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Hello, and welcome to our next module on linear block codes. Let us begin with a brief

outline. We will start with erasures and errors as encountered by the bit stream sent over

an unreliable channel. Then we will exploit the notion of cosets, and standard array, and

these are important from classical perspectives. Then we will go on to looking at what is

syndrome decoding, what do we understand by syndromes and then, we will  look at

some examples so that is the agenda for today’s lecture.



(Refer Slide Time: 01:04)

But we start with a quick recap, we have already done systematic codes. We have talked

about  efficient  decoding,  singleton  bound.  We have  talked  about  maximum distance

codes and error connection and detection.

(Refer Slide Time: 01:20)

So, let us look at quickly, what we meant by saying a systematic code. And n comma k

systematic code is one in which the first k symbols of the codeword of the block length n

are information symbols themselves, that is the uncoded vector. The remainder n minus k

are the parity symbols.



(Refer Slide Time: 01:44)

We looked  at  the  singleton  bound,  where  the  minimum distance  also  the  minimum

weight for a linear block code is given by d star, which is upper bounded by n minus k

plus 1. This is the singleton bound. This holds true both for binary and non-binary linear

block codes. And we did a quick proof of that by reducing the generator matrix into its

systematic form. And you have the identity matrix, and the parity matrix at the end.

And we saw that each of the rows of this systematic form generator matrix is a valid

code word, and the weight of any code word can at best be n minus k plus 1. So, no

codeword  can  have  a  weight  that  can  exceed  n  minus  k  plus  1.  And  therefore  the

minimum distance, which is also equal to the minimum weight can never be greater than

n minus k plus 1. Hence, d star is less than or equal to n minus k plus 1, this is called the

singleton bound.



(Refer Slide Time: 02:57)

Based on that we defined a maximum distance code and the maximum distance code

satisfies the equality d star is indeed equal to n minus k plus 1. So, in some sense, it is a

good property to have a maximum distance code is a good code, because you maximize

the distance minimum distance given the constraints of n and k fine. And we got this

equality by putting the upper bound at equal to 1.

(Refer Slide Time: 03:38)

Now, we look at decoding part. So, we have moved from the transmission side to the

receiving side, and we would like to see, t errors getting corrected in a n symbol long



codeword. So, we established that in order to correct t errors, you have the condition d

star the minimum distance should be greater than or equal to 2 times t plus 1. And the

rationale behind it can be seen geometrically. So, suppose you have an n dimensional

space, and every point in this space is an n tuple. So, every code word is a point in space.

(Refer Slide Time: 04:38)

So, let us put c 1 and c 2. And around this c 1 and c 2, we draw 2 spheres, and the radius

of this is t that means, all the code words are words sitting inside this are less than or

equal  to t  hamming distance  apart.  So,  each and every point  within  this  sphere is  a

hamming distance t or less. And the points sitting on the circumference is actually at a

hamming distance t. This is the decoding sphere of radius t.

Similarly, I can draw another decoding sphere of radius t for c 2. And the premise is that

we would decode any word received within this decoding sphere, and we will make it

map it back to c 1 here. Any received vector a world, which is found within this sphere.

What  do you mean by finding word within this  sphere,  any point within this  sphere

represents an end symbol long codeword, and we can receive any possible codeword or

word at the receiver, which is n symbol long. We find out the hamming distance, and if it

is within t, then we map it back to c 2, and this is the nearest neighbor decoding.

Now, what we want is to ensure that every time if t errors or less occur, then we should

be uniquely be able to decode it that is that none of these fears should be overlapping.

What do we mean by overlapping, if the overlap, then there are some points, which are



common to both the spheres, and we will never be able to uniquely decode it back either

to c 1 or to c 2 or to any other codeword.

So, what we want is non-overlapping, to ensure them they are non-overlapping. These

centers of these spheres must be at least 2t apart only, then they cannot overlap, but that

also means, if there is exactly 2t they are touching. So, some points on the circumference

would still be in ambiguity. So, we put that additional measure of 1, because distance

hamming distance is always an integer, so d star should be greater than or equal to 2 t

plus 1 in order to ensure that t could errors in the codewords are always compensated.

