
Information Theory, Coding and Cryptography
Dr. Ranjan Bose

Department of Electrical Engineering
Indian Institute of Technology, Delhi

Module – 15
Linear Block Codes

Lecture – 15

(Refer Slide Time: 00:33)

Hello, and welcome to next module on Linear Block Codes. Let us start with a brief

outline for today’s talk.  Today we will look at linear block codes. And then, we will

define what are equivalent codes. We will pose ourselves the question about efficient

generation of linear block codes. And then, we will look at the notion of a generator

matrix.  Finally, we will  enter  the  decoding  side  of  things,  and look  at  parity  check

matrix. So, this is the general outline for today’s talk.



(Refer Slide Time: 01:06)

As always we will start with a brief recap of what we have already done. We have looked

at  block codes.  We have defined hamming distance and hamming weights.  Then we

looked at linear algebra Galois fields, linear block codes. And we introduced this notion

of a generator matrix.

(Refer Slide Time: 01:29)

So, very quickly, what is a field Galois field, well a field is a set of elements with two

operations, addition and multiplication. Defined, and it satisfies the following properties.

It is closed under addition, and multiplication. For a b and c contained in the field F we



have the commutative law; the associative law; and the distributive law; we have seen

these before. And then, we say that two elements must definitely exist in F which have

certain special properties, these two elements are 0 and 1.

(Refer Slide Time: 02:11)

What are the properties of 0s and 1. Well, any element a plus the 0 element should give

you a. Similarly, any element a into 1 should give you a. And then, for any element a in

the field, we have an additive inverse always such that a plus the additive inverse should

lead to the element 0. Similarly, we should have a multiplicative inverse a into a inverse

should  be  1  except  for  the  element  0,  all  other  elements  in  the  field  must  have  a

multiplicative in inverse. These properties are true for finite as well as infinite elements

in the field.

So,  any set  of  elements  say q elements,  which  satisfy all  of  these above mentioned

properties are called Galois field, so and it is denoted by G F q, we have seen this before.

And in the case, when the last property, the absence of a multiplicative inverse is there

that is we do not have a multiplicative inverse for each and every element, but all other

properties are satisfied we call it a ring.

So, we now know what is a field, and what is a ring. We will use this very commonly in

our study of linear block codes, this is because we have put ourselves the condition that

the sum of two code words must be a valid code word. And we have seen observed



before  that  Galois  in  a  very  short  period  of  time  made  major  contributions  in

mathematics.

(Refer Slide Time: 03:59)

We now quickly revisit the concept of a generator matrix. For that, we decide and made

this following observation. Any code C is a subspace of G F q n. Let us understand this

statement with a simple example.

(Refer Slide Time: 04:33)

So, if we take a very simple example, a code which is a lookup table, say 0 0 0 1 1 0 and

1 1 has please recall that k equal to 2, and n equal to 4 here, so this is a 4 comma 2 code.



These are my code words. But, please see that even though only four information words

are possible, 0 0 0 1 1 0 and 1 1, simply because my k is equal to 2. They are 2 as power

4 16 possible words. But, what we have done, is we have only chosen a subset; A subset,

which is 0 0 0 0, 0 1 0 1, 1 0 1 0, and 1 1 1 1.

Now, clearly I could have picked up any other four words, and put it in the table and that

would be yet another code right. A code right a code is a set of code words, so this is my

code. So, if you go back to the statement, any code C is a subspace of G F q n. And in

our binary case, it is G F 2 as power n, and n is 4. So, we have a subspace. So, code is a

subspace of G F q n.

So, we go back to our slides, and make the observation that any set of basis vectors can

be used to generate the code space, but this is the critical  observation. A set of basis

vectors can be used to generate this space. We can therefore, define a generator matrix G,

the rows of which from the basis vectors for the subspace.

Now, clearly if they have to form the basis vectors, the rows of G would be linearly

independent. This means, a linear combination of the rows can be used to generate the

code words of C, because they form the basis vectors. Any linear combinations of these

basis  vectors  would  generate  all  other  points  in  their  subspace.  Now, this  generator

matrix will be of size k cross n, and it should have a rank k, because there k linearly

independent rows, and n is necessarily larger than k.

