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Hello and welcome to our next module on Linear Block Codes.

(Refer Slide Time: 00:33)

Let us start with a brief outline of the talk.
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What we will start with is some error control codes, we will look at block codes, we have

started looking at a hamming codes, hamming distances, and then we will look at some

examples. But before we start let us start with a quick recap of the things we have done

already.  We  will  revisit  them  today  in  terms  of  block  codes,  hamming  distances,

hamming weights, and finally we will look at some examples.

So, this is our error control coding block diagram. What we have is a source encoder in

the communication channel followed by a channel encoder and a modulator. And then



we send our waveforms over the channel where they are corrupted by a noise. At the

receiving end, we demodulate the channel decoder recovers from the errors introduced

by the channel; and finally, the source decoder gives back the original bit stream. Now, in

this module, we are focusing on the channel encoder, and channel decoder clearly they

are in existence because of the presence of noise in the channel. The job of the noise is to

flip a few bits here and there; and our job of the channel decoder is to recover from these

errors.

(Refer Slide Time: 02:06)

We would  established  last  time  that  the  basic  idea  behind channel  coding is  to  add

redundancy  in  a  known manner  ok.  So,  this  known manner  is  critical.  This  known

manner  is  a  mathematical  method,  it  could  be  an  algebraic  structure,  it  could  be  a

geometric structure that we will put in, so that we are the transmitter and our front at the

receiver knows how we have added the redundancy. 

But noise definitely does not know and it creates randomly it rugs the structure, but we

would  use  that  structure  in  built  mathematical  structure  to  bring  recover  from  the

erroneous bits. So, this is the general idea in layman’s language mathematically how we

do it, we will see shortly.
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In order to do so we have defined some terms, some mathematical tools, so we talked

about  the  hamming  distance  between  two  codewords  as  a  number  of  places  the

codewords differ and we denote it by d c 1 comma c 2. So, we have done this earlier.

And as a simple example, if we have these two vectors 1 0 1 1 0 and 1 1 0 1 1, we can

clearly count the number of place where different. We will look at it again shortly. But if

you clearly go for these two vectors first you see that they are of the same length and

then you try to compare and you find out where they are different, and you find them

different  at  these  three  places  marked  by blue  and  hence  we say  that  the  hamming

distances is 3 ok.

So, this is how we calculate a hamming distance. It should be pointed out that it is not

necessarily between binary bit streams that you can find the hamming distance. These

could have been vectors of any symbols or characters and you can find the hamming

distance. The only condition is that they get elements from the same set and they should

be of equal length.
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We also defined what is a hamming weight, hamming weight of a codeword or for that

matter  any vector is  equal to the number of non-zero elements  in the codeword. We

realize that  hamming weight has no units, because it  is just  a number. So,  hamming

weight is typically denoted by w parentheses c, where c is the codeword or the vector in

question. 

We can see that the distance the hamming distance between c 1 and c 2 is nothing but the

weight of c 1 minus c 2 ok. This is pretty easy to observe, because c 1 minus c 2 tells me

where they are different,  and so way if  they are different it puts a 1; if they are not

different it puts a 0, and therefore, weight is just the sum of the non-zero elements.



(Refer Slide Time: 05:08)

We now  talk  about  block  codes.  And  block  code  consists  of  a  set  of  fixed  length

codewords, and that is the block length. So, the block length is typically denoted by n

and all the codewords in this block code are of equal length. And this vectors of length n

each one has a n components. And a block code of size M defined over an alphabet q

symbols is a set of M q-ary sequences, each of length n. 

So, you do not have to necessarily have a binary block code, you can have a ternary, a

quaternary or a hexadecimal or anything that you like. But if you have q equal to 2, we

call them bits, so binary digits and it is a binary code that we have. But in general M is

equal to q raise to the power k for some integer k. And if the block length is n then such a

code is called an n comma k code. Please recall code is a set of codewords each having a

length of n.
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Let us look at a quit a quick example. So, what is the job of a encoding procedure, it

takes uncoded bits and makes codewords out of them. So, let us look at this very simple

example where we have 2 input bits. So, k is equal to two 0 0, 0 1, 1 0, 1 1 and we can

have a four corresponding codewords right here listed. 