(Refer Slide Time: 07:11)

For so we can always correct for t errors provided d star is greater than or equal to 2 t

plus 1. In this diagram, we have put greater than necessarily, because they have separated

these spheres even further. So, this is the condition, it is telling us a very important thing.

It tells us that d star indeed is a single most important parameter for linear block codes,

because it is directly linked to the error correcting capability, and that is what we started

out with, we would like to correct a certain number of errors. So, if you can give me a d

star, which is large enough I can correspondingly correct the errors depending upon the

number of t errors that satisfies an inequality.
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Now, an incomplete decoder decodes only those received codewords or words that are

clearly closest to the one of the codewords, there is no in ambiguity. However, in the case

there is ambiguity, the decoder declares that the received word is unrecognizable, and

requests for a re-transmission. Such a strategy is under incomplete decoding strategy. 

However,  a  complete  decoder  decodes  every  received  word  the  word,  regardless  of

whether that is ambiguous or not, so it may have to make a guess once in a while. And

such decoder is called an a complete decoder.

(Refer Slide Time: 08:51)



Now, we start  with another  kind of problem that  we encounter, while  transmitting  a

series of bit streams, or symbol streams over an reliable channel. So, if the channel is

unreliable, it may not only lead to errors, it can also give you erasures. What do we mean

by erasure, I receive a declares that an erasure has occurred when a symbol is received

ambiguously or their presence of an interference is detected during the reception.

So, instead of guessing is it a 1 or a 0 what you do is, say look some of these bits kind of

did not come through correctly, and for me they have been erased. So, we do not really

know, where that a 1 was received or a 0 was received. Now, we are we not saying it is

an error, we simply say they erased. So, there is a difference between erasure and in

being in error.

(Refer Slide Time: 09:53)

So, I will give you a practical example, where erasure can actually occur. Considered a

binary pulse amplitude modulation, a PAM scheme, where 1 is represented by five volts

and 0 is represented by zero volts.

Now, of  course,  we always put  in  a  noise margin,  so suppose  one volt  is  the noise

margin. So, what do we do, we have a simple decoding strategy at the receiver, what we

say is that if I receive a voltage between 4 and 5 volts, we say hey 1 was sent. At the

other hand if we get between 0 and 1, we declare bit 0 was being sent. But, what do we

do in between well if it is between 1 and 4, we say look an erasure has occurred, I do not



want to take a chance I would like to declare it not an error, but in erasure. So, if 2.9 volt

is received during a bit interval we say look that bit has been erased.

(Refer Slide Time: 10:55)

So, how do we handle this, it is clearly different from errors. A channel is prone both to

errors and erasures. So, if in a channel, we are compensating or planning to correct t

errors and r erasures, then the corresponding error correcting scheme should be able to

handle both t errors and r erasures. So, if r erasures occur, it simply means that have r

fewer symbols to work with, which means that the effective minimum distance actually

becomes d star minus r that is the worst  case,  and we are looking at  the worst  case

scenario.

So, if your channel is producing r erasures in a n symbol long codeword, then all we

have left with us is d star minus r in the worst case, this is because a symbol have to

simply  be discarded,  and they  were contributing  to  the minimum distance,  then  that

minimum distance will reduce. What is the minimum distance, it is the minimum weight.

So, if the erasures happen to happen in those non-zero elements, then your d star actually

reduces.
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Consider this repetition code. So, 0 is repeated five times, and so is 1. So, whenever I

have to send 0, I send 0 0 0 0 0; and whenever I have to send a 1, I send 1 1 1 1 1. So,

clearly d star is 5, the minimum distance or minimum weight is 5. Suppose, we have r is

equal to 2 that is the erasure two of the bits get erased. And for the sake of discussion

only, we say that the first two bits are erased, we just happen to miss the first two bits of

the transmission for whatever reason, and then the next three bits are cut. Same with 1 I

happen to miss the first two elements of this codeword, but rest we catch.

