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Hello and welcome to the next module on Channel Capacity and Coding. We will start

with the brief outline for today’s lecture, we will revisit channel capacity. And then focus

our attention on Gaussian channels, we will then state improve the information capacity

theorem.

(Refer Slide Time: 00:51)

And finally, we will spend some time on the Shannon limit.



(Refer Slide Time: 00:58)

Let us quickly recap what we have done so far. We have developed the general notion of

the capacity of a channel. We had looked at symmetric channels and figured out how we

can quickly compute the capacity for symmetric and weakly symmetric channels. We

then looked at noisy channel coding theorem and we took an example of a very simple

error correcting code called the repetition code.

(Refer Slide Time: 01:27)

So, very quickly to refresh our memory we have talked about the channel capacity C as

the maximum of average mutual information between X on one side of the channel and



Y on the  other  side  of  the  channel;  where  the  maximization  is  done  over  all  input

probabilities and if you write it out the expression for capacity looks like this. Please

note some of the interesting properties of the channel capacity. Capacity is necessarily

greater than or equal to 0, since the average mutual information is greater than or equal

to 0. We also established that the capacity should be less than or equal to log X where X

is the cardinality and similarly later should be less than or equal to log absolute value Y,

where this sign shows the cardinality of Y.

This simply comes from like the extension of this  which we should information I X

semicolon into Y should be equal to H X minus H X given Y should be equal to H of Y

minus H Y given X. So, this we have done already.

(Refer Slide Time: 02:41)

A very quick recap on the noisy channel coding theorem where we started off with a

discrete memory less source with an alphabet X with a given entropy H X and producing

symbols every T S second. And we established that with if the source rate H X divided

by T S is less than or equal to C over T C; then we have a possible coding scheme, where

we can transmit information over this noisy channel which is unreliable and at the same

time re construct with arbitrarily low probability of error at the receiving end.

On the other hand, if H X divided by T S source rate is greater than this quantity which

we will define as the critical rate then it is not possible to transmit information reliably.



This parameter we already defined is called the critical rate ok. So, this is what the noisy

channel coding theorem tells us.

(Refer Slide Time: 03:47)

Now, very  quickly  let  us  look at  a  very interesting  and practical  channel  called  the

Gaussian channel.

So, we now formulate the information capacity theorem for a band limited and power

limited Gaussian channel.  Please note in  the binary symmetric  channel  there was no

notion of bandwidth; did it figure out? Not at all where was the notion of power? Well, it

was implicit in the channel transition probabilities, but it was never explicitly stated, but

in real life these are the 2 quantities we must deal with bandwidth, yes we pay a lot of

money. Remember the auctions for the wireless spectrum ok. So, band limited channels

are a reality, way of life and power you do not have infinite battery power, you have to

outdo your competitors your mobile phone should not drain out in the middle of your

conversation.

So, the channels are not only band limited, but they also power limited Gaussian we will

talk about.
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So, let us have a very very simple model. So, X of k is at the transmitter site and Y of k is

at  the  receiver  site  what  the  channel  does  is  it  adds  noise  which  is  Gaussian  most

specifically native white Gaussian noise.

Now, the sub k represents the samples; so, k-th sample of the symbol gets added with the

k-th noise sample to get the Y k output. So, let us talk about this discrete channel which

is the time discrete channel with output Y k at time k. And let us say the noise sometimes

it is denoted Z k literature, but here we have noted as N k is drawn from a Gaussian

distribution with mean 0 and variance sigma squared. Then we can write Y k simply as X

k plus N k where N k is taken from this Gaussian distribution.

Please note the first assumption we are going to make; we are going to make several

assumptions the first and foremost is that the noise N k is independent of X k. So, this is

the first assumption we make and we will use this assumption to derive the information

capacity theorem. Is this a fair assumption? Well, it should be, if we have to really work

hard to make it dependent; in general the sources independent and the noise is generated

independently in the circuit. So, it is a good fair believable assumption that X k is really

independent of k.
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Now, the problem before us is to figure out what could be the capacity of a Gaussian

channel that we have defined. This Gaussian channel we have already qualified it with

being power limited and bandwidth limited. So, band limited and power limited since the

transmitter is usually power limited; let us put a constraint on the average power of X k

remember X k is what we are transmitting at time k. So, what do you mean by average?

Well the expected value of X k squared is P. So, this is the average power it is possible

that some of the symbols are being transmitted with lower power some of them are be

transmitted with higher power, but on an average we have the input symbols having a

power of P.

So, the problem now translates to a constraint problem where we have to find out the

capacity  as  maximization  of  the average  mutual  information  I  X semicolon Y given

expected  value  of  X k  squared  is  P as  always  the  maximization  will  be  over  input

probability distribution. So, this condition we have added; so, what are the 2 things we

are looking at?  This power limited this  putting this condition expected value of X k

square is P and the probability density function of X k is this fx x.