So, M is equal to 4, this is the size; n is equal to 5, if you see each codeword is 5 bit long

and k clearly is 2, where 2 is the uncoded bits. So, it is a 2 comma, so n is 5, so 5 comma

2 block code. But question is this has to be used in a practical situation, so how do we

transmit a sequence of bits after encoding that is the question we will now address.
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But before that let us define two other quantities, the minimum distance and minimum

weight; so, these are the characteristics of a code, the minimum distance of a code is a

minimum hamming distance between any two codewords. So, then lots of codewords

present because code is clearly a set of codewords, we compare take two codewords at a

time for all possible combinations. So, if you see this definition d star is the minimum

distance is minimum of all the distances between c i codeword i and c j codeword j

where i is not equal to j. In the case, when i is equal to j clearly the distance will be 0 as a

distance itself is 0. We do not consider those cases; we only consider different codewords

and find it all the possible differences and choose the minimum of that distance.

So, what is this minimum distance, intuitively tells us how different are two vectors, if

they are similar the distance will be less, if they are very different the distance will be

more, so it is kind of a similarity measure. It is such an important parameter that an n

comma k code with a minimum distance d star is sometimes denoted as n comma k

comma d star that is how we displayed. Now what we next define is the minimum weight

of a code is a smallest weight of a non-zero codeword and it is denoted by w star. So,

again this is a property of a code which is a set of codewords, I calculate the weight of

each vector each codeword in my set. And whatever is the smallest barding the all-zero

codeword, I calculate the weight of each codeword the smallest of them is w star.
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We also briefly  looked at  what is  a linear  block code LBC. So, a linear  code has a

following properties. The sum of two codewords belonging to the code is also codeword

belonging to the code. So, this is very interesting take any two codewords add them up

and you get another valid codeword. This is interesting, and this is the first constraint we

are putting in. Again this is kind of adding some kind of an algebraic structure. We have

put a constraint. How will this help us, well, this makes that only a certain special set of

codewords are the valid codewords. We know it the receiver knows it, but the noise does

not know this. So, we will use this property to check whether some codewords have

undergone flipping of bits are erroneous or not.

The second constraint for a linear code is that the all- zero codeword must always be a

valid codeword, it must be contained in that set in that code. And finally, it can be shown

for a linear block code that the minimum weight is also equal to the minimum distance of

the code that is d star is equal to w star. So, if I can verify these three properties, then I

can declare that a certain code is indeed a linear block code.



But please note that the presence of a all-zero codeword is a necessary, but not sufficient 

condition. Now, here in this slide the most important thing that comes out is this word 

called sum. If we are saying that sum of two codewords is a valid codeword, then we 

must define the sum, because sum is an operation ok. But, we better have a table which 

tells us how two elements add up because there must be a rule that we need to follow. A 

later part of this lecture, we will focus on how to add two codewords, this is not a trivial 

job we will talk about it.

(Refer Slide Time: 11:45)

But, let us look at a simple example of a linear block code. These are the four codewords

block length is clearly 4. Why is that look each one has 4 bits, so it is n is equal to 4, but

in order to verify whether it is an indeed a linear code as well it is clearly a block code,

because the block length is 4. But if it is a linear block code it must have the following

two constraints satisfied. 

One  is  the  all-zero  codeword  must  be  present  which  is  true;  and  sum of  any  two

codewords is also valid codeword. So, we try out this there are only a finite ways of

choosing 2 out of this 4. So, we once we get that we can try and add all the possible

combinations. And if we do this exercise we indeed find that any two codewords if you

add the resulting vector is again 1 of the 4 valid codewords. Thus we can declare that this

C is indeed a linear block code ok.
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Now, what we can do is talk about the minimum distance of this code and we will shortly

show that this is minimum distance is 2. How do we do that, we take two codewords and

find the distance hamming distance. And once we do for all possible combinations, here

it is 4 choose 2 is equal to 6 is the total  number of pairs we can form from 4 valid

codewords, we find that the distances are 2 2 4 4 2 2 clearly the minimum distance is 2.

But we have also shown that d star is equal to w star, so barring the all-zero codeword

we  find  out  the  minimum  weights.  There  are  only  3  possible  non-zero  codewords.

Weight  for  this  is  2,  where  they  are  two non-zero  elements,  weight  for  this  is  2,  2

nonzero  elements,  weight  is  4.  So,  the  minimum weight  is  2  which  is  equal  to  the

minimum distance. So, this linear block code satisfies all the properties.
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Now, we move ahead and we try to answer the basic question how do we add, and for

that we need a brief introduction to something called as Galois fields. So, let us quickly

define what is a field of field F is a set of elements with two operations addition and

multiplication satisfying the following properties;  So,  what are we looking at  we are

looking at a set of elements ok, and two operations defined over them. First is the F is

closed under addition and multiplication, that is a plus b and a into b are in F if a and b

are in F.

