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Hello and welcome to the next lecture on Channel Capacity and Coding. 

(Refer Slide Time: 00:32)

Let us start with a brief outline of today’s talk because of it is importance we will revisit

the information capacity theorem briefly and we will look at this Shannon limit what

practical implications it has. And then we will look at this multiple input multiple output

MIMO channels. They today form a part of most of the new wireless standards. So, they

deserve some attention and therefore, the remaining part of our talk we will focus at the

capacity of MIMO channels. 



(Refer Slide Time: 01:11)

We start with a brief recap we have already learnt what is channel capacity? Then as a

specific case and a practical case we looked at the Gaussian channel, then we derived the

information capacity theorem and for the first time we realized how the bandwidth and

the power is related. We looked at Shannon limit which we will revisit today.

(Refer Slide Time: 01:39)

So, let us go back to the capacity of a Gaussian channel and if you remember from the

previous class we derived that the capacity C is equal to half log to the base 2; 1 plus P N

naught W bits per channel use. So, this was the ultimate step, where we said that the



capacity is still being measured in bits per channel use is defined as follows. Since the

log to the base 2 is being used hence the units are in bits. 

And then we made the observation that we can transmit 2 W samples per second. So,

those of the number of times we can access the channel and therefore, we can express the

capacity  theorem in terms of bits  per  second why we have bits  per use and use per

second gives me bits per second. So, the final answer we have is capacity is equal to W

which is the bandwidth we have a bandwidth limited channel log to the base 2 perfectly,

1 plus P over N naught W. 

Now, this we observe is nothing but the SNR. So, the capacity is linked linearly with

bandwidth and logarithmically with SNR. And this is the case we made for the use of

CDMA systems in 3 G wireless standards wherein we have the logic that it is better to

invest in excess bandwidth rather than power. So, we put money on W which gives me a

linear increase in the capacity as opposed to SNR.

So, the CDMA systems have the signal almost noise like using a PN sequence. So, we

reduce the power and we increase the bandwidth excess of what is required, so that I can

get a higher capacity just a way to look at things practically. 

(Refer Slide Time: 03:49)

So, if you just observe this for a second this was derived in 1948 by Shannon and it is

called  the  Shannon’s third  theorem and also  referred  to  as  the  information  capacity



theorem it tells you about the C is the channel capacity. So, information capacity and

channel capacity are being used interchangeably. 

(Refer Slide Time: 04:13)

So, we just quickly revisit the model that we had. So, X k was the input, Z k or N k in

some literature is the noise and Y k is the output and this system is band limited and

power limited ok. So, this is the band limited portion and P is the power limited portion.

So, it is very explicit that the C is now for the first time linking and permitting us to trade

off between power and bandwidth alright.

(Refer Slide Time: 05:00)



So, if you look at a Venn diagram we have this circle for power, and for bandwidth and

finally, we have performance. Now what it tells us is that I can trade off one for the other.

So, if you give me more power then maybe I would say I do not need more bandwidth

even a reduced bandwidth to give you the same performance.

On the other hand if you say look power my battery is running out my comparator is

saying so many hours of talk time why cannot, so I said ok. We reduce the power. But

then I would need extra bandwidth to give the same performance, or you can say look I

do not have enough power and bandwidth costs money say I want to reduce both of them

then I will have to pay in terms of performance. How is performance measured? Well bit

error rate, bandwidth in hertz, power in milli watts. So, this kind of gives us the trade off

perspective.

Now what  is  present in  the information  capacity  theorem? If  you see this  C no pun

intended is W log to the base 2 1 plus SNR. So, this SNR part is the power the W part is

a bandwidth, but performance is implicit. So, there is no where we are talking about the

performance here, but clearly if we have a large bandwidth we can use stronger and

stronger error control codes. And we can achieve a lower and lower residual error rate

and hence improve our performance. So, that is how things are built in.

(Refer Slide Time: 07:35)

So, we go back to our slide and we say that information capacity theorem is indeed one

of the most important results in information theory. We will extend it today to MIMO



systems and in this one single formula we have the tradeoff between bandwidth transmit

power and power spectral density of the noise.