So, this slide tells us that we are right now focused on the transmitter side where the

symbols are being generated with X k k equal to 1 2 3 4 up to capital k. So, we proceed.
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So, we start with the differential entropy and we say that the average mutual information

between X k and Y k. So, only focusing on the k-th symbol is equal to h Y k because

please note Y is a continuous random variable and Y k is a sample at time instant k. So,

small h representing the differential entropy; so, h Y k minus h of Y k given X k this is

just the definition of this average mutual information.

Now, we  have  already  assumed  that  X  k  and  N  k  are  indeed  independent  random

variables. So, we think a little harder and say that the conditional differential entropy of

Y k given X k. So, we are looking at the second term on the right hand side; so, the

conditional differential entropy of Y k given X k is nothing but the differential entropy of

N k why because, X k and N k are independent. So, if you go back to your original

model X k and Y k are independent, so if you want the uncertainty h Y k given X k,

right.

So, if I know already if I have been given X k then the uncertainty in Y k is coming from

where only because of N k. So, H of Y k given X k is nothing but h N k. So, we come

back and say that intuitively given X k the uncertainty arising in Y k is purely due to N k

that  is  to  say  h  Y k  given  X k  is  equal  to  H of  N k.  So,  this  is  a  very  important

assumption  and it  is  based  on X k  and Y X k  and  N k  being  independent  random

variables.



So, just because we have a strong intuitive feel we could simplify this expression to I X k

is  semicolon  Y k  average  mutual  information  is  nothing  but  the  difference  of  the

uncertainty h Y k minus H N k. So, if you bring it closer and compare we have got this

second term h Y k given N k being replaced by H mk. So, we have we are moving

forward.

(Refer Slide Time: 12:02)

Now we have to make some more assumptions. So, if we assume Y k to be Gaussian and

N k to be Gaussian then by definition X k is also Gaussian why do we have to do all of

this?  Well  these  assumptions  are  being  made  to  maximize  the  average  mutual

information in order to obtain the capacity value. So, we have to get some distribution of

X k. So, as to maximize the average mutual information, but to make any comment about

the distribution X k I must then talk about Y and N k.

Now, N k is Gaussian by definition and if you are assuming Y k to be Gaussian then X k

to be also Gaussian. This is because the sum or even the difference of any 2 Gaussian

random variables  is  also Gaussian.  So, in  order  to  maximize  the mutual  information

between the channel input X k and output Y k, the transmitted signal should be Gaussian;

so, these are the logical steps to follow. So, what we can write now is that capacity.

Now, we have said that we will maximize given the distribution of X k, but that X k

which maximizes the average mutual information is Gaussian and I will comment upon

why is it so. So, then C is equal to the average mutual information X semicolon Y under



now 2 constraints;  one is  the power limited condition that the average power of the

symbols at the input is P. And again at the input we request that this X k to be Gaussian

in order to write this capacity.

So, this maximum value and is gone maximization is already done under the assumption

that X k is Gaussian that is the take home message here.

(Refer Slide Time: 14:17)

So, we go a little bit further if 2 independent Gaussian random variables are added; the

variance  of the resulting Gaussian random variable  is  the sum of the variances  right

because this is again the independence notion.

So,  let  us  quickly  look at  what  we are  doing here.  So,  we have  this  nice  Gaussian

channel.
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Where we have this X k and we have our friend today N k because without this N k we

do not have a case and we have your Y k. Now we wanted to maximize the average

mutual information in order to get the capacity; for that the conclusion was that this X k

must be Gaussian. This is Gaussian by definition and sum or difference of 2 Gaussians

under variables as Gaussian. So, this guy is also Gaussian and why was this taken as

Gaussian? Because we had this needs to be maximized right because capacity requires us

to maximize this, this has to be maximized and this is Gaussian this is Gaussian. So, in

order to maximize this Y should be Gaussian, this is Gaussian it forced us to make X

Gaussian. So, that was the general train of thoughts.

Now, we do this independence thing further and we do that the power here at the input

they have taken the average value  to be P and this  is  sigma squared and this  has  a

variance  P;  then  this  is  Gaussian  sum of  2  Gaussians,  but  we will  ensure  that  this

variance should be equal to P plus sigma squared. So, noise power can be written as N

naught W. And therefore, we can write P plus N or W very simple observation the beauty

of Gaussian distribution right.
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And therefore,  so we come back to  the slide and say that  it  will  be shown that  the

differential entropy of a Gaussian random variable with variance sigma squared is half

log to the base to 2 pi e sigma squared ok.

So, you can show this and what is very interesting is that if I give you 2 random variables

with equal power; so, variance then it is a Gaussian random variable that maximizes the

entropy; it is a very interesting part. So, what is the physical significance of this? suppose

I make an observation some funny vibration is going on bridge or a measuring some

traffic condition and I have no clue about what distribution to put in.