So, the effective minimum distance has now, you can obviously see is 3, and we have to

work with this. Based on this, we have to decide, where there was 0 was sent, or a 1 was

sent. So, erasure can really be detrimental to error correction, because effectively a d star

has gone down.
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So, we will work with this reduced minimum distance, so d star equal to 3, now will

allow me to correct for only one error. Earlier d star was 5 before we had an erasure, so

we it was able to correct two errors, so this erasures have resulted in decreased capability

of error correction.

So, what is why, new constraint d star minus r, if the channel is producing r erasures

should be greater than or equal to 2 t plus 1, in order to correct for t errors. This is what

we write for a channel, which has both t errors and r erasures; or you can put r on the

right hand, side and put d star greater than or equal to 2 t plus r plus 1, so r clearly, it is

up into the number of errors you can correct. Now, we can also have a channel, which

does not have errors, it just has erasures, so t is equal to 0, but only r erasures. And in

that case, your minimum distance should be greater than r plus 1.
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Now, let us move on and look at things a little differently from the decoding perspective.

The next few slides will look at what are the ways to decode a received vector, which

possibly is an error. So, please remember, what we have done is chosen a small subset of

vectors within the space, and we have declared them as valid codewords.

(Refer Slide Time: 15:51)

Now, if you look at it diagrammatically, we have an n dimensional space. And this n

dimensional space has several points. In fact, if it is binary, then we will have to respect

by n points. Now, of these we have to choose to respect k points to correspond to your



valid codewords. So, clearly many of the points are left out. In fact, most of the points

are left out.

The question before us is that how can we arrange these different vectors, because please

remember each point is a vector. How do we arrange them in a logical manner, so that

decoding becomes easy. What has been the problem of decoding, well decoding logically

says that each of the codeword has a sphere around it, which is the decoding sphere. And

hopefully they are not overlapping, at least overlapping in the sense that no common

vectors are present in both overlaps, so no such vectors are present.

Now, in this space we would like to organize all of these points or vectors in a table

format, which will quickly help us decode. And clearly, it has to be done with respect to

the hamming distance. So, would not it be great, if all the vectors within this sphere are

listed in one column.

Similarly, I have another look-up table, which says that all the vectors or points closes to

this codeword are listed together and so and so forth. This organization will quickly help

me do the nearest neighbor decoding. And to do this logically, we would now introduce

this concept of cosets. So, we are talking about sets and cosets all right. Please note, that

there are many points outside some of this, they are not covered by any of these spheres

all right.

So, we go back to our slide, and let us start with a code C, n comma k code, which is

defined over G F q. So, we are talking not only for binary case, but for q symbols in

general. Now, let a be any vector of length n. So, clearly we are talking about from that

code space there are a subset of codewords, and a could be any other vector of length n.

Since, it is of length n, it is also another point.

Then we can form the set a plus c is defined as a plus x, where x is an element of C, so x

is a valid code word. So, I take this a and I add it up, and if it is over G F q, we use the

addition tables of G F q. This set is called the coset or translate of C ok, it is clearly a

translation. So, it is a translate of C. Now, a and b are said to be in the same coset. What

are a and b, both are vectors of length n. So, a and b are said to be the same coset, if a

minus b is also an element of C.
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So, again we start with this n minus k code over G F q. Then every vector b of length n is

in some coset of C all right. Each coset contains exactly q raise power k vectors. And two

cosets are either disjoint or coincide, because partial overlap is not possible. If a plus C is

a coset of C, and b is an element of a plus C we have b plus C is equal to a plus C. So,

what it tells us is that we are forming groups, we are forming sets right and logically

partitioning the space into cosets.

(Refer Slide Time: 21:10)



Now, what to be mean by a coset leader. The vector having the minimum weight in a

coset is called the coset leader. We have already figured out how to make a coset, which

is a translate. If they are more than one vector with minimum weight, then one of them is

chosen at random, and is declared a coset leader. We will use this notion of coset leader

to do our decoding shortly.

