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Hello, and welcome to our next lecture on Linear Block Codes. Let us start with a brief

outline for today’s talk.

(Refer Slide Time: 00:38)

We will today study Hamming codes followed by low density parity check LDPC codes

then we will look at the notion of optimal codes. And finally, maximal distance separable

codes also called as MDS codes we will top it up with some examples. So, that is the

brief outline for today’s talk.
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Let us quickly recap what we learnt in the previous lectures. We have already considered

the probability  of error P err  for any decoding scheme as that  probability  which the

decoder output is a wrong codeword. This is also called as a residual error rate which

means that despite applying the error control coding technique you still have a finite non

zero residual error rate.
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We also found that the upper bound on the probability of error P M can be expressed as

follows. Where, capital M is 2 raised to the power k k being the length of the information

word. These turn happens to be the minimum distance of the code and this is our a binary

symmetric channel. So, small p is the probability of a bit getting flipped. So, we found

this up using a union bound.

(Refer Slide Time: 01:59)

We also found out what do we mean by the term coding gain it helps us compare two

systems. So, if you have for example, a coded and an uncoded system and on the y axis



we have the probability of error, on the x axis we have E b over N naught which is a

measure of the signal to noise ratio in terms of dB for a certain probability of error say in

this case approximately 10 raised to the power minus 5 we can say that the coding gain is

this decrease in terms of E b over N naught. That is what is the reduced SNR required to

give you the same performance in terms of the bit error rate.

Finally, we can sell a system in the market if it adheres to certain probability of error and

this access changes depends depending on the application. So, if you have a medical data

imaging problem I would rather be around 10 raised to the power 6 or 10 to the power

minus 7, whereas if I am just doing simple digital voice transfer 10 to the power minus 4

and 10 to the power minus 5 are good enough. So, this axis actually tells you what is the

application level and the quality of service that goes with that application.

So, coding gain changes with the P e coding gain is measured in dB. And typically, it

increases as P e decreases the limiting value as P e tends to 0 is called the asymptotic

coding gain as the theoretical upper limit.

(Refer Slide Time: 03:36)

We also looked at the Hamming bound or the sphere packing bound and if you look at

the binary case thus Hamming bound is given by this following expression, where n is

the block length, k is the length of the information word and t is the number of errors that

it can correct.
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Now, we also made an observation that just because we have a set of integers n, M and t

which satisfies the Hamming bound it does not necessarily mean that you can find a

linear  block  code  that  exists  for  those  numbers.  And  you  can  alternately  write  the

Hamming bound by substituting M is equal to q raised to the power k as follows. So,

please remember the Hamming bound is for a q-ary code, it is not necessarily for binary.

Binary is a special case when q is equal to 2.

(Refer Slide Time: 04:35)



What is a perfect code? Well, a perfect code is one that achieves the Hamming bound and

we have put that equality here and this is the condition for a perfect code.

(Refer Slide Time: 04:45)

Now, we move on to a class of codes called Hamming codes. The property of Hamming

code is as follows: the n comma k is given by 2 raised to the power m minus 1 comma 2

raised  to  the  power  m minus  1  minus  m,  where  m  is  any  positive  integer.  So,  all

Hamming codes satisfy this n comma k condition. So, let us say m is equal to 3 and

substituting 3 here would give you 7 and substituting  3 here will  give you 4.  So,  7

comma 4 is a valid Hamming code, alright. So, if you put m is equal to 4 you can have

another value say 15 here and 11 here. So, 15 comma 11 is another valid Hamming code.
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So, let us look at the generator matrix for the binary 7 comma 4 Hamming code. So, we

have the number of rows as four, because clearly k is equal to 4 and number of columns

is seven, because n is equal to 7. So, it is a k cross n matrix which is the generator

matrix. It forms the basis that generates the entire code space.

