty you will never buy a book to read it because you know

already.

So, consider this English language with alphabet with 26 alphabet A to Z; now as a first

step let us assume that all of these alphabets are equiprobable ok; it is a bad assumption,

but let us start somewhere. So, each one is equally likely probability 1 over 26 and I plug

in to this value of H of X as summation of P x i log 1 over P x i over all i's and you will

get this quantity log to the base 2 26 which is 4.70 bits basis 2; so, the units will be bits.

So, it tells me that if all these alphabets were equiprobable; I would need on an average

4.7 bits  to represent  them because that  is  the information they command; that  is  the

resource I need to put in to represent each alphabet ok. So, please note there is a strong

physical meaning to this information in terms of bits, but this is really the upper bound

because we really know that all the alphabets are not equiprobable; A E S T are much

much more frequent, if you just scan the dictionary as opposed to Q J Z etcetera.

So, the next logical step would be to plug in real probabilities; now how do you get real

probabilities? You pick up your dictionary, do a frequency count and divide by the total

number of letters you counted, you get an estimate of the number of times it occurs and

hence the relative probability of occurrence.

(Refer Slide Time: 19:06)



So, now let us take the same English language with alphabet A up to Z and this time in

our definition of H of X. We plug in the probabilities of occurrences of the different

alphabets which I just now mentioned is nothing but the normalized letter frequency.

So, clearly the probability of occurrence of e will be more than that of Z; if you plug that

in you will get a number close to 4.14 bits.

(Refer Slide Time: 19:40)

So, clearly it is less than 4.70 bits.

(Refer Slide Time: 19:44)



So, this brings us to a very interesting observation; just our observation of the fact that

some letters  are  more  frequent  than  others.  We are  making a  bold  statement;  on  an

average we now need 4.14 bits to represent each letter.

Now, you will  hear  me  talk  about  this  on  an  average  face  because  this  entropy  by

definition is the average self information whatever gain we make is over the averaging

part. So, right now we have seen that on an average an alphabet can be represented with

just 4.14 bits. Now, this is way below the ASCII representation which uses 7 or 8 bits per

letter, but let us see; what more can information theory deliver.

Now, we make some more observation Q is always followed by U; T H E comes more

frequently T H comes more frequently as a pair right ING comes together; so, if we start

talking about pairs and also look at the probability of occurrence of pairs which we now

called bigrams in English language. Then we again calculate this entropy and what we

get is H of X the square represents for the bigram divided by 2, because now we have

double the number of pairs. And the entropy now is calculated to 3.56 bits per letter the

division by 2 represents per letter because bigram transits of 2 letters at a time.

So, it is coming down it is also getting us more excited to see how it goes it tells me that

if I further look at the distribution of frequencies 2 at a time; I need fewer bits. This

brings to me a very important fact that if I really have to efficiently represent the English

language, then I should not only consider one letter at a time, maybe 2 letters at a time

and then why should I stop at 2 letters at a time maybe I can do better.



(Refer Slide Time: 22:16)

So, how about going to n grams? So, why do not we define the entropy of a language; it

could be English as limit n tending to infinity H X n standing for n gram and since I

wanted per letter it is divided by n. Now clearly it is very difficult to find this quantity

and some statistical investigations over English language have led us to believe that this

quantity lies somewhere between 1 and 1.5 bits; this is very interesting. So, each letter in

English text really conveys only 1.5 bits of information right. If a word is 6 letter long its

only 6 into 1.5 bits is the amount of information it conveys bits is a unit of information.

So, since it lies between 1 and 1.5 for the sake of discussion, let us assume that this H of

L is 1.25 bits.

Then really what is the redundancy of English language? Redundancy well we will spend

a minute on that, but let us understand assume that all letters were equiprobable, they

were all  independent  right and they have 26 letters.  So, we found out that the upper

bound was log to the base 2 of 26 which was 4.7, but after this statistical investigation;

we  found  it  to  be  1.25.  So,  the  redundancy  is  1  minus  1.25  divided  by  4.7  is

approximately 0.75 yes there is a question.

Student: (Refer Time: 24:26).