(Refer Slide Time: 21:39)

So, let us look at a quick example. Let us look at a 3 comma 2 code, so it is a linear code,

and therefore, we have a generator matrix representation of it, so k is 2 and n is 3, and

this is a simple linear block code. So, there are four code words 0 0 0, 0 1 0, 1 0 1, and 1

1 1, they are formed by this. You can do a quick sanity check, 0 0 0 necessarily must be

there.

Then that two rows of G must be valid codewords, so 1 0 1, and 0 1 0 are present. And

sum of any two codewords is a valid codeword. So, if you add these two, I get 1 1 1, so

that is also a valid codeword, clearly I use this basis vector to generate 1 1 1. And then, I

can satisfy all other properties and therefore, this linear block code is obtained.

Now, we come to the definition of cosets, and we have defined the cosets for this. So, let

us look at these translates. So, I take this vector a n is 3, so this is a vector of length 3

plus c. What is C, well C itself is a set. So, the coset, when you add it up it is the same

set. So, this is one coset, but that is not the only one, because if my random vector a was

0 0 1, and I add them up, so that translates are obtained as follows.



And we have the all the possible eight vectors, because n is equal to 3, so 2 is (Refer

Time: 23:32) 3s eight possible vectors can be formed. Just these two cosets have covered

the entire space. So, what have we done, we have partitioned the entire space into these

two subsets the cosets. So, all the eight vectors are covered by these cosets. So, if a plus

C is a coset of C and b is an element of a plus C, then we have b plus C is equal to a plus

C.

(Refer Slide Time: 24:03)

So, if I list down all the possible vectors now beyond that. So, if I have 0 1 0 as the a

vector and add it up I get this subset or coset; if I have the translates of 0 1 1 I get this

and so on. So, it is a very mechanical process and I can generate this things. And for

different a vectors, I get repetition, so 1 1 1 was here in this, and it was here also right.

So, these sets are already covered. Since, two cosets are either disjoint or coincide, the

set of all vectors, over G F q can be written as these. So, in the last slide we saw that a 1

was 0 0 0, and a 2 was 1 1 1, and a 0 1 0 0 1, and they covered the entire space of G F q

n.
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Now,  we  will  use  these  cosets  to  define  something  called  a  standard  array.  And

remember, our final  aim is  to  find an efficient  decoding strategy, so we are moving

towards that slowly. So, what is a standard array, it is a table clearly. For an n comma

code C is a q raise power n minus k cross q raise power k array of all vectors in G F q n.

So, we are smartly going to partition or tabulate all the vectors present in G F q n.

Why are we dealing with all vectors of G F q n, because whenever we received a vector

at the receiver, it is of size n. So, we are going to receive one of the vectors of over G F q

n. And our aim is given that vector, and it could be an error. We have to find out, which is

the most likely code word that was sent. And this standard array is supposed to help us

do that job.

So, how do we make a standard array? The first row consists of the code C all right. The

other rows are the cosets a i plus C, each arranged in a corresponding order, with the

coset leader on the left; remember coset leader has the minimum weight all right. The set

of vectors all have vectors of different lengths, so different weights, so you have coset

leader with the minimum weight.
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So,  how do we construct  a  standard array. In the first  row write  down all  the valid

codewords; starting with the all-zero codeword. Choose a vector a i, which is not in the

first row. Then write down the cosets a 1 plus C as a second row, such that a 1 plus x is

written under x, which is an element of C.

Next choose another vector a 2, because I can keep on forming my cosets. But, this a 2 is

should be not present in the first 2 rows, because we are gradually going to span the

entire space. But, the first vector should be of the minimum weight, because it has to be

the coset reader. And write down the coset for a 2 plus C as a third row, such that a 2 plus

C is written under x element of C.