Suppose a and b are two elements then the addition also is contained in F and that the

product is also contained in F. This property number one, then the certain basic laws

must hold like commutative a plus b is equal to b plus a similarly a into b is b into a. See

these are so basic we take them for granted, but since we are defining the properties of a

Galois field it  is worthwhile looking at all of this. Then the associative law a plus b

parentheses plus c is equal to a plus b plus c, similarly a into parentheses open b into c is

equal to parentheses a into b into c and distributive a into b plus c is nothing but a into b

plus a into c. 

So, this is like our second nature we use them all the time, but they must be a valid under

this definition. What else there are few more properties let us go we say that identity

elements 0 and 1 must exist in F satisfying the 2 properties. So, what are we saying other



than all  the elements  in  the set  2 elements  must  necessarily  exist  with some special

properties, these two elements are 0 and 1.

(Refer Slide Time: 16:25)

And what are the two properties that we want them to satisfy any element a in the set

plus 0 is a, an any element a in the set into 1 is a ok. Again they appear to be trivial, but

they will hold value very shortly another thing is that for any element a in F, there exists

an additive inverse minus a such that a plus minus a is 0 that is a minus a is also an

element. If a plus b is equal to 0, then b is called the additive inverse of a; this must exist.

So, each and every element must have an additive inverse.

Similarly, for any element  a in F there must exist  a multiplicative inverse of course,

except for 0. So, if a into b is 1 because clearly 1 is within the set 0 and 1 i defined. So, if

a into b is 1 then b is the multiplicative inverse of a. Please note this set of properties that

we have covered so far are true for fields with both finite as well as a infinite elements.

So, we are not saying that it must necessarily have a finite number of elements. What is

interesting is that Galois fields may not exist for all any arbitrary number of elements.

For example, Galois field for 2, 3, 4, 5 exist, but Galois field for 6 does not exist.

We will show later that if the number is a prime or a prime power, then the Galois field

exists. So, a field with a finite number of elements say q is called a Galois Field, it is

pronounced Galva based on this guy who was a French; and it is denoted by G F q. And

please note if only the first 7 of the 8 properties you have discussed, that is the constraint



of multiplicative inverse is thrown out of the window then it is no longer a field, but it is

only called a ring. So, we have defined together what is a Galois field and what is a ring.

Sometimes the Galois field is simply called a field. But please note that this guy Galois

in a very short duration of time has made indelible contribution to mathematics ok. And

we will be using Galois fields over and over again for our course encoding theory.

(Refer Slide Time: 19:17)

So, let us look at a simple example. Let us look at Galois field GF 4 with 4 elements.

Now, what are these elements, we have 0 and 1 they must be present and this is 2 and 3,

where I could have labeled them a and b, it does not matter for a sake of convenience

only we are saying 0, 1, 2 and 3 are the 4 elements. Now, this is a set, so there is nothing

like this is holier than thou; 2 is not bigger than 1 this greater than or less than operation

is not defined. 

Only  two operations  make sense,  the  addition  and multiplication.  So,  if  we were  to

define this, I need to give you the addition table the rules for addition and rules for

multiplication. Why did we start on all of this remember we wanted to look at linear

block codes, where some of two codewords is a valid codewords.

Now, codewords are made out of elements taken from this set. So, some the addition

must be defined. So, let us look at the addition and a multiplication tables for GF 4. Now

in order to define the addition and a multiplication table we write out the elements 0, 1,

2, 3 on the horizontal and the vertical axis. So, it is a matrix it is a kind of a table more



importantly I lookup table, where I need to know what happens when 0 adds with 0, then

entry will be here 0 adds with 1, 2 adds with 3, 3 adds with 2 and so on and so forth.

Now, we  only  need  to  fill  so  one  half  of  the  element,  because  this  table  must  be

symmetric. We have established that a plus b is the same as b plus a, a into b is b into a.

And therefore, we can start filling in the elements of this addition table first. So, if we

were to fill out the numbers we can write them as follows. So, it tells you how to add.

For example, if I want to know what is 2 plus 1, well it is 3. What is 3 plus 1, it is 2, what

is 1 plus 1 it is 0. In fact, this diagonal is all 0’s, so self addition is 0 ok.

