
Information Theory, Coding and Cryptography
Dr. Ranjan Bose

Department of Electrical Engineering
Indian Institute of Technology, Delhi

Module – 13
Linear Block Codes

Lecture - 13

Hello and welcome to module 13, which is Linear Block Codes.

(Refer Slide Time: 00:34)

Let us look at a brief outline of today’s talk we will have an introduction to error control

coding, which is a vast and exciting area within coding theory. Then we will look at

block codes understand what do we mean by hamming distance? Then we go on to

define hamming weight. Then we will talk about the minimum distance of codes and

finally, we will look at some examples. So, that is the basic outline for today’s talk.

(Refer Slide Time: 01:08)

Let us start with a brief introduction our subject for today is error correcting codes. As

the name suggests they are used for correcting errors when the messages are transmitted

over noisy channels, which means that the noise in the channel are going to play havoc

with the transmission, and some of the bits will eventually get flipped at the receiver.

On the other hand we also encounter errors when we store data and then retrieve them.

For example, we stored data on a CD and the CD surface gets scratched; obviously, some

errors would be introduced. Then also we might take help of error correcting codes to

recover from errors. So, these are the primary 2 places where we will use error correcting

codes.

Now, what do we mean by noise? Noise is present everywhere and then it could be a

thermal noise; it could be caused by extraneous factors. It could be caused by human

errors, equipment malfunction, voltage surge, lightening solar flares what have you. So,

there could be many many causes of noise and which will eventually lead us to a certain

number of errors.

Now, in order to detect and correct errors we will be using error control coding which is

also called channel coding. So, let us understand these two things one is the detection

problem, well we send bits we receive bits who knows which bits we have flipped. So,

the first problem is the detection problem, and then I was smart enough to not only detect

but also recover from the errors that are the problem of error correction. So, we will

address both these issues in these lectures.

(Refer Slide Time: 03:09)

So, what are the objectives of good error correcting codes? Well the first and the

foremost is it should be able to correct as many number of errors as possible ok. So, we

talked about the error correcting capability of error correcting codes in terms of number

of errors, and then we do not have all day to do things, it has to be fast in terms of the

encoding process that is we are talking about an efficient encoding strategy.

And then just encoding and sending is not good enough at the receiver my friend must be

able to decode it almost in real time and therefore, an efficient decoding is also required.

And then it should be observed that we should be able to transfer maximum information

per unit time, that it is not that we send a lot of coded message, but the actual

information content is miniscule.

So, we must be able to send meaningful quantities of information when we do error

correcting codes. So, all of these may not be satisfied at the same time, some of these

constraints could be contradictory.

(Refer Slide Time: 04:35)

Now, we start with one of the foremost requirements of an error correcting code. Let us

see how redundancy can help combat the effects of noise or errors because noise would

eventually lead to errors. So, let us begin with a simple example let us talk about the

normal English language that we use this language that has evolved has a lot of

redundancy built into it already.

We did encounter this redundancy of English language in our source coding section,

where we saw that yes English could indeed be compressed to a great extent and therein

lies the redundancy. So, consider the following sentence. So, I will not read it out, but

you just have to observe and see what does it make any sense well it looks like English,

it has the English alphabet and it has some words, but it appears that some of the words

are in error ok.

(Refer Slide Time: 05:47)

So, let us go and look at it a little bit more carefully it is the same sentence with some

errors, and if we will try to make sense out of this seemingly meaningless, or at least

erroneous sentence. So, due to our familiarity with a language we may probably start

guessing. So, the first step that we did was detection. So, we detected there were errors.

Now the questions can be act smart and recover from these errors and we would

probably try to guess the first word and it appears to be coding and second word is

theory. So, it helped me combine these two words and I will get coding theory is an and

this is again a difficult word, but I can guess it to be an interesting subject.

So, I come back with a recovered sentence like coding theory is an interesting subject

here we use that everyday inbuilt redundancy of the English language to construct back

the original message. It is a very simple example how redundancy helps us recover from

errors.

Now, in our error control coding schemes we will use a more structured mathematically

structured mechanism to recover from errors. But let us see what worked for this

example. So, the 3 words that were really in error were the first word something to do

with coding, then second word and the third word.

(Refer Slide Time: 07:40)

And when we looked at the first word either by itself or with relation to the next word we

were able to get coding theory is an interesting subject. So, that is what we tried to do

mentally. So, we had a strategy for decoding ok.