Continue the process until all the cosets are listed, and each and every vector in G F q n

appears exactly one. So, we would have logically partitioned entire space, and written

down in a tabular manner, each and every vector of G F q n. And each vector will appear

only once. And each of the rows will be led by the coset leader.
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Let us understand this using a simple example. So, we have a same code, code is a set of

codewords, we have this 3 comma 2 code. So, or in this case, it is n is four, so it is 4

comma 2 code, and you have these four codewords available.

So, if you want to make a standard array, you first write the codewords here, so 0 0 0 0

and by definition should be the first codeword to be listed out. And then, we have the

other three codewords listed out, that forms my first row that is pretty simple. And then,

we form the subsequent row by, so if my translate a i is 1 0 0 0 I add it up, and I add it

up, and I add it up, and I add it up, and I get this second row ok. And they are completely

different from the first one.

And similarly, if I have my a 2 as 0 1 0 0 and I add them up, so I get 0 1 0 0 here. And

then, if I add 0 1 0 0 to this one, I get 1 1 1 1 and so and so forth. Similarly, if my a 3 is 0

0 1 0, I can add 2 corresponding code words, and I get the translates or the cosets. So, I

have got these four cosets. But, first column is the coset leader, because you can see that

the weight is minimum ok. The weight of each of them is unity, rest all could be possibly

greater than 1.

So, we have a standard array with the coset leader, and these are the cosets. It should be

very clear that this minimum weight leads the pack. And of course, how do we started it

off, we started with the codewords. So, the starting point is the codeword, and we have

formed this standard array. Note that each entry is the sum of the codeword, and it is



coset leader. We have done that, in fact, that is how we have constructed it. So, suppose

you wanted to look at this element, it should necessarily be the sum of the codeword and

the coset leader, and so and so forth for each and every entry inside this array standard

array.

(Refer Slide Time: 30:45)

So, let us see how we can use it, because finally our aim is to decode a received vector.

Suppose this is the codeword in use, and what we receive at the receiving end is 1 1 0 1.

Now, clearly 1 1 0 1 does not happen to be any one of the valid codewords, so it rings a

bell,  and detection is almost immediate right. So, we deduce that clearly an error has

happened. If it had matched, we do not go to the next step, we declare the result. Now,

which now we try to estimate, which one of the four possible codeword was actually

transmitted, that is the decoding problem.

So, we use make use of the standard array in the earlier example, and find that 1 1 0 1

lies in the 3rd column. And the topmost entry of this column is 0 1 0 1. And hence, the

estimated codeword is 0 1 0 1.

So, basically if you go back, and you have received this vector so, you have this nice

array, this standard array available with you. And you are looking for, which of them has

come. Please note all the sixteen code words are listed, so whatever you receive, any

vector of length four has to be one of them. We happen to receive 1 1 0 1. So, clearly, we



quickly say that we move up, and see that look this will be the most likely codeword that

was to be sent. And the error will be 1 0 0 0 this is the error vector.

So, what has happened is, the first bit is an error it has gotten flipped, we really sent out

0 1 0 1, and near by decoding cell says that 1 1 0 1 was received. And you can verify that

this is closer to this than any other codeword as per the standard array decoding.

Now, how do we check, you can check this distance with all other valid codewords. And

you will see that indeed 0 1 0 1 this codeword is closest to the received vector. And

hence,  you have been able to decode it  correctly. And the coset leader  automatically

becomes the error vector. And what we do for error correction is just add the error vector

one more time and the correction happens. So, that is how you use the error vector.

(Refer Slide Time: 33:53)

So, this is the thing we had realized 1 1 0 1 was received, and immediately I look-up,

because it  these are  the four usual suspects.  And immediately I  look-up in  the same

column and 0 1 0 1 is there, and on the left is the coset leader, which is the error. 