Given the channel bandwidth and SNR the channel capacity can be computed, and this

channel capacity is the fundamental limit. Because we have made the assumption of a

Gaussian channel where X is Gaussian, N is Gaussian, and Y is Gaussian in real life well

noise  can  be  taken  as  Gaussian,  but  typically  the  signal  may  not  be  Gaussian.  And

therefore, you away from this, this is the best we can do. So, it is really a fundamental

theoretical limit. 

So, as I mentioned that in order to achieve capacity for a Gaussian channel the signal

transmitted should have statistical properties which are Gaussian in nature. And so far we

have used channel capacity and information capacity interchangeably. 

(Refer Slide Time: 08:48)

Now, we have a very interesting outcome of this information capacity theorem which is

the Shannon limit and if you rewrite the capacity theorem with C is equal to the W, the

W goes down here log to the base 2 1 plus P. Now, what do I write P as? So, I said well

we define the data rate R b and for a change it is going at capacity is bits per second, R b

is bits per second, so we have R b equal to C.

So, we replace power as E b into R b E b stands for energy per bit R b stands for bits per

second. So, this is like joules per second which will give me watts. So, power is nothing



but  E b into  C say  I  replace  E b into  C in  the  numerator  N naught  W was in  the

denominator, so have an alternate form. Why do I do it? Well C over W is kind of a

normalized capacity with respect to bandwidth I call it Y, make another observation C

over W figures again I call it Y and E b over N naught figures once. And this is E b is

energy per bit over this N naught. So, this is the kind of measure for SNR.

(Refer Slide Time: 10:23)

So, let us put them in the axis X axis E b over N naught and Y axis this. So, I have this y

is equal to log to the base 2 1 plus X into Y. So, if you kind of plot it on the X axis we

have in blue E b over N naught on the Y axis in red we have R b over W. Please note, R b

and C has been used interchangeably they are equal then the plot gives me this curve

which is called the capacity boundary, the bandwidth efficiency diagram. 

Now, what is interesting to note in the previous figure is that this line if you look at here

along the x axis for large bandwidth. So, bandwidth W is in the denominator R b is a

system designed a parameter.



(Refer Slide Time: 11:23)

So, as I increase W, I go down the y axis as I go down the y axis this guy saturates. And

for W tending to infinity E b over N naught is actually ln 2 which is a fraction which

means that it is possible to have reliable communication over unreliable channel right. If

you have large enough bandwidth and what is strange as is that that the signal power can

be actually less than noise power and still you can have reliable communication.

So, this counterintuitive result this boundary is the Shannon limit which is a fraction. So,

this is not obvious that even if my signal power is less than noise power I can still do

reliable communication. On the other hand, if you have the expression for capacity as W

tends to infinity, then you are limited by this power of the signal this SNR. So, this kind

of  gives  you  a  limiting  factor  about  the  capacity  ok.  So,  regardless  of  how  much

bandwidth I give you I cannot keep on increasing the capacity of my Gaussian channel.



(Refer Slide Time: 12:42)

If you look at the capacity boundary above this line R b exceeds capacity and we know

that  if  this  rate  is  greater  than  this  capacity  reliable  communication  is  not  possible.

Whereas so this is the region where we have R b greater than C and below this blue line

is R b less than C where we again have reliable communication possible ok, so all of this

region.

So, any point on this diagram any point is an operating point it gives me a particular

SNR and a normalized data rate and I can design a system around it and that system

should give me as low probability of error as I desire. So, in this diagram if you could

plot a third axis you can possibly put the probability of error, but this is not clear from

this figure where the probability of error the reliability component comes into picture.

All it says is that I can have as reliable communication as I want, reliable means bit error

rate 10 power minus 10 I will give it to you I do not have a recipe for that, but I have an

existence proof for it. 



(Refer Slide Time: 14:16)

So,  R b equal  to  C is  the capacity  boundary and please note that  for  designing any

communication system that basic design parameters are the bandwidth available SNR

and the performance measure BER. So, this we have now understood in terms of the

slides we have seen ok. So, BER is also designated as a probability of error. 

(Refer Slide Time: 14:42)

Now, let us look at MIMO systems. So, let us quickly revisit what is this MIMO system?

So, we go back and refresh your memories. 