So, for example, what is the rule for adding 3 with 3, I get a 0, who tells me that, well

this table is skillfully constructed that it follows all the properties of the Galois field that

we discussed  in  the  previous  slide.  It  is  not  easy  just  if  I  can  interchange  any  two

numbers it will seems to be a field, because this property addition property will violate

some or the other rule. Let us look at the second operation the multiplication operation

leading to this following multiplicative table.

Here please note that a product with 0 is 0. So, first column and first row is all 0’s. And

then multiplication with 1 is the self, so 1 2 3 and 1 2 3. So, essentially this these 4

elements have really being thought and filled out. If you go to the addition table again

you can look at an additive inverse, additive inverse means if a plus b is 1 a plus b is 0

then a is additive inverse of b.

So, if we have a 0 in each one of the rows and columns. So, all the elements do have an

additive inverse. Similarly a multiplicative inverse other than the 0 element must exist

right. So, 3 is the multiplicative inverse of 2, because 3 into 2 is 1, 2 is the multiplicative

inverse of 3, 1 is the multiplicative inverse of 1. So, a multiplicative inverse also exists

for  all  elements  other  than  0.  Now, please  note  it  is  not  trivial  to  construct  it.  For

example, you just cannot say that GF 4 is just a modular for arithmetic. Because, if it

were so, then 3 plus 2 right is 1, but 3 plus 3 you would not get a 0. So, this is not simply

a modulo for arithmetic.
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Let us quickly define something called as a linear span which we might use later. So, let

S be a set  of vectors of length n whose components are defined over GF q. So, the

terminology that we use is defined over GF q, Galois field with q elements. The set of all

linear combinations of the vectors of S is called the linear span of S and is denoted by

this angular bracket S. 

The linear span is thus a subspace of GF q n generated by S. And given any subset S of

GF q n, it is possible to obtain a linear code C as a span generated by S, consisting of

precisely  the  following  codewords.  The  all-zero  words,  all-words  in  S,  all-linear

combinations of 2 or more words in S; So, let us look at this definition of generating

codewords I with a simple example.
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So,  let  S  be  the  following  three  vectors.  So,  we  write  out  all  the  possible  linear

combinations of S. So, I add them up, so 1 1 0 and 0 1 0, I get this, I can add this with

this, I get this or I can add this with this and I get this. So, all these combinations are

there and then we can all add all three of them and I get this. So, I get this 4 possible

outcome. So, the code is defined as all the inherent elements C as follows. And this is

kind of a trivial code with minimum distance equal to 1.

(Refer Slide Time: 26:08)



Now, let us look at a code which is defined over GF 3. So, Galva field with 3 elements.

Let S is equal to 1 2 and 2 1. And these are the addition tables for the element 0, 1 and 2.

Now, it can be noted that this time, the modulo three arithmetic holds. So, in general we

will see that if 3 is a if GF q, q is a prime number in this case q is equal to 3, then

modular arithmetic works.

But Galva fields are defined for prime numbers and prime powers, GF 4 was 2 raise the

power 2. So, it was a prime power and hence we did not find a modular arithmetic to

hold. But, here it is a prime number and so modular arithmetic does hold. So, again we

find all possible linear combination and therefore, C is defined as 0 0, 1 2 and 2 1 are the

possible  codewords  for  this  case.  It  is  just  one  way, but  this  is  clearly  not  a  very

methodical way to move forward.
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So, we now ask ourselves the most basic question is there a smart way to generate a

linear block code all right. So, what is the motivation for this? Well the generator matrix

converse that is encodes a vector of a length k to a vector of a length n. Let us look at an

example, here.
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Suppose I have my linear block code. So, this is an encoder, and the job of the encoder is

to k take k bits and convert them into a longer n bits. Now, one way is to do a lookup

table, question is it is still efficient for large k. So, what is a lookup table well you have

uncoded and you have encoded. Suppose, I have got a certain value of k so, here i was

start with 0 0 0, 0 0 1 up to 1 1 1.

So, this is 2 raise power k, for each 1 of them I will have a valid codeword. So, it could

be 0 0 0 this 1 will have 1 0 1 0 0 something and so and so forth. Now, the problem is

this k, if this k equal to say 235 then we are looking at 2 raise power 235. Now, this is a

huge table it will take a lot of memory, I do not know whether my smart phone has a

ability to carry this larger memory.