Yes.



Student: N grams sir then how can we find that call let us the entropy is 1.5 or it is an nth

associate.

Right the question being asked is about this n grams. So, it is an n tuple we are taking n

letters at a time right.

Now, you look at all the probabilities suppose for the sake of discussion n is 4. So, you

start with a a a a a a a b a a a c going up to z z z y z z z z and 4 letters at a time right.

Now each one will have a probability associated with it; so, you have a long table of

probabilities you plug in that value into summation of P x i log 1 over P x I, you compute

that value will get a value of the entropy, but that is for the n tuple right, but that is the

amount of bits conveyed by n letters at a time.

So, I need to divide it by n to get one entropy for one letter because I have to compare

apples with apples right. So, we have covered all possible cases when we consider this n

tuple and mind you n tends to infinity here and I have really gone down to the actual

entropy of the language fine ok.

So, the observation is a little a nerving it says that the redundancy of English language is

close to 75 percent. That is if your book that you have bought is hundred pages fact, 75

page pages of those book is redundant. Only the 25 percent is worth it if we really look at

look at it from the information theory point of view. I am talking to you in English; so,

out of every 4 sentences; 3 of my sentences are redundant there is a question.

Student: Sir, (Refer Time: 26:40) H of X raised to power n is the entropy of like n letters

consecutive n letters h let is the average information associated with those n letters and

then it is already a average, then you divided it by n like a n letters. So, for per letter, but

in combination like abcd like 4 letter combination abcd like it is like a inside there will

be  there  will  be  having  individual  probability  whether  like  if  I  am searching  for  a

combination abcd; it might not be possible that I will find a combination abcd. So, sir it

will vary.

No. So, let me repeat the question the question is that we looking at n grams and they

could be various combination. In fact, there will be all possible combinations for n the

first position.



Student: Sir.

Can we have.

Student: (Refer Time: 27:34) only (Refer Time: 27:36) dictionary words.

No we are not considering only the dictionary words we are considering all possible

worlds which can be constructed with 26 letters.

Student: (Refer Time: 27:47) in case of 4 4 (Refer Time: 27:49) equals to 4 we evaluate

by 4 like for abcd like I calculate to for all divide by 4, but like it is abcd, but if I take ac

bd then also answer comes out to be same because like b is coming before or after, but I

am dividing by 4 in the end.

No, but the probability of abcd and probability of acbd may not be the same for example,

probability of e g g is much higher than gee or geg because g e g will never occur, but e g

g  will  occur. And e  is  more  frequent  than  z;  so,  all  those  things  will  be  taken into

considerations. Therefore, we talk about a statistical investigation what occurs in a big

fat dictionary, but you look at all possible words like q qq qq you it will tend to 0 right

never occur.

So, if you do that analysis because we are talking about English language as we use it

will show that you really need less than 1.5 bits per letter; this is remarkable. This first

thing  this  says  is  that  I  can  save  humongous  amounts  of  bandwidth,  bandwidth  is

expensive. Half of the time I text my messages maybe I am not using the bandwidth

optimally; it tells me that when I save my data on cd maybe I should compress and save

it because there is so, much of redundancy.

The more fundamental question is why does the language have redundancy; the answer

to that is that languages all over the world have evolved and this has its own built in error

correction technique. That even if I say hello and I miss out one of the else and you read

h e l o; we can almost guess that it is a hello, but the redundancy is built in it helps us

communicate more reliably. What is very very uncanny is languages developed across

the world in  different  parts  at  different  times.  But,  if  you calculate  the entropy of  a

particular language say Hindi or German or English their entropy is very very close to

the same number of between 1 and 1.5 except Chinese which is a pictorial language and



so they have very smart ways. So, one tree is a tree 2 trees is a forest right; so it is a

picture based things. So, they do not have that same concept; so, they can compress it

much much more.

So, if you look at any normal language across the world the entropy is very very close to

between lying between 1 and 1.5.