Now, you can always find the corresponding parity check matrix. In this case we list out

the parity check matrix. Again, please note that the dimension is n minus k cross n. So, n

minus k is 3 because n is 7, k is 4. So, 7 minus 4, 3; so the number of rows is three and

number of columns is seven, but we make a couple of very interesting observations. The

first observation is that all the columns of H right are basically the nonzero vectors the

binary vectors of length 3. So, you have 0 0 1 0 1 0 0 1 1 so and so forth, up to 1 1 1. So,

all the seven possible combinations barring the 0 0 0, there are seven possible vectors of

length 3. All of them are listed in some sequence and this happens to be the check matrix.
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So,  we  know  that  you  can  have  an  equivalent  parity  check  matrix  were  simply

rearranging the columns. So, since I have got these seven vectors and of this I have to

identify 1 0 0, 0 1 0 and 0 0 1 to be kept on the rightmost side we can simply rearrange

them.

(Refer Slide Time: 07:50)

So, please note, we need it in the systematic form which is of the type minus P T I; I

happens to be the identity matrix which is 3 cross 3, right. So, what we want to do is

simply rearrange those columns and you get your H matrix and needless to say this can



be this is not necessarily unique, you can have many other rearrangements for the first 4

columns and each one will be a valid H matrix, but this gives us a very nice way to put it

in this systematic form. So, this is your parity check matrix for a 7 comma 4 binary

Hamming code.

(Refer Slide Time: 08:40)

Now, if we were to look at the generated matrix in a systematic form we have this P

transpose. Here for this one please note in binary 1 plus 1 is 0. So, minus 1 is equal to

plus 1. So, minus sign is not really making any difference it is as well as minus P T is

equal to P T.

So, all you need to do is take this portion and just put a transpose of it and follow it. If

we proceed it with an I. So, I have got this identity matrix 4 cross 4 and this is the

transpose of that P T which gives me the P matrix and I have a quick rendering of the

generated matrix. In a systematic form for the binary 7 comma 4 Hamming code this is

your parity matrix and this is the I matrix.
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Now, we observe that no two columns of H are linearly dependent, right because there

only seven columns and we have exhausted all the seven vectors which are nonzero to

form those columns. Clearly, no two columns of H are linearly dependent, right, but for

m greater than 1, it is possible to identify three columns of H which would add up to 0.

So, you can always go back to your H matrix and pick up three columns and these three

columns would add up to 0.

Now, we established in the last class that that could lead us to the minimum distance of

the code. Let us have a quick recap on that.
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So, we know that any valid code word c H transpose is equal to 0, that is by construction.

So, what is it doing? This is H transpose so, c is actually picking up the columns of H

right, because this is the H transpose. So, if you have this c as c 1, c 2, c n multiplied by

H transpose equal to 0. All it is doing is the c 1 is picking up the first problem, c 2 is

picking up the second column and c n is picking up the n-th column and it is adding up to

0.

So, if the minimum number of columns of H which add up to 0 that is the minimum

weight possible because in a binary case these are the either 1’s or 0’s; for example: if it

were 1 0 1 0 0 1 and you have got this H transpose equal to 0 then what it does is this

first guy picks up the column 1 of H. So, 1 into say column one of H, c H 1 and the 0

picks up the second column multiplies it by 0. So, it is negated plus one times c H 3

picks up the third column. So, it picks up the first column third column and n-th column,

right and that is 0.

So, essentially the number of nonzero elements in the fact here in our binary case the

number of one’s here is picking up one column each and that is adding up to the 0 vector.

So, the minimum number of columns of H that  add up to 0 would give you d star,

because how many columns they picked up by the nonzero elements of this code word.

And therefore, that directly corresponds to your d star.



So, we come back to a slide and have a look at the H matrix here and we see that you can

pick three of those columns and you can ensure that  they add up to 0. Any two are

linearly independent, but three of them add up to 0, it tells us that the minimum weight of

this Hamming n comma k, Hamming code is equal to 0, but we have already seen that

for distance d star equal to 3, it can add base to be a single error correcting code because

d star should be greater than or equal to 2 t plus 1.