So, since the choice of the basis vectors is not unique, the generator matrix is obviously,

not unique for a given linear code. And therefore, we will shortly see, there could be

equivalent codes. Why are the equivalent,  in what respective are the equivalent, their

equivalent in terms of error correcting capability. We are yet to define that, but remember

I aim is to have generator matrices for error correcting codes, our aim is to correct from

errors recover from errors. And, so in terms of the error correcting codes, we will be able

to have equivalent matrices as we will shortly see. With this background and motivation,

we would like to formally define.
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The generator matrix converts or encodes of vector of length k to vector of length n.

Clearly, it is a k cross n. Let the input vector of uncoded symbols will represented by i,

so i is 1 cross k. And the coded symbol, then be represented by c equal to i times G so, c

is 1 cross n is equal to 1 cross k into this dimension is k cross n. So, we end up with a 1

cross n. Here c is call the codeword, i is called the information word, and G is clearly the

generator matrix.

(Refer Slide Time: 09:48)



So, now why is this generator matrix important. We saw last time, generator matrix is

indeed, and efficient way to represent the lookup table. We saw that even if it is a more

greatly  large  k  then,  the  lookup  table  size  for  a  linear  block  code  would  grow

exponentially with k. And it would very soon become impractical to have such large look

up tables, not only from the storage perspective, but also from search perspective.

On the other hand, a generative matrix generates a code word on the fly. It does not have

a  storage,  it  does  not  save  the  entire  list,  it  just  takes  in  the  input  vector,  and then

generates on the fly the code word, this is the beauty of the generator matrix. The n cross

k matrix can generate q as power k a code words in general, we are talking about a non

binary general case here. So, this elements of the codeword could be 0 1 2 3 up to q

minus 1. It is instead of having a large, actually a very large look-up table of q as power

k codewords, one can simply have a generator matrix, which is much much more shorter.

(Refer Slide Time: 11:17)

A very quick example; this is a 2 cross 3 generator matrix, so clearly k is equal to 2, and

n is equal to 3. It will taken a vector of length 2, and generate vectors of length 3. What

we  have  seen  already  is  that  the  rows  of  the  generator  matrix  must  be  linearly

independent, which you can check very easily. And they found the basis vectors, which

means that I can take the first row multiplied by scalar add it up to the second row, and it

will give me a valid codeword. These themselves are two possible codewords.



So, if you look at this example, if I want to generate the 1st codeword, I can just multiply

0 0 with this, and you get 0 0 0s. Similarly, I can get the 2nd codeword by multiplying 0

1, which is the information word with these to get 0 1 0. And same with the third one, 1 0

multiplied with generator matrixes is gives you this one, and similarly, 4. So, I know

there are four code words, and these are highlighted here, and each codeword is of a

block length n is equal to 3; A very simple example, but an instructive one.

(Refer Slide Time: 12:45)

 

So, what I have been able to do, I have been able to use these six bits, to generate a table,

which is 3 into 4 12 bits. So, already it is a highly compressed efficient way to represent

this look-up table, it can generate the lookup table ok. Instead of saving these 12 bits, I

have just 3 bits, and I will give you exactly this codewords right.
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So, this is the generator matrix for a n comma k, which is 3 comma 2 code, and the

dimension of the generator matrix is 3 cross 2.

(Refer Slide Time: 13:29)

Now, we  come  to  the  notion  of  equivalent  codes.  And  we  will  see,  they  are  very

important and practical. So, two q-ary codes are called equivalent, if one can be obtained

from  the  other  by  one  or  both  operations  listed  below.  What  are  these  operations,

permutations of the components, and permutations of the position of the codewords.



So, please note these definitions are general, but can be applied to binary as well q-ary

will  become  binary  codes.  Suppose  the  code  contains  M  codewords,  so  we  keep

emphasizing code is a set containing M codewords, and this is in the form of a matrix M

cross n. Please remember, M is the total  number of code words, n is length of each

codeword. So, n cross n represents this look-up table.

Now, operation  1  corresponds  to  re-labeling  of  the  symbols  appearing  in  the  given

column,  this  is  operation  1  permutations  of  components  all  right.  And  operation  2,

represent the rearrangement of the columns of the matrix,  this is permutations of the

position of the codewords. So, intuitively, this slide tells us intuitively the properties of a

code will not change, if we do these things, properties, the error correcting properties.

The  ability  to  correct  errors  distinguish  between  different  code  words  that  will  not

change if I carry out these two. And hence, this is called the equivalent codes.