(Refer Slide Time: 14:56)

So,  in  wireless  communication  I  can  have  several  transmit  antennas  and I  can  have

several receive antennas. Well,  in theory we can always do in practice the number of

antenna antennas on a handset for example, would be limited right. So, I can have the

linkage between transmit and the receive antennas.

So, as you can see that I have a channel matrix H which is of the dimension M R into M

T where M R could  represent  the number of  antennas  on this  side,  or  empty  could

represent the number of antennas on this side. Now, clearly we can have a much higher

capacity  just  looking at  it  intuitively  because  there is  so many data  pipes  that  I  can

possibly envisage in this MIMO systems ok.

So, let us look at the capacity of MIMO systems. Now we can have two scenarios one is

we know how good or bad the channel is that is we know the channel characteristics the

channel state information is available at the transmitter or whipping a blind game and we

have no clue how the channel is which is good or bad. Why is it important? Well, look

maybe some channels are good some are not good it is wireless after all and it makes

sense to allocate  power in  a manner  which should maximize  the mutual  information

transfer and hence, the capacity of this MIMO system. So, that will be the general game

plan for today to figure out how to gain understands the capacity of this MIMO system.

So, coming back to the slide if  you see that  if  we assume that  the average transmit

symbol energy is E s E sub s then the sample signal model can be represented as y k k-th



sample E s over MT. So, M T is  the number of transmit  antennas,  H represents the

channel matrix which is the represents our channel and sk is the transmits symbol n k is

the noise. So, this is just the sample signal model.

So, what is yk? Y k is M R into 1 which is the number of received antennas, sk is the

transmit signal, M T is the number of transmit signals. So, T stands for transmit, R stands

for receive. So, I can have vector, matrix, vector, vector. So, nk I can have an assumption

that is a spatio temporal zero mean complex Gaussian white noise with a given variance

N naught ok. So, let us put this as our system model. 

(Refer Slide Time: 18:45)

If we now drop this time index k for brevity we can write the same equation as y it is a

vector. It is in volt phase E s over M T T’s represents M T is the number of transmit

antennas, H is the channel matrix, s is a vector, n again volt phase is a vector. Now, it is

fair to say that the transmitter  is power limited power cost money even if I have the

money I should not transmit more than I should because my signal is somebody else is

interference in a wireless situation.

So, it is good to be green today people are crazy about green communication which is

essentially  to use only as much power required as usual.  So,  since the transmitter  is

usually power limited and we have so many other constraints let us put a constraint on

the average power in X k the transmit signal, please note the term average.



So, average power can be defined as the covariance matrix of s which is the transmitted

signal which is given by R ss is expected value of SS Hermitian ok. The superscript H

denotes  the  Hermitian  operation  we  make  the  assumption  that  the  channel  H  is

deterministic  and known to the receiver. So, the first condition is that the channel is

deterministic well in real life it is not, but for the sake of discussion. And it is known to

the receiver how do I know this channel well I can conduct experiments,  I can send

pilots, I can get some feedback, I can possibly have an estimate of H. 

(Refer Slide Time: 20:45)

So, the channel state information the information about the channel gain matrix H can be

obtained at the receiver using a pilot, or training signals. Then the capacity of this MIMO

channel is given as follows C is equal to maximize over trace R ss equal to M T we will

talk about it W log to the base 2 determinant of I MR is the identity matrix plus.

So, this is the same structure, but this time instead of 1 plus SNR we have now M T cross

MR. So, this is M R plus E s over M T N naught again this is a notion of the SNR part H

R ss, H Hermitian bits per second, W is the bandwidth, IMI denotes the identity matrix

of  size  M R.  Please  note  this  constraint  the  condition  trace  R  ss  is  equal  to  M  T

constraints  the  total  average  energy  transmitted  over  a  symbol  period.  So,  this

maximization is under the constraint that we do not have infinite power at the transmitter

side, so we restrict that.



Now in the case when the channels are known to the transmitter what do I do? Well I

treat all my individual data pipes identically I do not treat them differentially I say well I

would rather put all my power equally in the all the transmit antennas. So, that is what

the covariance matrix tells you it is an identity matrix of size M T it has 1 along the

diagonals, and 0 elsewhere how many M T?