So, you have these Hamming codes even though they are perfect codes because they

satisfy  the  condition  for  the  profit  codes  are  only  single  error  correcting  codes

nonetheless  they  are  very  good  they  are  optimal  in  certain  senses.  So,  7  comma  4

Hamming code is not only a good textbook example, but can also be used to give you a

single error correction.

(Refer Slide Time: 14:47)

Now, for perfect codes we need to check this condition because this inequality should be

met here. So, if it needs to be equal if it is for perfect code. So, we put this equality. So, 2

raised to the power k up to t error correction should be equal to 2 raised to the power n,

but in our Hamming code case we know the 7 comma 4 code n is 7, k is 4, t is 1. So, if

you put this condition k is 4, n is 7 and t is 1 so, we only take the first two terms in the

summation and substitute them. We quickly can verify that indeed this equality holds and

7 comma 4 Hamming code is a perfect code.
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Now, let us see what we can do by tweaking it a little bit. So, already you know you have

an n comma k Hamming code you can always modify it to an n plus 1 comma k code

with d star is equal to 4. So, by just adding one more bit to the code word you can. So,

adding what do you mean by adding one more bit I add a parity bit and I make it n plus 1

comma k code and suddenly my d star becomes 4.

We can go the other way also and we can shorten the n comma k code. Now, how do we

do that? Well,  n comma k also gives us the idea that G is k cross n. So, I can start

deleting rows and columns. So, if I can delete l rows and l columns, I get a modified

shortened G matrix for Hamming code, right. So, you can also remove the columns of H

and you will get the equivalent H. So, I can play these small tricks to get a smaller or

larger  code  with  interesting  distance  properties,  they  also  an  alternate  definition  of

Hamming code. So, let n is equal to q power k minus 1 divided by q minus 1. So, you

can have q for example, for binary case q is equal to 2 and k is equal to 4. So, you can

substitute these values then an n comma k Hamming code over GF q is a code for which

the parity check matrix has columns that are pairwise linearly independent, ok.

So, we are now trying to tell  me in a kind of a different way how you can actually

construct a Hamming code. We have to get the pairwise linearly independent columns of

H and once we have an H we can always construct a G and vice versa. So, that is the

columns are a maximal set  of pairwise linearly independent vectors,  and we saw the



simple example for a 7 comma 4 code that each of the columns of pairwise linearly

independent, but 3 of them added up to 0.

(Refer Slide Time: 18:01)

We now look at another class of codes, another class of linear block codes called the low

density parity check code, but for that we start with a slightly different definition which

is the Gallager code. So, an r comma s Gallager code is a linear code with a check matrix

H which satisfies the following condition. So, H matrix has every column has r ones and

every row has s ones rested all zeros. So, suddenly if you want to visualize a binary code

we are putting constraints on how many ones you can have on every column and how

many ones you can have in every rows and if we make this constraint straight that is r

and s values are small then my H matrix is pretty much full of zeros,.

So, if a Gallager code with code with small values of r and s is basically a parity check

matrix which is mostly zeros and a few ones in the rows and columns as dictated by r

and s and by squeezing r and s I can reduce the number of ones and thereby making it a

low density; low density of what - ones. So, it is a low density parity check code and we

will quickly come to the benefit of this, but first let us understand the job of a parity

check code.

What a parity check code does is it takes? So, the received vector in nu, nu H transpose it

checks for the syndrome. Now, each time I do nu H transpose, the different elements of

nu takes up the rows, the columns of the H matrix and performs computation, but if most



of the elements are 0, then the computation load really really goes down. So, question is

can we still have good interesting distance properties despite having the parity check

matrix highly rare that is the density is pretty low.