(Refer Slide Time: 21:23)

But, let us do look at a very interesting thing. If you go and buy a modem which should

be able to give you real time speech communication. Or if you want bandwidth which

will permit you to send speech over say wireless; you always ask for a certain data rate

and it is typically 32 kilobits per second or 64 kilobits per second for toll quality speech.

Why do not we use this tool that we just learnt the entropy and find out the entropy of

spoken English, alright.

So, consider me as a speaker an average speaker and if you listen carefully;  I speak

roughly  60  words  per  minute.  Typically  a  speaker  in  English  speaks  60  words  per

minute, and if you assume that every word has about 6 letters; then you can calculate that

the average number of letters spoken per second is roughly 6 letters per second, but now

we just calculated that each letter is roughly 1.25 bits of information do you agree?

Then my information rate as a speaker of English language who is speaking about 60

words per minute; I am actually speaking information worth only 7.5 bits per second



right. So, if you look at it those that is for the letters and if you talk about the bitrate of an

average speaker right; it comes out to be hardly 30 bits per second.

It is just multiplying the numbers right each letter is represented by 5 bits right even if

the letter is represented by 5 bits or 7 bits we will just take it to a little bit higher. But I

am talking about in the range of 30 bits per second, maybe 45 bits per second max 50

bits  per  second.  Regardless  of  how fast  I  speak how big  words  I  speak,  I  am only

communicating to you at 30 bits per second.

But if you look at the typical data rate requirement for speech it is 32 kilobits per second.

So, where is the catch? So, let me explain with a diagram.

(Refer Slide Time: 34:19)

So, if you see there is a speaker and he has this wonderful device called speech to text.

So, whatever he is speaking is going in terms of something like hello how are you, and

so and so forth. But this is converted into bits. So I convert to bits and I get a sequence of

1001, but this speaker is only speaking at max 30 to 50 bits per second; these bits go over

a channel and are received.

And then I  convert  them to characters  and then I  get this  hello  out and then I  have

another device which converts text to speech right. And here I have my invention which

let us me go from 30 bits per second to give you a good quality audio; where is the

catch? I do not need 32 kilobits per second, I just need 30 bits per second there is 3



orders of magnitude difference. The catch is that I will not be able to hear the same guy

speak and the quality of speech will not be the same; here I have a prerecorded way of

converting text to speech.

So,  it  is  a  mechanical  output  here,  but  indeed those  32 kilobits  per  second that  we

reserved to communicate speech data is only to ensure that the listener and the other end

gets to hear my sound including all the quality of my sound and all the (Refer Time:

36:44) interest is attached with it that is the price we pay in terms of transmission of

speech, but entropy of spoken English is really very very low.

(Refer Slide Time: 37:00)

So now, we move to the next concept called conditional entropy; the average conditional

self information; so, also called the conditional entropy right. So, it this is not a big leap;

average  self  information  is  entropy,  average  conditional  self  information  is  called

conditional entropy and it is simply defined as H of X given Y as double summation joint

probability P x i comma yj log of 1 over P x i given by j. So, this is the place where you

have the conditionality.

So, what is the physical interpretation of this definition? The physical interpretation is as

follows H of X given Y the conditional entropy is the information for me it is also the

uncertainty in X after observing Y. Let me repeat X is a random variable, Y is also a

random variable maybe they are connected ok.



So, if you observe Y you can probably say something more about X; how much more ?

So, H of X given y is the uncertainty in X remaining after you observe Y. So, we already

know this definition of H of X given Y right and what we can write is that. We already

have a definition of H of X. So, you can write average mutual information which is I X

semicolon Y is nothing but H of X minus H of X given Y. But since I of X semicolon Y

the average mutual information is also equal to I of Y semicolon X; you can always write

is equal to H of Y minus H of Y given X.

Later, in this lecture we will use a Venn diagram to explain this is what is important to

note  in  this  equation  is  this  average  mutual  information.  What  is  the  information  X

communicates  about  Y  and  what  Y  communicates  about  X  is  linked  to  the  self

information and the conditional self information this is a very useful formula. And we

will be using it time and again.

(Refer Slide Time: 40:00)

So, let us look at the average mutual information and link it to conditional entropy. We

have already established that average mutual information I X semicolon Y is nothing but

H of X minus H of X given Y, which is equal to H of Y minus H of Y given x.