So, very efficiently and quickly we can come to not only the error detection, but error

correction part using a standard array. Of course,  you can see that as the size of the

codebook increases. As we have more and more number of codewords in my table, this

array will grow exponentially. So, there will be a problem with large n and k.
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So, as we go to larger codes, with larger values of k and n, the standard array technique

becomes  less  practical;  Nonetheless,  if  it  in  principle  always  holds,  and  is  used  to

proving certain theorems also. But, in general for practical perspective, we will not be

using standard arrays, because this table will be q raise power n minus k cross q raise

power k. So, clearly we need a more efficient technique, do we have one, the answer is

yes, and it comes in the form of syndrome decoding.

(Refer Slide Time: 35:16)



So, let us first look at what do we mean by a syndrome. So, we have this parity check

matrix H, which so far was doing the first job of error detection. And error detection

means, I have v H transpose if it is equal to 0, it means that error has not occurred, and if

it is a non-zero vector some error has happened ok. The question is which error. So, we

define  this  syndrome s as  the  received vector  nu times  H transpose.  Clearly, in  this

received vector nu is the valid codeword, then it becomes v H transpose, and s becomes

0.

But, in the even that nu is not the valid codeword, it is valid codeword plus some error.

Then s will no longer be the 0 vector, then what will it be, it will be called the syndrome.

So, s is called the syndrome of nu. Syndrome is sometimes explicitly written as s as a

function of nu. Why is it called a syndrome, it is called a syndrome, because it gives us

the same symptoms of the error, thereby helping us to diagnose the error.

(Refer Slide Time: 36:57)

Suppose two vectors of x and y are in the same coset of C right. So, two vectors x and y

in the same coset of C, if and only if they are having the same syndrome; This is very

interesting, because it tells us that the concept of coset based standard array that we came

up  with  last  time,  which  logically  partitioned  your  space  into  clearly  decodable

subsections. We have now the same syndromes for the same coset.

And please remember, the cosets were having the same error, with the coset has a coset

leader  and  that  is  the  error.  So,  this  is  a  relief,  because  if  you  have  the  syndrome



corresponding to the error and not the information word, then we are in business. Just

like a doctor looks at the symptoms, and gives out the outcome of a possible disease, it

does not matter, which patient has that. So, the symptoms tell you about the disease, but

since the symptom together with the patient does not have to be used.

Similarly, the error vector should itself directly lead to the syndrome, it does not matter,

which codeword is an error. So, the syndrome is only corresponding to that particular

error, this is a big revelation,  this  is a big observation,  which helps us efficiently do

things.

So, the vectors x and y belong to the same coset so, these are the translates x plus C is y

plus C and x minus C is an element of C. So, x minus y H transpose is 0 and therefore, x

H transpose is y H transpose that is they have the same syndrome. Thus there is a one to

one corresponds between correspondence between cosets and syndromes. This relieves

us, because we can reduce the size of a standard array by simply listing the syndromes,

and the corresponding coset leaders. And who are these coset leaders, they are the error

vectors.

So, we just need to have the a table, which has syndromes and coset leaders, a table of

syndromes and errors. So, if you have a syndrome, we can directly control, which error it

is ok. So, this really simplifies our life.

(Refer Slide Time: 39:56)



So, we now improve upon a standard array by adding a syndrome column. So, this is our

code C, and we have already looked at the corresponding standard array, and I have put

down in red the coset leaders, and in blue we have the code codewords. But, now this is

the  coset  leader,  and  this  is  the  error  that  will  be  caused  and  leading  to  these

corresponding cosets.

Now, what you do is put a corresponding syndrome table out here. And for every coset

leader you have a syndrome. So, the syndrome vector is 1 1, you clearly know that this is

the error. If the syndrome is 0 1, you clearly know that this is the error. You do not have

to bother about, which codeword was sent. And clearly the syndrome is 0 0 for the valid

codewords.

(Refer Slide Time: 41:08)

So, now we come to this notion of syndrome decoding. What do we do for this, we first

determine the syndrome. And how do we do that, we always get a received vector nu, we

always have an H matrix, which is the parity check matrix, we calculate nu H transpose.

If you are lucky, we get a 0 vector, and we said that look we have no errors. In the case,

that we do not get a 0 vector, we get the syndrome vector s.