So, each one normalized power is 1 this is the best I should do this is the best I can do

because the channel is unknown to the transmitter it is unfair to put more power in one of

the antenna elements as opposed to other. Only when I have some idea about the channel

if one of the channels is poorer, I should focus and put more power in the good channel

as opposed to a not so good channel. But if the channel is unknown to the transmitter this

is my best bet. 

(Refer Slide Time: 23:26)

So, continuing with the channel is unknown to the transmitter the vector s may be chosen

such that  R ss are  the  identity  matrix.  So,  this  simply  means  that  the signals  at  the

transmit antennas are independent and of equal power that it what it means any cross

terms would have shown up, so it would not have been an identity matrix.

But right now it says that it is independent of the equal power and in that case you can

derive from the previous general formula the capacity of the MIMO channel is simply

given by C equal to W summation i is equal to one through r, we will talk about r being

the rank of the channel, 1 plus again this is kind of the SNR expression E s over M T N



naught lambda i, where lambda i, i equal to 1 through r are the positive eigenvalues of

this HH Hermitian.

(Refer Slide Time: 24:30)

So, let us just look at it a little bit more carefully because this is a very strong physical

interpretation  what  are  we  trying  to  do?  We  have  a  MIMO  channel,  so  empty

transmitters, M R receivers. What are we trying to do? Find the capacity of this very big

MIMO system and we have this expression for the capacity in terms of bits per second.

We would like to have a physical intuitive understanding of this.

So, let us begin with our interpretation first look at this sum, so if we open up this sum

and look at this W. So, it is W log to the base 2, 1 plus E s over M T N naught lambda 1

plus W log 1 plus E s M T N naught lambda 2 and so on so forth up to r. But what is an

expression W log 2 1 plus SNR it is nothing but the capacity of a single input single

output channel which have derived for this Gaussian case.

So, it only tells me that this combined capacity of a MIMO channel where the channel is

unknown to the transmitter is nothing but the sum of r SISO channel each having power

gain of lambda i and equal transmit power E s over M T that we had established earlier

itself. So, let us look at this expression E s over M T is the transmit power right lambda i

is the power gain alright, and r I am a identical SISO channels and what is this r it is the

rank of the channel. 



So, the way to interpret it is that this MIMO channel is effectively multiple parallel data

pipes  which  are  each  SISO,  how  many  are  in  number  very  interesting.  So,  use  of

multiple antennas and receive antennas have effectively opened multiple parallel  data

pipes between the transmitter and receiver and I am really excited because it meant it

will really improve my capacity.

And the number of this scalar data pipes depends on the rank of H. What it means is? If it

is a full rank then I have a much higher capacity ok. So, the more number of independent

channels I can carve out of my H it depends on the real wireless channel the higher my

capacity is. 

(Refer Slide Time: 27:53)

So, let us look at a full rank MIMO channel and for the sake of discussion let us have

equal number of transmit and receive antennas. So, full rank which means M T is equal

to M R is equal to M, so the rank is indeed M ok. So, the maximum capacity is achieved

where H is an orthogonal matrix, and this capacity of the MIMO channel is given by C is

equal to W M log to the base 2, 1 plus E s over N naught bits per second this is almost

intuitive ok.

So, I have got M scalar data pipes and so capacity is simply thus some of these M scalar

capacities and which is nothing but M times W log to the base 2 1 plus E s over N naught

this  is  the SNR. So,  the  capacity  of  an orthogonal  MIMO channel  why orthogonal?



Because we are now started to talk about a MIMO channel in terms of it is channel

matrix H.

And now we are only focused on the characteristics the mathematical characteristics of

this matrix H that this matrix H is pretty easy to write because in general we have M T

transmit antennas, M R receive antennas. Each antenna at the transmitter is connected to

an antenna at the receiver and there is a channel gain from one to the other. So, it is

pretty easy to construct this matrix H.

Now, this H matrix may have several interesting properties based on these mathematical

properties we are making comments about the capacity. So, here we have a full rank

matrix and H is an orthogonal matrix under this condition of orthogonality and this leads

us to the best possible capacity of a MIMO system where C is given as this formula.

What is it? It is simply M times the scalar channel capacity. Here we have assume the

number of transmit antennas is equal to the received antennas is equal to M.