We already know that average mutual information is non negative; it clearly says that H

of X has to be greater than or equal to H of X given Y. And I am very happy to note that

for a very simple reason it is very intuitive that H of X given y the uncertainty in X

having observed Y is at most lower or equal to H of X.



If I observe Y it cannot increase the uncertainty either to tell me something about X or it

will not, but there wills there is no way that observing Y; another random variable Y will

increase the uncertainty  in X, there is  a  very physical  interpretation available  to  this

equation.

So,  what  happens  when I  X semicolon  Y is  0;  it  means  that  H of  X interpreted  as

uncertainty of X becomes equal to H of X given Y that is uncertainty of X given Y;

whether you observe Y, you do not observe Y H of X given Y is the same as H of X and

clearly this is possible if X and Y are statistically independent.

Since, H of X given Y is the average amount of uncertainty in X after we observe Y. So,

this is how to physically interpret it and H of X is the average amount of uncertainty of X

anyway what does it mean for I X semicolon Y? Well, I semicolon Y I X semicolon Y is

nothing but the uncertainty in X remaining after you remove the uncertainty in X having

observed Y right.

So, we put it on record that since H of X is greater than H of X given Y the observation

of Y in no case increases the entropy of X. We can at best decrease the entropy observing

Y cannot reduce the information about a X it can only add to the information. So, this is

the crux of this slide.

(Refer Slide Time: 43:02)



We now go to the notion of joint entropy; the joint entropy of a pair of discrete random

variables X and Y which have a joint distribution P x comma y is defined as follows H of

X comma y is double summation this joint probability the joint distribution log of p x i

yj.

Now, we can use mathematical definitions of H of X H of X comma Y and H of X given

Y to obtain the following chain rule. What is the chain rule? H of X comma Y joint

entropy what is the joint the uncertainty present both in X and Y the uncertainty of both

X and Y taken together is nothing but the uncertainty of X right plus uncertainty of Y

given X. So, it is intuitive if you follow it or you can also write it as uncertainty of Y plus

H of X given Y; that is having observed Y what is uncertainty of X?

In reality suppose I give you a case where X and Y are statistically independent in that

case H of X given y is nothing but H of X. So, the joint entropy the total uncertainty in X

and Y taken together is nothing but uncertainty of X and uncertainty of Y added together

and same is the case with this equation.

Now, we put together all that we know and we write this average mutual information I X

semicolon Y as H of X plus H of Y minus H of X comma Y. This is a very very useful

relation which you will use throughout this module. So, this slide gives you not only the

chain rule, but also links the average mutual information to the uncertainties of X Y and

the joint entropy of X and Y. Whenever you want a physical interpretation h should be

interpreted as the uncertainty of. So, H of X is uncertainty of x H of Y is uncertainty of Y

H of X comma Y is uncertainty of X and Y taken together.



(Refer Slide Time: 46:14)

So, let us see whether everything fits together can we close the loop? Can we close the

chain? Question that I am asking is how much does X convey about itself X is a random

variable and X is a random variable. So, if I ask this basic question having observed X

how much information  does it  convey about  itself?  So, I  am tempted  to  put I  of X

semicolon Y as I of X semicolon X. What is the mutual information of X and X if my

math is right I should get an answer?

So, if you put it there this is nothing but H of X minus H of X given Y, but Y is nothing

but here X. So, what is the uncertainty of X given X 0? So, this quantity goes and you

are left with H of X and therefore, it is called the self information this is the entropy that

we have already figured out.  So,  it  all  fits  in  together  it  makes perfect  sense all  the

definitions that we have given so far are consistent with each other.



(Refer Slide Time: 47:40)

So, we now look at a very interesting interrelationship between H of X H of Y H of Y

given X H of X given Y I of X semicolon Y. So, consider this Venn diagram here the

pink represents the uncertainty in X, size can be taken as the amount of uncertainty. So,

X could be a coin toss experiment with a biased coin. So, there is uncertainty, but there is

some amount of uncertainty.