(Refer Slide Time: 15:22)

Let us understand this using a simple example. So, let us talk about a ternary code of

blocklength 3. What do we mean by a ternary code. A code whose components take from

elements 0, 1, and 2 so, let us the take a simple example. So, my code, which is the set of

codewords, it has only three code words, 2 0 1, 1 2 0, and 1 0 1 2. Now, just a mere

scrutiny of this lookup table, tells me that this is indeed a 3 comma 1 code. Why is it a 3

comma 1, n is equal to 3 is obvious, because each of these vectors, each of these code



words is  of  length  3.  But,  why is  it  1,  k  is  equal  to  1;  k  is  equal  to  1 means,  the

information word length is 1 that is either a 0 comes in, or 1 comes in, or a 2 comes in.

So, if I were to appraisal this code in terms of a look-up table, I would do the following; I

have here k equal to 1, and I have got n equal to 3. So, what we do is possible inputs are

0, 1, and 2, and writing out this example now. And then, 0 is represented by 2, 0, 1, 1

gets represented by 1, 2, 0, and 2 gets represented by 0, 1, 2. Now, if you look at this

example that I am writing out, you will see that this is not a linear code, it is a block

code, but the all 0 code word is missing.

(Refer Slide Time: 17:40)

And on the other hand, if you try to add any two codewords, and here, the arithmetic will

be over G F 3. Sum of any two codewords is not another valid code word. For example,

if you add these two, 2 plus 1 0, because it is a Galois 3 edition. So, modular arithmetic

will  hold,  because  3  is  a  prime,  2  plus  0 is  2,  1  plus  0  is  1,  so  sum of  these  two

codewords is not a valid code word. So, it defies both the properties of a linear block

code, nonetheless it is it is a valid code it is a block code.

Now, the  question  is,  can  we  find  an  equivalent  code  for  this.  So,  we  apply  these

permutations that we discussed in the previous slide. Let us say 0 becomes 2, because

what is a 0 it is an element; what is 2, it is another element, and nobody is bigger or

smaller than anything anybody else, it is just a collection of symbols. So, 0 becomes 2, 2



becomes 1, 1 becomes 0, and you have to apply these two transformations to columns 2

and 3, and suddenly you can come up with the following equivalent code.

(Refer Slide Time: 19:26)

So, let us observe these two before and after case. Before applying those permutations,

and after applying those permutations. We see, that code C 1, which is an equivalent

code is nothing but a repetition code. 0 becomes 0 0 0, 1 becomes 1 1 1, and 2 as an

input becomes 2 2 2, it is nothing but a ternary repetition code.

The other important observation is that the original code clearly is not linear, we just

checked. But, this equivalent code is linear, what does it mean, well all 0 codeword is a

valid code word. The sum of any two codewords, 1 plus 2 0, 1 plus 2 0, 1 plus 2 so, some

of these two is this, and some with is 1 1 1 with 0 0 0 is self and so and so far. So, you

can check that any pair, when added together yields another valid code word. So, C 1,

which is equivalent is a linear block code, whereas the first one is not.
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So, let us go to a formal definition. Two linear q-ary codes are called equivalent, if one

can be obtained from the other by one or both operations listed below. Multiplication of

the components by a non-zero scalar permutation of the position of the code words ok;

so, this is what we are stated earlier, but now we are formally defining, how we can

declare two q-ary codes to be equivalent.

Please note already we have seen value in declaring or making equivalent codes, because

there are very nice techniques available to handle a generate linear block codes, but not

so for general block codes. And if you can convert a general block code to a specifically

to a linear block code we can make our lives much simpler.
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Now, let us talk about equivalent linear codes. So, first we have looked at a non-linear

code, we need equivalent to a linear code. Now, I can have one linear code being very

equivalent to another linear code. The moment we have a linear code, we have the luxury

of the generator matrix that is an important observation. If you have a linear code, you

can represent it using a generator matrix.

Now, we are talking about two linear codes, and we want to show the equivalence. So,

we have two k cross n matrices, this is these are generating matrices, code 1, code 2, and

they are suppose to generate equivalent linear codes over G F q, if one of the generator

matrix can be obtained from the other generator matrix by a sequence of the following

operations. So, we defining five operations ok. And by conducting these five operations

in  any sequence  and combination,  if  I  can  convert  one  of  the  generator  matrix  into

another, then these two are termed as equivalent linear code. So, the sequence could be

anything ok.

And it could be just the permutation of rows one, permutation of rows can lead to the

other generator matrix. Multiplication of a row by a non scalar ok; Addition of a scalar

multiple  of  one  row to  the  other,  take  to  those  add  them up  put  it  as  a  third  row.