(Refer Slide Time: 07:57)

Now, let us look at the place of the error control coding block in the grand scheme of

things. So, please remember we have already looked at source coding, where in we

require the use of a source encoder. The job of the source encoder is to add redundancy

oh I am sorry it is to recur reduce redundancy where the job of the channel encoder is to

add redundancy.

So, first we remove redundancy and then these red circled blocks add redundancy in a

known manner. So, the key is that we are not trying to undo the work of the source

encoder which was removing redundancy ok. So, original language or information

source has an inbuilt redundancy which is removed or reduced by the source encoder and

then we add redundancy in a known manner using this channel encoder also called as the

error control coding block. And then we must send the bit stream over the channel and to

do, so we need a modulator.

So, once we do that the message is sent over the channel where we have our friend or

enemy depending upon how you look at it the noise, the noise introduces the error. Now

we demodulate and then go for the channel decoder which is a reverse of the channel

encoder it figures out the errors and tries to recover from the errors. And then we pass on

the error free or seemingly error free bit stream to the source decoder which is the

opposite effect of the source encoder.

So, this is the entire scheme of things how we perform source encoding, channel

encoding, modulation over the channel back at the receiver demodulation, channel

decoding, source decoding and back to the happy user. So, that is the sequence of events.

Please note the most important character in this play is this noise, without the noise we

have no need for this channel encoder and channel decoder.

(Refer Slide Time: 10:21)

So, as we have observed just intuitively the basic idea behind channel coding is to add

redundancy , but this redundancy is added in a known manner this is the critical word

known manner known to whom well the transmitter and the friend receiver, the noise

does not know the noise is random.

So, this is known we will probably put in an algebraic structure when we add

redundancy, and that algebraic structure would be used at the decoder side to recover

from errors ok. So, we add a certain amount of redundancy to the message prior to it is

transmission though the noisy channel. This is the basic idea behind channel coding.

(Refer Slide Time: 11:12)

So, now let us look at the nuts and bolts of channel coding. How do we actually do it?

So, we start with some definitions and let us start with a word. Word is a sequence of

symbols we have come across this definition earlier, and a code is a set of vectors called

code word ok. So, in general a code is a set of code words. So, if you look at some

examples that we did in the previous classes let us refresh our memories.

(Refer Slide Time: 11:54)

So, I can always have a code which is a set. So, here I write out a set of code words. So,

all of these 4 words are the code words and this whole set is the code. So, we go back to

our slide and we start defining some properties of code words, so let us start with the first

definition. So, you are looking at the slide now.

(Refer Slide Time: 12:51)

We talked about the Hamming distance the hamming distance between two code words

is a number of places the code words differ. So, please note it is a number of places

hence it has no units, so this distance has no units. So, the hamming distance between

two code words c 1 and c 2 can be denoted by d c 1 comma c 2, so that is the notation.

Let us look at an example so d that is the hamming distance between 1 0 1 1 0, and

11011 is 3 ok. How does it come? Well let us look at these two code words ok, so 10110

and 11011. We try to see whether the first location matches yes it does, the second

location no there is a difference.

What are we trying to find the number of places the code words differ. So, I have marked

the place number 2 with a blue because it differs and so does number 3 location number

3 it is a 0 here, it is a 1 here. So, again I put a blue and then 11 they are same. So, it is 1

and then again this last location is different. So, I just can superimpose and see that it

differs in location 2, 3 and 5.

(Refer Slide Time: 14:33)

So, now I separate it out and I can say that the hamming distance is actually 3.

(Refer Slide Time: 14:42)

So, I have been able to find out the number of places these two code words differ. Please

note for these two have any meaning, the length of these two vectors must be the same.

So, when we are talking about code words all the code words are of the same length

called the block lengths. So, we have no problems, but hamming distance can be found

between any 2 vectors of the same length.

(Refer Slide Time: 15:25)

So, before we go to the next definition let us look at some other examples that will help

us understand it. Suppose I have vector 1 as 1, 2, 3, 4, and 5. So, I have vector 1 c 1,

vector 2 c 2, and then they are of equal length, I would like to find out the hamming

distance between these two.

So, I compare the first one and I say oh this is different, so 1 this is different, 1 this is

same so 0, this is different 1, this is different 1. So, the hamming distance d between c 1,

and c 2 is equal to 4; the point that has being made is that it does not have to be a binary

bit stream for you to compute the hamming distance.