Now, Y is another big circle represented by light blue which represents the uncertainty in

Y. So, what could Y be? Y could be another coin toss experiment, but this type is a fair

coin. So, this circle is much bigger, but they overlap. So, probably my friend 1 who is

tossing an unfair coin and giving me the red circle and my friend 2 who is tossing a fair

coin and giving me the blue circle are talking to each other; there is some dependency

ok; so, there is an overlap.

Now, the joint entropy H of X comma Y is the outside perimeter of this structure ok. This

together represents the H of X comma Y and if you look at just the pure pink area is H of

X given Y. So, if I remove it this white portion this part of the circle which was H of X is

the uncertainty of X given Y because that much has been removed, because Y is right

here.

On the other hand, if I want for Y this part of this circle is H of Y given X and the

intersection is the average mutual information. So, if the average mutual information is

high; I will starts making the overlap larger and this intersection will increase. So, much



so, that I can make this  H of X completely end up being inside H of Y ok. So, the

average mutual information can at best be H of X.

(Refer Slide Time: 50:33)

Now, let us quickly take a look at an example this is our friend the binary symmetric

channel, but unlike the last time this time the input probabilities are not half and half, we

argued in the last class that it is not always necessary that the input probabilities should

be 0.5 and 0.5. If I tap my internet line and I measure the 1s and 0’s chances are that 1e

number of 1s will not equal to number of 0’s over a long enough period of time. So, for

instance let us say probability of 0 is q and probability of one is 1 minus q.

Now, my binary symmetric channel has the probability of flipping of bits equal to P. So,

1 goes as 1 most of the time, but once in a while it becomes a 0 with probability small p.

Likewise 0 sometimes flips and becomes 1 with probability small p; so, if you look at the

entropy of the binary source at the input it is nothing but minus q log to the base q minus

1 minus q log to the base 1 minus q I am lonely looking at the input probabilities.

So, there is a certain amount of uncertainty in the input itself  and if you look at the

formula for conditional entropy H X given Y it is given by this double summation.
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So, I would like to plot by H of X given Y for different values of q. So, let me pose a

problem to you we have seen that this binary symmetric channel makes error once in a

while, but I am more excited about finding out how does H of X given Y; the conditional

entropy of X given the observation of Y at the further end of the channel change as I

change my input probabilities.  So, x axis is Q I have got 3 figures for each one for

different  values  of  p.  So,  first  thing  to  note  is  as  we  have  seen  in  this  previous

formulation H of X given Y that it  depends on the probabilities of P x i comma y j

together and they depend in turn on p and q.

So,  H of X given y the uncertainty  of  x given the observation  of Y increases  as Q

increases go through a maximum and then goes down again, but if I make my channel

worse. So, p is equal to 0.2 the overall uncertainty of X increases remember physical

interpretation H of X given Y; I am trying to figure out the uncertainty on X having made

an observation of Y; it is a regular communication problem, you have a handle on y you

observe y and you guess what is X.

 Now if I am excited about I X semicolon Y which is nothing but the average mutual

information over this channel I get the following curves again the x axis is q and the y

axis is I X semicolon Y. For p is equal to say 0.3 or 0.7 you will realize that whether you

flip it to p or 1 minus p; you get the similar results the I X semicolon Y increases with q

reaches a maximum and goes down.



But then if; so we are talking about average mutual information how much is the channel

communicating I X semicolon Y is the measure of the goodness of the channel. So, when

probability of error is high points is pretty bad it communicates, but it is not good I make

the channel better, I reduce the probability of error p is equal to 0.1, look it has been able

to communicate much more. And when it is an ideal channel right probability of error is

0; then indeed it can go right up to 1. So, it can actually effectively communicate one bit

per use fine.
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This brings us to the end of this lecture; let us summarize what we have learned today.

We started off by revisiting average mutual information, we will be looked at entropy

and self information followed by the definition of conditional entropy joint entropy and

we looked at the chain rule. And finally, we looked at an example of a binary symmetric

channel and how the input probabilities affect I X semicolon Y.

So with that, we come to the end of module 2.