Permutations of column, interchange column three and five we end up with an equivalent

linear code. Multiplication by any column by non-zero scalar, all these operations in any



sequence  if  leads  from one  matrix  to  the  other,  then  those  two  matrices,  generator

matrices are called equivalent linear codes.

Student: (Refer Time: 23:59).
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So, here, we are talking about a vector versus a scalar. So, let us show this as an example,

the question being asked is what is a scalar here. So, if you look at this an example of a

simple generator matrix, in this case we have two rows, so k equal to 2, and n equal to 4.

In this case, it is a code over G F 2, so the two elements in the set 0 and 1. And we have

already ruled out multiplication by 0. So, multiplication by a scalar is multiplying any of

the rows by 1. So, it really does not change that.

But, if you want to make thus example, non trivial; let us talk about G F 3. And I have

got another generator matrix, which we saw in the last class. Well, in this case, this is not

the matrix we are talking about, but this is the code that we talked about.
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So, let us talk about this code, this code is a lookup table, and can be written also as. So,

here n is equal to 3, and k is equal to 1 therefore, we had three elements that look-up

table. So, if you have to have the generator matrix, the size should be k cross n 1 cross 3.

So, the generator matrix is nothing but 1 1 1.

How does it work, well you multiply it with 0, it becomes 0 0 0 0; if you multiplied with

1, becomes 1 1 1; if you multiplied by 2 it becomes 2 2 2, so you have this generator

matrix, generate it. Coming back to the question, what is a scalar, now since this is over

G F 3, we have the elements 0, 1, and 2. So, I can multiply this G by a scalar 2. So, I can

get G 1, if I multiply this row by 2, I have the multiplication table for G F 3, so I get 2 2

2.

Now, clearly this is generator matrix one, and is the other generator matrix. These two

are equivalent, simply because I multiplied one of the rows with a scalar, a vector would

be a  so  a  vector  could  be  like  1  2  1  this  could  be  a  vector,  we do not  entertained

multiplication by a vector, it will change the dimension and other things. Just a scalar

multiplication means, you multiply with any one of the elements, which is non-zero. So,

I multiplied with the 1, which leaves it unchanged or a multiply it with 2. So, the point to

be noted is, we have just created these two as lineal codes, which are equivalent by scalar

multiplication of this row by 2. So, the scalar is 2.
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Now,  we  come  back  to  our  slides.  And  we  define  another  interesting  method  of

representing the linear block codes. A generator matrix can be reduced to its systematic

form, which is  also called  as  the  standard form of the type  G is  partitioned into an

identity matrix I, and matrix P, which is called the parity matrix. So, G if you note is k

cross M, and I is a k cross k identity matrix, and P is a k cross n minus k matrix.

(Refer Slide Time: 29:15)

So, if you now go back to the drawing board, and have a look you have this G matrix,

which we now define, in terms of an identity matrix first. So, we have a 1 0 0. So, this is



k, and this is k, but we left with is now n minus k on one side, and again this is k. So, my

P matrix is of the dimension k cross n minus k, this is called the systematic form.

(Refer Slide Time: 30:31)

So, a generator matrix in be reduced to its systematic form of this type by those basic

row and column operations. And the proof is pretty intuitive, the k rows of a generator

matrix are linearly independent, we saw that is they form the basis vectors. Hence, a

performing  elementary  row  operations  and  column  permutations,  remember  there  k

rows, so you will be able to place a single 1, and all 0s in the first few columns, and

thereby obtain the row echelon form. 

And the matrix will be of the form I partition P ok, because very simply you have got

rank k matrix, the k rows. So, first k rows of the matrix, it can easily be converted into

linearly independent, so all of them will have a single 1 which does not overlap with the

following columns.
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So, let us look at an example. Let us consider the generator matrix for a 4 comma 3 code

over G F 3; what does it mean, it means that the size of the generator matrix is k 3 by 4.

And G F 3 represents that the elements of the generator matrix will be 0 or 1 or 2. And

all the arithmetic, and the addition in the multiplication will be carried over G F 3, which

will be modular 3 arithmetic.

So, the example is as follows. G is again a 3 cross 4 generator matrix. And it tells you

that the k value is 3. Now, we can start doing a basic row and column operations, and this

requires a little bit of thinking observation and see, because right now there is no single 1

in any column. What are we trying to do, you observe the first column 0 1 1, what we

need is 0 0 1 a single 1 in three columns. And then, interchange of columns is very easy,

we have discussed that before there only two equivalent codes. So, we are trying to make

an equivalent code starting from this jumble of numbers.