So, thus an LDPC code has a sparse parity check matrix with very few ones in each row

and column. So, typically LDPC code has r less or equal to log to the base 2 n, where n is

the block length. So, if you remember the size of a the parity check matrix is n minus k

cross n, there are n columns and number of rows and number of ones in every column

has is limited by log to the base 2 n. So, it is kind of a rule of thumb which gives you

what is low enough. So, this code can be written as n which is the block length r, where

every column has r ones s where every row has s ones; so n comma r comma s LDPC

codes. These are the parameters of my LDPC codes.

(Refer Slide Time: 21:35)

Let us quickly look at an example. So, let us look at this H matrix which is the parity

check matrix. Let us first look at the columns, pick any columns in the third column. I

see only two ones, I pick any other 1. Suppose, I pick up the fifth again I see only two

ones I pick up any one and again I see only two ones. In fact, I can do this exercise then I

can make a sanity check and see that all the columns have at most 2. So, r is equal to 2.

Now, look at the rows I count the number of ones; 1 2 3 4. So, four ones most are zeros

again 1 2 3 4 four ones four ones four. So, we say that there at most four ones; in fact,

exactly four ones in every row and two ones in every column. So, r is equal to 2 and s is



equal to 4 for this parity check matrix and if I count the number of columns 1 2 3 4 5 6 7

8 9 10. So, n is equal to 10, ok. So, this is 10 comma so r; r is 2, 2 comma 4, 10 comma 2

comma 4 LDPC code.

(Refer Slide Time: 23:01)

So, we just now verified that r is equal to two ones in each column and s equal to four

ones in each rows and clearly we cannot have any more independent columns in this 5

cross 10 matrix,  with all  possible combinations of choosing two ones out of the five

possible locations. 5 choose 2, it  says 10 has an exhausted. Therefore, you have n is

equal to 10 and k is equal to 5 because the dimension of a parity check matrix is n minus

k cross n.

So, we also observed that the last three columns add up to the zero vector; so if you go

back and if you look at these things 0 0 0 this 1 plus 1 0 1 plus 1 0 0 0. So, the last three

columns if you add them up it is 0 and you can try as much as you want to. You cannot

find two columns added up to 0. So, the minimum number of columns that add up to 0 is

3 consequently the d star must be 3 and hence it is a single error correcting code.

So, what does it tell  us? It tells  us this is a sparse matrix for whatever reason let us

believe that it is sparse enough; although, real LDPC codes have pretty much most of the

weight as zeros and very few ones. So, this is a toy example, but you will see that despite

having lots of zeros you have not compromised on the distance. The minimum distance

is 3 and still it is a useful code, it can correct a single error: single error in the code.



So, this is a 10 comma 2 comma 4 LDPC code, this is an example of that.

(Refer Slide Time: 24:55)

Some more definitions an LDPC code with fixed r and s is called a regular LDPC code.

So, the example that we looked at just now r was fixed at 2 and s was fixed at 4; so it was

a regular LDPC code, but if the number of ones of the columns of number of ones in the

rows are approximately r and s. So, we do not restrict it that it necessarily has to be 2, it

can be between 2 and 3 and s can be between 4 and 6 we can put those constraints. So,

then it is called an LDPC code which is irregular.

So, LDPC codes can constructed  by using either  a random construction  or algebraic

construction or a combination of 2. So, I can choose any of these techniques or combine

them to form my LDPC codes, but whenever I construct an LDPC code I first get the H

matrix and then I get my G matrix.
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So, a simple algo is given as follows for random construction of LDPC codes. There are

four steps in this algorithm set I is equal to one and the second step generate a random

binary vector of length n r over s. These are the parameters n is the block length, r is the

number of ones in the columns, s is the number of ones in the rows and Hamming weight

r.

So, this is i-th column of H. So, I am constructing H I need to get n vectors in place and I

get the i-th column, the i-th vector as follows in a random fashion if the weight of each

row. So, I put the column in place, but now I talk about the weight if the weight of each 0

of H at this point is less than or equal to s, because s is the constraint I have and the

scalar product of each pair of columns is less than 1. Then set is i is equal to i plus 1, that

is I go to the next column else go to step 2.