So, this lookup table is nice for small values of k, but the moment k becomes large, we

are in trouble. We cannot store this big thing, this big lookup table. And even if you

could searching it would be even more difficult. So, storage and search both are highly in

efficient for large values of k. Because if you if you try to look at it, how big is 2 raise

power 235 you would have to do 2 raise power 10. 

And then 23 roughly this is equal to 10 raise power 3 going to 23 and then this will go to

10 raise power close to 70 or something. This is a huge number, I mean this is not really

practical to put them in the memory so, we must design our smarter way to do things. So,

we go back to our slide and see, what can we do.



So,  let  us  say  that  the  input  vector  the  uncoded  symbols  are  represented  by  the

information vector i. And the coded symbols are given by c, would not it be great to have

c equal to i into all magical matrix G which we will called a generator matrix. So, i is my

vector of length k. G should necessarily be a matrix k cross n, such that c becomes one

cross m, where c is the codeword and i is the information word. 

So, the generator matrix takes in the information word and converts into a codeword. In

other words, it takes a vector of length k and converts it to a vector of a length n, but care

must be taken that it indeed generates a linear block code, that is the all 0 codeword must

be a valid codeword and all codewords any two codewords added together should be

another valid codeword. Questions can it deliver, can it give you such a thing.

(Refer Slide Time: 32:36)

So, let us look at the c equal to i into G. The generator matrix provides a concise and

efficient way to represent a linear block code ok. In fact, is the only practical way for any

large sized k, we do not have a choice. The n cross k matrix can generate q raise the

power k codewords. So, in the previous example we only talked about binary, but please

remember that my vectors code as well be a non-binary. 

Thus, instead of having a large look-up table, large impractical look up table of q raise

power k codewords one can simply have a generator matrix. So, just let us look at this a

little bit more carefully, what we have done so far.
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We have here c equal to i times G. Now, my c is 1 cross n. This i is 1 cross k; and this G

is k cross n. So, this 1 cross k multiplied with a matrix of k cross n gives me 1 cross n.

The let us see, what is the problem or advantage with this kind of a representation. I do

not have to worry about, this k being large here because input is coming in, it is none of

my worries.

Now question  is,  what  do  we  do  with  the  generator  matrix,  how big  is  this.  Well,

whatever be is the size of k, k into n, n is greater than k. And so my generator matrix is

nothing but of k into n, this size is highly manageable, because even if k is 235 and n is

255, suppose we are talking about this is my n comma k code, this is a practical number.

So, if k is still my 235, the size of this G matrix is nothing but 235 into 255. Definitely I

can store these number of bits, it is trivial.

So, suddenly a very large problem of storing 2 raise power 235 into n that is 255 bit long

table lookup table has reduced to merely storing just a few 1000 bits. So now, we have

converted a very impractical problem to a practical problem that touches every day of

our lives. We come back to our slides. And we now show, that instead of having a large

lookup table of q raise power k codewords, one can simply have a generator matrix.
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Let us look at this example. Consider this G matrix, where G is equal to a 2 cross 3. And

I would like to have my first codeword out. So, first codeword takes my i vector and

multiplies it with G to yield a 3 bit long vector. So, a no surprise 0 0 was converted into 0

0 0. Now, similarly, we can take that mixed information vector, information void is 0 1

again multiplied with G matrix I get another 3 bit.

Similarly, I can have the third vector c 3 as the codeword number 3 multiplying with 1 0

and finally we can have the fourth one. K is equal to 2 so, there are only 4 possible input

vectors the information word 0 0, 0 1, 1 0, 1 1. And corresponding to those, we have got

four possible codewords right. Block length is 3, so this is a 3 comma 2 code; and the

size of the generator matrix is simply a 2 cross 3.
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So, the code that is generated, by this generator matrix is 0 0 0, 0 1 0, 1 0 1, 1 1 1. What

are these, these are the four encircled codewords here written out there.
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Note that that this is a 3 comma 2 code from the fact that the dimension of the generator

matrix is indeed 3 cross 2 ok. So, this is a simple example, which tells us that yes the

generator matrix can give you a valid code.
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So, we now come to the basic summary of today’s lecture. We have had a very quick

recap about linear block codes. Then, we moved on to a very interesting concept of the

generator  matrix,  why generator  matrix  is  an efficient  way to  represent  linear  block

codes. And then, we looked at some examples,  which tell you whether the codes are

indeed a linear or they satisfying the properties of linear block codes and how you can

use a simple generator matrix to generate a code. 

With that, we come to the end of today’s lecture.