(Refer Slide Time: 16:50)

Let us look at another example let us say my c 1 is star, star, square, triangle, circle,

circle, square. And let us say my c 2 is equal to star, square, triangle, triangle, circle,

square, star, well. This is a vector well these are not numbers, but these are symbols this

could be voltages, this could be light amplitudes, these could be star, square, circle, like

we have drawn.

So, first we would like to count the vector lengths are the same or not 1, 2, 3, 4, 5, 6, 7,

for both. So, we can find out the hamming distance between these two. So again we

compare same, different, different, same, same, different, different.

So, if you compute the hamming distance between c 1 and c 2 you get again 4. So, these

two vectors differ at 4 places. So, we have been able to find out the hamming distance

between c 1 and c 2 in this case. So, the definition is pretty general.

(Refer Slide Time: 18:35)

Now we go back to our slide and we look at the next definition which is that of hamming

weight. The hamming weight of a code word or any vector for that matter is equal to the

number again we are talking about a number here number of nonzero elements in that

code word.

So, again the hamming weight has no units it is just a number of nonzero elements,

hamming weight of a code word c is denoted by w of c. So, you can easily observe that

the hamming distance between code word c 1 and c 2 is nothing, but the weight of c 1

minus c 2. In fact, the previous 2, 3 examples we are only computing the difference and

then finding the weight.

(Refer Slide Time: 19:33)

Let us look at some more examples. So, let us look at this vector 10110 well, this should

be 3. Because the weight the number of nonzero elements is 3, so this should be 3. So, if

you look at this example we can write it here.

(Refer Slide Time: 20:07)

So, we go back to our drawing board and look at w 10110, we count non zero, non zero,

non zero, 3 right. And hamming distance we have already computed between any 2

vectors and find out the hamming distance. So, if you look at another example.

(Refer Slide Time: 21:00)

Let us say we have c 1 is equal to 10111001, and c 2 is equal to 0111011 we have to

make sure 1, 2, 3, 4, 5, 6, 7, 8; 1, 2, 3, 4, 5, 6, 7, and 8. So, they are of the equal length if

you find out c 1 minus c 2, it is simply a binary subtraction and here we get 1100. So, we

are going right and then 111 and 1.

So, if you see that the difference actually tells you the number of places they are

individually different each of this is an element of this vector. So, if you find out the

weight of this vector c 1 minus c 2 is 1, 2, 3, 4, 5, 6, then nonzero elements should be the

same as the distance between c 1 and c 2. So, these are what we mean by the hamming

distance between c 1 and c 2 is nothing, but the weight of the difference of the 2 vectors.

(Refer Slide Time: 22:59)

Now, let us look at something called as a block code. Because now we are entering the

domain of error control coding and we would need these mathematical tools. A block

code consists of a set of fixed length code words. So, clearly we already know that code

is a set of code words now we are introduced this new adjective block.

So, block code consists of a set of fixed length code words and what is this length called

this length is called the block length and it is typically denoted by n that is a code of

block length n consists of a set of code words each having n components. Basically it

means each code word is n symbols long, if it is binary then it is n bits long, but nothing

forces us to make it only binary.

Now, block code of size M defined over an alphabet with q symbols. So, here we are

talking about non binary block code is a set of n q-ary sequences each of length n alright.

So, if it is ternary then your code words will consists of 0, 1 and 2; if it is quaternary it

will consist of 0, 1, 2 and 3 ok. It could be hexadecimal it could be decimal. So, you can

have q ary sequences representing the code words. Binary case q is equal to 2, and

therefore it is called bits. Bits is like bi for binary, and ts for digits and therefore, this

together forms the bits and therefore, it is called the binary code.

So, in general we can have a q ary sequence, but one of the most popular forms is the

binary code and most of the time we will look at binary codes. But please remember they

are not the only kind of codes possible. So, M is equal to q raise to power k, what is this

k is some integer and we will explain the physical significance shortly, and this is called

an n comma k code.

(Refer Slide Time: 25:43)

So, let us go back to our drawing board and where we have our error control correcting

block. So, we called as a channel encoder, the job of this channel encoder is to add

redundancy. So, input is of course, a bit stream an output is also a bit stream, but it has

additional bits involved.