So,  we are constructing  it  right  and we are ensuring that  you are not  exceeding the

number of ones in the rows to more than s, and if you can reach I is equal to n that is you

have found all the n vectors which satisfy the conditions of the maximum number of

ones in the columns and the rows then you have actually successfully constructed the

LDPC code. Now, the random algorithm does not guarantee s ones in each row, but it

gives you less than or equal to s ones.
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Now, let us look at something called as a Tanner graph. Now, it is a very interesting

graphical representation of the linear code based on based on check equations. So, we

again move the focus to the parity check matrix how it works and since parity check

matrix does the great job of either telling you whether the code is a valid code word. The

receive code received vector is a valid code word or the syndrome associated with it we

look at the parity check matrix side.

So, the Tanner graph is a bipartite graph which means it has two kinds of nodes. The

symbol nodes and the check nodes and these are connected. So, each symbol node is

connected only to the check nodes and each check nodes connected only to the symbol

nodes. An LDPC code with fixed r and s is called a regular LDPC code as we have seen

earlier.
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And, how do we do this, decoding part something has to be good about this LDPC code

because they are very popular and they are finding place in the newer wireless standards.

One of the methods is called the bit flipping algorithm. Let us understand this algorithm

and we will follow it up with an example.

So, it is a simple iterative algorithm. The beauty lies in its simplicity and the minimum

number of computations required to come to a right conclusion also if you fail to come to

a right conclusion you can all  always say that,  sorry, I  tried my best  my number of

iterations have been exhausted and I could not declare the result. So, it is not that if it

fails to give you a correct answer, it will definitely give you the wrong answer. It will

raise its flag and say no, I could not complete the decoding process.

So,  what  is  suboptimal  algorithm what  does  it  look like  well  we first  perform hard

decision decoding on the received symbol to form a received vector nu. So, the first

vector nu which is the received vector is n bit long, we do not know whether nu is the

valid code word or it is a code word plus error. So, first job is to find that out. So, we find

the s as nu H transpose, ok. This is the syndrome decoding strip and I will jump with joy

if s comes out to be 0 and I will declare nu to be the correct valid code word. However, if

s is nonzero my fun begins and I will try to take a call based on a bit flipping algorithm.

So, note that each component of nu affects only s components of the syndrome s, if only

a single bit is in error only s syndrome components will be equal to 1. So, this is an



important  observation.  So,  now,  we  compute  all  check  sums  and  the  number  of

unsatisfied parity checks involving each of the n bits of nu are figured out. So, what we

do is if nu is nonzero I start my action and I try to identify which of the elements of nu

are leading to the unsatisfied parity checks.

(Refer Slide Time: 31:19)

For those bits of nu which are involved in the largest number of unsatisfied parity check I

flip them this is the bit flipping algorithm and then I go back to my step 3 which is again

compute the checksum. And again go and see flip those bits  of new received vector

which are involved in the largest number of unsatisfied parity checks. And I keep doing it

till  all  the checks are  satisfied  that  I  get  a  0 vector  in  nu prime H transpose or  the

maximum number of iterations allowed are reached and I declare that sorry, I could not

find the answer.

So, this bit flipping algorithm does not guarantee that errors up to half the minimum

distance are corrected. However, for large block lengths this suboptimal algorithm works

remarkably well. So, let us look at a very simple example.
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This is your rate 1 by 3 code. So, if you can see that this is n minus k and this is n. So,

this n is 6, all right and this is your parity check matrix here every column if you see has

r is equal to 2 and if you observe every row s is equal to 3 ones are there. So, for this

even though in the truest sense it is not a sparse matrix, but it will at least it fix the slide

and we are not going to go for a much larger toy example here. So, m is equal to 6 r is

equal to 3 s is equal to 2, but this is we have set this is not n is not large enough to yield a

really sparse H matrix what we live with it.