Now comes the question what if the channel is known to the transmitter? The different

scalar data pipes will be accessed individually through processing at the transmitter and

receiver  alright.  So, the basic idea is to allocate  variable energy across different data

pipes in order to maximize the mutual information.

(Refer Slide Time: 30:52)



So, let us again have a intuitive understanding first about what we have to do? What is

our problem? So, these are my channels let us demarcate them channel 1, 2, 3, 4. And on

this axis we have to allocate power, so this is channel 1, channel 2, channel 3 and so and

so forth. The problem is the channels may not be the same by now all of you appreciate

the fact that we have multiple channels between the transmitter and receiver. The aim is

to maximize the mutual information and we have said that the channel is known to the

transmitter. 

Suppose the channel 1 is affected by some level of noise. So, this is a power axis, so I

have denoted a certain amount of noise power. And the channel 2 is a luckier channel and

we have less noise. And channel 3 is my bad luck it has much higher noise, and again

channel 4 has moderately high noise. 

Now the question is we can do this measurement of how good the SNR in each channel

is and thereby understand the level of noise each of the channels for all the possible

channels. Question now is how much power should be allocated to each of the channels

to maximize the mutual information that is the problem to be solved.

(Refer Slide Time: 33:10)

So, we come back to our slide we are trying to look at the problem when the channel is

known to the transmitter and the job of the transmitter is to figure out how to optimally

allocate  power  to  the  different  antennas.  This  is  a  very  practical  problem.  Now the



different  scalar  data  pipes  may  be  accessed  individually  through  processing  at  the

transmitter and receiver ok. 

So, the optimal energy is found by iteratively applying an algorithm called the water

pouring algorithm we will explain why it is called. And the capacity of a MIMO channel

when the channel is known to the transmitter is necessarily greater than or equal to the

capacity when the channel is unknown to the transmitter. So, even though it is intuitive it

is it can be mathematically shown that if you know the channel at the transmitter you can

squeeze more out of it as opposed to doing a blind guesswork. And the water pouring

algorithm if you go back to our original drawing we had this choice and suppose we have

a total given transmit power which is limited by some quantity. So, it tells me channel 1

should be allocated this much of power. So, it is like I have to set the level of a water

which is consistent for all channels.

Now, since channel 1 had already this much of noise the amount of power that I will

allocate to the channel we will be only limited, but is this is a good channel. So, I will be

allocating more power to this channel, this is the power I have allocated to this channel.

If I want to make it more explicit whereas, because channel 1 had more noise it got a

lesser share of power for this one, so this is P 1 and this is P 2. 

So, if you go to the third channel I am shocked to see that this has gone above the water

level because who sets this water level. Originally I had a total amount of power to be

allocated that decides if we increase my total available power I can raise this level. But

right now with a given level I must do justice to everybody the channel 3 is really noisy

it does not get any power. So, I will not use channel 3, I go back to channel 4 it is below

this water level.

So, I have my can right and I pour water and it must fill in and reach this level. So, the

power for this third fourth channel, channel 4 will be P 4 and so on and so forth. So, I

can  do  this  and therefore,  this  is  called  the  water  pouring  algorithm ok.  There  is  a

mathematical proof for doing this, but essentially this is what I am trying to do. 

Now, if you have the luxury of a larger quantity of power suppose I set my threshold

here, then I will see that even channel 3 which was left out in the previous case also got

the power. So, if I choose to change my algorithm and say no I will allocate more power

now  then  I  can  redistribute  additional  power  in  this  way  to  get  maximal  mutual



information and thereby the capacity. So, this is called the water pouring algorithm, or

sometimes it is called the water filling. 

(Refer Slide Time: 38:33)

So, we come back and summarize where we have reached today we started off with the

channel capacity theorem. And we looked at the first fall out which is the Shannon limit

from this information capacity theorem, and then we spend quite a bit of time on the

capacity  of  MIMO channels.  We looked at  different  cases  whether  the  channel  state

information is known to the transmitter, or it is not known. And how we can intuitively

visualize scalar data pipes depending upon the mathematical properties of this matrix H,

which links the M T transmit antennas to M R received antennas.

With that, we come to the end of this lecture.