So, if we will represent the ith row by r i, and jth column by r j. What we can do is,

replace r 3 last row by r 3 minus r 1 minus r 2. So, I am doing this basic operations, so r

3, then r 1 first 1, and r 2. But, please remember it is equivalent to same r 3 plus 2 times r

1 plus 2 times r 2, because minus 1 is equal to 2 and G F 3; why is that, because 1 plus 2

is 0, so 2 is equal to minus 1 or minus 2 is equal to 1.

So, either I do this statement r 3 minus r 1 minus r 2 or I can say that r 3 plus 2 r 1 plus 2

r 2. So, again 2 r 1 is multiplying the row 1 by scalar 2, and then again taking the row 2



multiplying it with another scalar, which is 2, and adding them up. So, addition of rows

are permitted, you still end up with an equivalent code, we do that.

And if you do that, basic operation you get the first 2 rows untouched, because I have

only replaced r 3. And if you do, so first rows are the same r 3 is changed by doing these

operations, you can check that. And still we have far from done, how did it help us. Well

look at  the first  column,  first  column helped me get rid of this one.  So, in this  first

column there is only single 1, and rest are all 0s. So, parts of the jumble, the jigsaw

puzzle are fitting together, this will form my second column of my identity matrix.

Look at this last column 1 0 0, the previous operation led me to a single 1 in this column.

So, this will hopefully form the first column of my identity matrix. But, those are the 2

once, I still need to get a 0 0 1 somewhere, I need to knock of this 1 somewhere by

carefully thinking, how to scalar multiply this and this.

So, my first bad feeling to knock this off is 1 plus 2 is 0. So, I have to add a 2 here. Now,

I observe in the last row that there is a 1 here, so if I multiply by scalar 2 here, so this is

will become 0 2 and 2 into 2s modular 3 operation is 1 and 0. So, the movement I have

with 2 and I add this to the first row, I will be able to get a 0 here, this will remain

unchanged, and this will remain unchanged. So, that will be logical step to go.

(Refer Slide Time: 36:16)



But we can do some other things. So, we can replace r 1 by r 1 minus r 3, and we can get

another kind of a thing. So, we have got 0 1 0 0 0 1 1 0 0 has three columns, which are

candidates for my identity matrix in the beginning. All I have to do is interchange the

columns, the order of the columns can be changed. So, I do that c 4 goes to c 1 c 1 these

a columns, column 1 becomes column 2, column 2 becomes so and so forth. And then, at

suddenly things fall into place all right. 

So, I can take this thing, and do the interchanging, and I can see suddenly that very

clearly this is identity matrix in the beginning. And whatever else remains, this 0 1 2,

which remains is the P, the parity matrix. So, these steps just tells us, how we can use the

basic row, and column operations to convert a generator matrix into the systematic form,

this is the standard form.

(Refer Slide Time: 37:36)

Now, so far we will only talked about efficient representation, and encoding process, we

have not talked about decoding. But, one of the stated objectives of a good error control

code is an efficient encoding as well as a decoding process. So, let us focus or attention

on efficient decoding. We are dealt with efficient generation can we have an equivalent

decoding matrix ok, because we cannot say that look. 

We have  reduced  the  problem of  look-up  table  at  that  transmission  side,  where  the

receiving, and why do not you have a look-up table, you have received a valid code word

look it up and reverse and try to get back the original information world. So, is it possible



to detect a code word is valid quickly; One of the way is, which is inefficient is to go

through the long table. The lookup table and check whether it matches, and that is a pain.

(Refer Slide Time: 38:57)

So, question is can we have a very nice matrix representation to do the same thing. The

answer of course, is yes. This is a question have post, the answer lies in the parity check

matrix,  typically  denoted by H. But,  what properties  should this  parity  check matrix

have.

Now, word of caution this is called the parity check matrix. But, if you have seen earlier

was the  parity  matrix  P will  be formed the  systematic  representation  of  a  generator

matrix. So, please note the difference we have seen the parity matrix for the systematic

form. And now, we are talking about the parity check matrix H, at the decoding side.