Now, this  syndrome vector,  the  syndrome  is  located  in  that  syndrome column  of  a

standard array, and we directly move left to determine the corresponding coset leader.

Who is  this  coset  leader,  this  is  the  cause of  error, this  is  the  error  vector  ok.  This

automatically is your error vector, e. And subtract this error vector from the received



word to get  the valid  codeword,  the codeword that  was sent,  and that  is  the end of

syndrome decoding y is nu minus e. So, these are the steps, which tell us how to do

syndrome based decoding.

(Refer Slide Time: 42:42)

So, before we conclude let us look at a very interesting observation. Suppose we have a

code word C, which was sent. But, on the weight encountered in error e, and what we

received was nu. At the receiver, we only have nu to work with. So, what we do is we

take this nu, and multiply with is H transpose, and this is what we called a syndrome.

But, this nu is nothing but my actual codeword C plus my error vector e, and they get

multiplied with my H transpose.

Now, this  can  easily  be  split  out,  and you can  write  it  as  C H transpose  plus  e  H

transpose. But, we know that C H transpose by definition is 0, because the job of this

parity check matrix H is to make sure that C any valid codeword C, where multiplied

with H transpose gives a 0, so this is a 0. So, what we obtain is e H transpose. So, your

syndrome is nothing but e H transpose.

Now, we so to say killed two birds with one stone. First we make sure that s is not a

function of C right. The symptom is not dependent upon the person, who is reporting the

disease.  The symptom is  only  a  function  of  the  disease  the  error. So,  the  syndrome

depends  only  on  the  error,  and  clearly  not  on  the  codeword,  this  is  an  important

observation. Now, please note that this syndrome will be of the skies 1 cross n minus k.



So, we have if in the case of binary, we have only 2 raise power n minus k possible

unique syndromes, of which one of them is all 0 vector. So, this is the total number of

unique non-zero syndromes right. Now, these must indicate, which error has happened.

So, it can only handle so many errors all right.

(Refer Slide Time: 46:01)

So, for example let us understand it by a simple example. Suppose we have an 7 comma

4 code. So, here your n is 7, and k is 4. If you wish to be syndrome decoding, then your

syndrome will be of length n minus k. So, your syndrome is of length 1 plus 3, because n

minus k is 3, which means that 2 raise power 3 total number minus the all 0 vector is

equal to 7 unique syndromes are available.

Now, we make a quick observation we observe that the 7 comma 4 code is always a

vector of length 7. So, location 1, 2, 3, 4, 5, 6, 7, each time I receive a vector, it is of

length 7. Now, if I wonder, how many errors can my syndrome decoding correct, my

answer comes right in front of me, because if there is 7 unique syndromes possible, and

each one should correspond to one error, then this errors would basically be error at

location  1,  error  at  location  2,  3  and so and so forth.  So,  each  one of  these  unique

syndromes would actually tell me, which is the error location, and that is it.

This code the 7 comma 4 code can at best be a single error correcting code at best. If I

am ambitious, and if I try to say look can I squeeze in 2 bits to be corrected, there is no

way, because there is no freedom. I do not have that much of unique syndromes available



for me to assign to possible error corrections in this case. We at best have 7 errors, and

they correspondent to correspond to 7 locations. So, the 7 comma 4 code is a single error

correcting code, we cannot have anything better than this. So, it is a general way to look

at  how  things  work,  and  what  is  the  freedom  and  flexibility  we  have  in  terms  of

syndrome decoding all right.

(Refer Slide Time: 49:12)

So, we now come back to our slides, and we summarize what we have covered so far. We

started off with erasures and errors; we looked at channels, which can introduce both

errors and erasures. And what detrimental effect it has on the minimum distance d star.

And what is the number of errors we can correct given are erasures occur. 

Then we looked at a very important concept on regarding cosets. And we learnt how to

form standard  arrays  using  cosets.  And then,  we looked  at  a  more  efficient  way of

decoding called syndrome decoding. Finally, we considered some examples. With that

we come to the end of this lecture.