Suppose this channel encoder starts with q bits, and after adding redundancy it makes it n

bits. Then it is using an n comma k code to do. So, so an n comma k channel code takes

in k bits, and converts it into n bits. So, typically k is less than n.

(Refer Slide Time: 27:03)

Let us look at an example let us talk about this code c which is a set of code words, it is a

block code. Now what is the block length, so we count 1, 2, 3, 4, and 5, each one has a

length 5, so the block length n equal to 5 for this code.

Now, what is the practical significance of this? So, what if it is a set of code words what

can we do with it? Well this code can be used to represent 2 bit binary numbers as

follows.

So, this error control code takes in 2 bits 2 uncoded bits, and maps them to the code

words as follows. So, 00 is rewritten as 00000, so 2 bits become 5 bits, sure we have

added redundancy 01 could be 10100 who told me to do this well this is my particular

code. Similarly, 10 becomes 1110 and 11 becomes 11001.

Now let us make certain observations then the set the size is 4. There are 4 possible code

words and hence log to the base 2 4 equals 2 and so it can only take 2 bits at a time, and

you can have 4 unique code words. The first thing is they should be unique; the aim of

the receiver is to go back from the received code words and try to decode and declare the

original bits.

So, ultimately it is a lookup table input output and this is the mapping done by the error

control coding block. So, one thing we can clearly observe is there are several possible

sets which are of length 5. So, for n is equal to 5 we can have actually 2 raised to the

power 5; 32 possible choices or which we have picked 4 this should be noted, even

though the possible inputs are only four 00011011.

The mere fact that the length of the code word is 5 we have a possible set of 32 vectors

of with respect to 5 4. Now, which 4 are the best is the subject of further study. But here

we actually represent an n comma k where n is equal to 5 and k is equal to 2. So, here k

is equal to 2, and n is equal to 5, I take 2 bits make it into 5, 2 bits make it into 5.

(Refer Slide Time: 30:25)

So, this if this is my lookup table I will say M is equal to 4, there is the size n is equal to

5 and k is equal to 2. Now, that we have the lookup table how do we implement it in real

life. Suppose we have to transmit a long sequence of 1’s and 0’s using this coding

scheme. So, we already have our first toy example we have a basic block code linear

block code with n is equal to 5 and k is equal to 2. And we want to use this simple

example to encode a long bit stream how do we do that?

(Refer Slide Time: 31:08)

Suppose the sequence to be encoded is some random 1001010 dot dot dot dot, so we can

we have enough of those bits coming in. The first step is to break the sequence into

groups of two bits why two bits? Because the encoder takes k bits at a time and k is equal

to 2 it cannot handle more than 2 bits at a time.

So, the long bit sequence that we have we partition it as 10 01 01 00 11 these are the 10

01 01 and so on and so forth. And then each one is mapped as per the lookup table, so 10

will be replaced by it is 11110; 01 will be replaced as 10100 and so and so forth till you

get the entire thing.

So, for the first 1, 2, 3, 4, 5, 10 bits, the first 10 bits we will have 25 bits of data being

sent out. So, it is a lot of redundancy that has been added here. So, for every 5 coded bits

that we want to send out 2 input bits are taken of the uncoded met message. So, we have

added 3 extra bits for every 2 information bits. So, we have information bit and

redundant bits, 2 information bits and 3 redundant bits constitute one code word that is

the general plan in this example.

(Refer Slide Time: 32:54)

So, code rate of an n comma k code is defined as a ratio k over n clearly k is less than n.

So, code rate must necessarily be less than 1 ok. If we have code rate equal to unity that

is n is equal to k we have added no redundancy and obviously, we have not done any

coding at all, but that will be a useless trivial case.

The smaller is the code rate the greater amount of redundancy within the code that is the

more number of redundant symbols are present per information symbol. So, this is not a

good news, because if you had too much redundancy you are sending the overhead bits

rather than the information symbols, so we have to be careful about it.

A code with greater redundancy has the potential to detect and correct more errors.

Because you pay the price and you get the return but the challenges that you should have

as small additional bits added. So, the code rate should be as close to 1 as possible. So,

code rate in some sense you know tells us about the efficiency of the code.

A smaller code rate reduces the actual rate of transmission of information this is one of

our original objectives of a good error correcting code that it should be efficient not only

in terms of encoding procedure, or decoding procedure, but also efficient in terms of the

overheads that we use to transfer the data.