(Refer Slide Time: 33:11)



So, we first construct the Tanner graph what do we do with it? On the right you see that

is the H matrix is there on the left I have put the Tanner graph. It is a by bipartite graph.

Here we have these nodes and this is the check nodes.

Now, please note that 1 1 1 0 0 0. So, this c 0 is connected only to s 0, s 1, s 2 what does

these can relate to? These correspond to your new vector that you receive the vector that

you receive yes that is of the length n block length and if the errors in s 0, s 1 and s 2

they will relate to this c 0 what is this? Well, this is my syndrome. So, the greens are my

elements on the syndrome vector reds are the elements of the received vector. Whenever

you put the received vector nu and processor through H transpose you get these as the

syndrome.

So, what is the beauty; is that because of the sparsity there are very few connections

actually. If I start increasing the number of ones in by parity check matrix the number of

interconnection should just go up. So, limiting I can keep increasing my n, but I will

limit the number of connections and therein lies the beauty of this low density parity

check. So, if my received vector list of syndrome which is 1 0 0 0, it clearly says that this

guy which is  one should flag and lead me to s  0,  s  1,  s 2 being the culprits  or the

suspects.

On the other hand, if I have 1 0 0 1. So, this c 3 also shows a one it means that s 2, s 4

and s 5 which are connected to c 3 one of them are possibly wrong. So, if I look at this

guy I have these two and so and so forth. So, you know that whichever element becomes

a 1 it has some suspects that it raises up and I will do a voting and see which of the nodes

are maximally under suspicion.
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So, let us understand this with a simple example. Suppose, we happen to receive vector 0

0 1 0 0 0 at the receiver and I wish to do whether this is a valid code word, whether I

have made an error? If yes, then what is the corrected version? So, first stop is to find out

the syndrome I quickly take my H matrix and I perform nu H transpose and I get 1 0 0 1

which is a non zero. So, clearly I declare that this received vector nu is not a valid code

word, but then what is that code word which resulted in this error I need to do the correct

decoding.

Let us do this bit flipping algorithm for this LDPC code to do. So, first observation is

that the syndrome has the first element and the last element as ones and rest are zeros,

ok; 0 0 0 0 would say nobody has made any errors. These two might lead to which of

these have made an error. So,  this  implies  that  there is  an error  among the symbols

connected to the check nodes 1 and 4. These are the check nodes and two flags have

gone up in the Tanner graph.
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So, we make the following observation, ok. So, we pull up the Tanner graph and we look

at the syndrome and we identify the c 0 the first element of my syndrome and the last c

3. They are the ones whose flags have been raised and now, I have to go back and see

which of these received vector which of these elements need to be flipped or changed, so

that I can get a 0 0 0 0 here that is the logic.

So, first I look at this first guy; first one it is only connected to these three. So, first guess

is that any one of these three s 0, s 1, s 2 could have resulted in this one. Either this is

flipped or this is flipped or this is flipped, but I do not know. So, I look at the second guy

and I say well c 3 is connected to s 2, s 4, s 5, right. Now, s 2 is raising the maximum

suspicion because not only is it connected to c 0, but it is also connected to c 3.

So, what I will do is I pull  back my nu the received vector and I said which is that

number 3 position, this is the guy which is connected to two of the check nodes which

are in error. So, I flip it is a bit flipping algorithm. So, I am not sure whether it is right or

not I am I am taking a guess it is an intermediary step. So, I flip this having flip this I

again perform this new prime H transpose, but this time I will get a 0 0 0 vector. So, the

syndrome will be 0. So, this bit flipping has led me to a decoded a correctly decoded

vector nu which is the all zero vector that was sent.