Now, what is a wish list. Despite a check matrix as the name suggests should be able to

see, whether the codeword is valid or not. So, my wish list is that any valid code word c,

when multiplied with H transform should give me a 0 vector. On the other hand, if c is

not a valid code word, then I should get a nonzero vector here ok. So, I if I can have this

going for me, then I indeed it jackpot, and I should be able to very very quickly detect.

First step is detection, detect if there is an error or not.

Now, we make a quick observation, what is c, c after all is i into G, i is information

word, G is the generator matrix. So, if you put that c equal to i G in this first equation,



you get i G T G H transpose equal to 0 for all possible information word. I cannot have it

specific to any particular information word, this means that I should have G H transpose

equal to 0, in order to make it general enough for all information word. So, if we have a

generator matrix, we should be able to find out an H matrix and also vice versa. If I have

an H matrix, I should be able to find a generator matrix.

Now, how do we do that, well one of the bigger longer strenuous way is to represent this

H matrix generally by the elements, H 1 1 H H 1 2 H 1 3 for different rows; And you

already have a G matrix, then you have a set of linear equations, and you solve it. You

will realize that this problem is under constraint, and you can have several solutions for

H. So, tells us that the H matrix need not be unique, you can have several valid parity

check matrices for one particular G matrix, you can check it out ok.

(Refer Slide Time: 42:11)

Now, the size of the parity check matrix is n minus k cross n. This parity check matrix

provides a very simple, and elegant way of detecting whether an errors occurred or not.

If the multiplication the received word, at the receiver with the transpose of H yields of

non-zero vectors, it is raises the flag, it implies that the error has occurred. Now, question

is what error, and if you can answer that what error, then we would be able to go back

and correct the error ok.

How would this methodology will fail, if the number of errors in the codeword exceeds

the number of errors for which the coding scheme is designed. So, this brings us to a



very interesting observation. Error control codes are designed for a certain number of

errors. So, if the number of errors are within the limit, everything works well, but if you

exceed then all of these decoding mechanisms will start failing.
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So, let us just look at a smart way to generate parity check matrix. We have already seen

that G matrix can be represented as in the standard systematic form, identity matrix, and

a parity matrix right. P sometimes also called as the coefficient matrix, but in general we

will call it as the parity matrix.

Now, the parity check matrix can simply be defined as minus P transpose and I, but this I

will be n cross n minus k. So, P T represents the transpose of the matrix P. And this is

easy to verify if you have your G H transpose, and G is in the systematic from I in I

partition P, and you have this minus P transpose, here there is a transpose I; and if you

multiply it out, you will end up getting a 0 matrix.
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Let us go for a quick example. Let us talk about the 7 comma 4 linear block code. So, the

generator  matrix  for  this  is  given as  follows;  you can check that  the  4 rows,  and 7

columns there by making it as a 7 comma 4 linear block code. It is for our convenience

set in the systematic form, so we can clearly identify an identity matrix k equal to 4 here,

and here is a parity matrix. So, I can draw that line, and you can easily visualize I P.

Now, if you were to find out the corresponding, so parity matrix first we highlight this,

because ultimately our aim is to find out the parity check matrix. But, P matrix is this

part, so we write this P matrix out explicitly, because we have to take minus P transpose.

If you remember that the in order to calculate H we need minus P transpose, and then just

replace with I. So, let us go with this P. And the first step is to find out what is P, which is

very clearly given here.
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Now, to get the P transpose just flip it over, and we have now a 3 cross 4 P transpose

matrix. Now, we have to put a negative sign. But, we are working with binary codes,

binary means,  1 plus 1 is 0, so minus 1 is 1 minus is plus, so minus P transpose is

nothing but P transpose. So, we have already got that stuff. All we have to do is append

the I n minus k matrix here. Now, n is 7, k is 4, so n minus k is 3. 

So, we must append a 3 cross 3 identity matrix at the back, and we are home free. So, H

is minus P transpose partition I this we have already figured out. And we put this 3 cross

3 matrix at the back, and we have our H matrix. So, this H matrix should be able to give

you a 0 vector output for any valid code word generated by thus generator matrix.
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So, with this we come to the end of this lecture. Just let us summarize what we have

learned  so  far.  We started  looking  at  linear  block  codes.  Then  we  spent  some time

looking at equivalent codes, because they are pretty helpful the very handy mathematical

tools, to how to make one code equivalent to another code. Then we looked at the notion

of generator matrices. And finally, we moved over to the decoding side, and looked at

parity check matrix. Of course, we looked at a few examples on the way. With that we

come to the end of this lecture.