(Refer Slide Time: 34:37)

Now, let us look at certain properties of the linear block codes, and these will be used to

characterize how good or bad these codes are. So, we talked about 2 very important

properties the minimum distance of a code and the minimum weight of a code. So, let us

define them.

So, the minimum distance of a code is a minimum hamming distance between any 2

code words in that set. And if the set consists of M code words then the minimum

distance of the code is defined as d star, is minimum over all possible distances.

So, d distance between ci and cj where i is not equal to j clearly when c i equal to cj that

they are identical code words the distance will be 0, the distance will be 0. So, if they are

non-identical, then you will be conclude all the distances and whatever is the smallest

that minimum distance is called the minimum distance of the code.

So, it is one of the properties of the code. So, sometimes an n comma k code is denoted

by n comma k comma d star, so it is a property. So, it takes k bits as inputs transforms it

is into n bits and provides a minimum distance of d star.

Now what is a minimum weight the minimum weight of a code is a smallest weight of

any nonzero code word and it is denoted by w star. So, if there are M code words in this

code remember code is a set of code words then we find out all the weights hamming

weights of the code words other than the nonzero code word.

And the minimum of those weights is called the w star we will show that d star is equal

to double star for linear block codes shortly , but what are linear block codes. So, this is

again a very interesting and a very important area and let us focus on it.

(Refer Slide Time: 37:15)

So, the linear block code has a has the following properties. Property number 1 the sum

of any 2 code words belonging to the code is also a valid code word belonging to the

code. So, this is very interesting it is inclusive. So, take any 2 code words at random

from the set add them up. What do you mean by adding them up well the addition

operation needs to be defined for binary let us say it is just XOR operation which is the

addition operation. So, sum of any 2 code words is also a valid code word.

Property number 2 of a linear block code the all-zero code word must be a valid code

word. And finally, the minimum hamming distance between 2 code words of a linear

code. So, the minimum distance of the code word is equal to the minimum weight of the

code. So, d star is w star for a linear block code. So, these are the three properties of a

linear code.

Please note that the presence of an all zero code word is a necessary, but not a sufficient

condition for linearity ok. So, if you are required to verify whether a given set of vectors

forms a linear block code you need to check these three properties.

(Refer Slide Time: 38:53)

So, let us look at this example. So, let us go back to the drawing board.

(Refer Slide Time: 39:15)

And look at this code C equal to. So, if you look at this code M is equal to 4, n is equal to

4, and k is equal to 2. Now we would like to verify whether it is a linear block code or

not that is our question? So, first let us see whether the all zero code word forms one of

the valid code words it is true, so property number 1 all zero code word present ok.

So, now, we look at the second property which says that sum of any 2 code words is a

valid code word. Now, how many sums are possible well this plus this plus this. So,

basically you have 4 choose 2 right so we have to now check all of them and find out

whether each one each of the sums is actually a valid code word.

So, if you look at all zero code word if you add it to any one of them they will remain

unaltered. So, they automatically belong to the set, but let us say this and this. So, if you

had this plus this you get this, so this, plus this, you get this. On the other hand if I add

this plus this I get this, so I can add any one and I can verify that it falls back into one of

these 4 vectors.

So, we have sum of any 2 code words is valid code word and then we can carry out the

final check. So we looked at our code again 0000, 0101, 1010, 1111 and if you look at

the minimum weight of the code, which is the weight of the nonzero elements.

(Refer Slide Time: 42:36)

So, this has weight equal to 2; weight equal to 2; weight equal to 4. So, minimum is 2 so

w star is equal to 2 and if you find out the differences and you will get d star also equal

to 2. So, this code n k d star can be written as 4, 2, 2 code. And we have verified that it is

indeed a linear block code.

(Refer Slide Time: 44:06)

So, now, we come to the summary of our talk. We started with a brief introduction to

error control coding why is it important? What are the good properties expected from

error control codes. We then looked at what are block codes. We defined what do we

mean by hamming distance and hamming weight? And then we looked at how they can

be used to determine the minimum distance of the code.

In subsequent lectures, we will talk about how important is this minimum distance of a

code and it actually tells us how good the code is, what is the error correcting capability

of the code all of it will get linked to the minimum distance. So, this quantity will

become one of the single most important parameters to judge how good the code is the

other one will be of course, the code rate. And then we looked at several examples to

better understand these concepts. So, with this we come to the end of this lecture.