(Refer Slide Time: 40:03)

So, this is a simple example that tells me how a bit flipping example algorithm works

and  this  is  exactly  what  is  written  in  this  slide.  So,  bit  4  of  the  received  vector

corresponds to no field checks bit 1 and 2 of the received vector corresponds to check

node 1. Similarly, bits 5 and 6 to check node 4. So, we follow this up and look at the

conclusion that third bit could be possibly flipped we do that flipping and check for the

parity check matrix. Hence, the corrected vector is the all zero vector in our case.
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Now, let us move a little bit ahead and we start defining an optimal code. So, what is an

optimal code? An optimal n comma k comma d star code is such that none of it cannot be

really improved how can you improve it well the three parameters n, k, d star n minus k

represents  the  overhead.  So,  I  can  improve  this  n  comma k  comma d  star  code  by

ensuring that even if the d star is the same k is the same I can have less overhead. So, I

can have n minus 1 comma k comma d star. So, if I can find the code which is n minus 1.

So,  it  is  a  shorter  code  dock  length  is  reduced  without  changing  the  number  of

information  word  and  it  stills  gives  me  the  same  minimum  distance,  then  I  have

improved upon the code or I said look d star I am not touching I can increase n to n plus

1 and increase k to k plus 1.

So, what does it mean that my code rate has become k plus 1 over n plus 1 and I can

keep going and I can make it k plus 2 n plus 2. So, you can improve the code rate, right

because that fraction goes closer to 1 by this do you agree that k plus 1 over n plus 1 is a

closer to unity than k over n like 1 by 2 2 by 3, 3 by 4 so and so forth. So, your code rate

keeps improving without decreasing your d star. So, again, you have an improvement or I

said look I have n plus 1, I do not touch k, but that increase of 1 gives me d star plus 1

just as we did for that Hamming code that we had a 7 comma 4 code and we added a

parity and the d star become larger or not.

So, if I can do so, if we have an n comma k comma d star code for which no such codes

exists then this is an optimal code, ok; so none of the nearest improvements hold water

such as an optimal code.



(Refer Slide Time: 43:24)

For example, this 24 comma 12 comma 8 is a binary code which is optimal because you

can check that if you reduce this n you cannot find you can disprove that 23 comma 12

comma 8 code it does not exist right this 25, 13. So, you increase it this code also does

not exist because 24 plus 1, 25; 12 plus 1, 13 or 8. So, this also does not exist and this n

plus 1 25, 12 and d is d star is written 9. This code also does not exist, you can take your

time, prove it anyway, either by construction or you can prove in terms of the violation

of the singleton bound whatever you want to do and you can show that these codes do

not exist. And therefore, 24 comma 12 comma 8 is indeed an optimal code.

(Refer Slide Time: 44:21)



Now, we come to one final definition which is the maximum distance separable codes

which is the MDS code. How does this work? Well, we start from the redundancy, then

finally, we are trying to correct the certain number of errors by adding a certain number

of redundancy.

So, we say for a given redundancy r therefore, my code is n comma n minus r ok, k is

equal to n minus r because the redundancies r we are adding r bits to k to make it n, but

whose  maximum  whose  minimum  distance  is  equal  to  r  plus  1.  So,  adding  r

redundancies you are having a minimum distance r plus 1 such a code is the MDS code,

you can easily see that MDS codes meets the singleton bound by substituting this.

Some important in an interesting properties of MDS codes are that a q-ary n comma k.

Linear code is an MDS code if and only if the minimum nonzero weight of any code

word is n minus k plus 1 is one interesting property. Also, a q-ary n minus k linear code

is an MDS code if and only if every set of n minus k columns of the parity check matrix

is linearly independent. So, we can verify these two properties of MDS codes. So, these

are so, we will see that binary MDS codes rarely exists we will have to go to q-ary codes

for getting meaningful MDS codes and when we talk about Reed-Solomon codes we will

find that they are indeed maximum distance separable codes.

(Refer Slide Time: 46:16)

So, we come to the end of this lecture. Let us summarize what we have learnt today. We

have covered Hamming codes and then we looked at the interesting class of codes called



low density parity check codes, we then defined what are optimal codes and MDS codes,

we also looked at some examples.

With that we come to the end of this lecture.