Then the best bit is to model it as Gaussian because Gaussian captures the maximum

information. The entropy is maximum for a Gaussian random variable that is why we

chose Gaussian to be the distribution for Y k and hence X k and what is that differential

entropy where for the Gaussian it is 1 by 2 log to the base 2; 2 pi e sigma squared.

So, for Y k which is nothing but the sum of X k and N k the variances add up and I have

half log to the base 2; 2 pi e and instead of sigma squared effective sigma square is a sum

of the 2 variances. So, P is the variance of X X k and N naught W is the variance of noise

which is the noise power fine. So, very simply no hard mathematics we are combining

intuition with a little bit of mathematics to get this differential entropy for h Y k.



Remember our job is  to find out h Y k then h N k and find the difference and that

difference  should  be  the  capacity  of  this  Gaussian  channel.  So  far  so,  good we are

trudging along.

(Refer Slide Time: 19:47)

So, what have we found so, far? We have this deficient entropy of h Y k as follows and

for the noise which is also Gaussian distributed or assumption h N k is half log to the

base 2 2 pi e and N naught W the noise power.

Now, we  come  to  finding  the  capacity  which  is  the  difference  and  we  write  it  out

explicitly. So, the expressions for h Y k and h N k; so, we write it down as a difference.



(Refer Slide Time: 20:33)

Now log difference of log is just tailor made for simplification and so, what we do is we

take half log to the base 2 and then we take it common and we take the ratio. So, 2 pi e P

plus N naught W divided by 2 pi e N naught W. So, this 2 pi e cancels out and I am left

with P plus N naught W divided by N naught W and we are left with finally, 1 plus P or

N naught W as argument of the log.

So, C comes out to be half log 2 1 plus P over N naught W and clearly I must put the

units of this and it is bits per channel use ok. So, I am still uncomfortable because per use

every time I use a channel, but suddenly I remember that I have to give an answer in

terms of bits per second. I can always say every time you use the channel, but that does

not  really  make much sense for the user. The user  would like to  know; what  is  the

capacity in bits per second; especially when we have introduced this notion of power

limited and bandwidth limited.

So, we have to take that last final step to change this bits per use bits per channel use to

something like bits per second. So, we need to find out how many times per second can I

really use this channel ok. So, this point is bothering me still and I need to make a fix for

this.
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So, what are we doing? We have so, far derived that in terms of bits per channel use

capacities half log to the base 2 1 plus P over N naught W and since the log to the base

basis 2 the answer is N bits. We are transmitting 2 W samples per second because the

bandwidth is W. So, we know that if we have a bandwidth of W, we can have in terms of

the micro sampling theorem, we can use the channel being used 2 W times in 1 second.

So, then if we are using it fruitfully; then we can say that we have finally, the last piece

in the jigsaw, I have the answer of times per second the channel can be used. So, bits per

channel use in to use per second will give me bits per second.

So, finally, I multiply this by 2 W; so, I here it was half when I multiplied with 2 W I am

end up with W; W log to the base 2 1 plus P over N naught W and please note here we

had bits per second and 2 W samples per second. So, if you use these 2 together I end up

with bits per second.

So, finally, I am quite comfortable with this notion of capacity which is C W log to the

base 2 1 plus P over N naught W bits per second; this makes sense this I can go and sell

my product, I can relate to bits per second. So, this is pretty much the capacity of a

Gaussian channel.
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 This basic formula even though we are saying its basic, we will very soon realize how

versatile it is and how much insight it can provide. This basic formula for the capacity of

the band limited power limited,  additive  wide Gaussian,  waveform channel  was first

derived by Shannon in 48; 1948 and it is also known as Shannon’s third theorem and also

called the information capacity theorem.

(Refer Slide Time: 24:50)

So, a quick recap of what we have done so, far. So, we had this nice band limited, power

limited channel X k and the transmitter Z k or N k which ever notion you want to put in



is added and I get Y k and the capacity we have derived as W locked the base to 1 plus P

over N naught W. So, we have introduced the notion of band limited and power limited.

Now, it is a very interesting formula let us see; what does it tell us. So, let us write it

down.

(Refer Slide Time: 25:39)

So, the first observation that we make is that this W is at 2 places at the same time N

naught W is the noise power. So, this is effectively W log to the base 2 1 plus SNR. This

is the signal power divided by the noise power, this is your SNR. It tells me that the

capacity  grows linearly  with  W, but  logarithmically  with SNR; this  is  an interesting

observation.

The capacity does not treat bandwidth and power equally; in fact, the capacity is partial

towards bandwidth and is less partial towards in terms of giving importance to SNR. So,

if you just plot it.
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And if you have this capacity on this axis you have SNR versus your bandwidth. So, it

kind of grows linearly with bandwidth. On the other hand just I am superimposing to

bring out the full import, it grows logarithmically with SNR. So, if I have money to put I

will rather put my money on bandwidth because it gives me a much better return in terms

of the capacity than the SNR.

In fact, if you look at the practical systems the 2 G wireless systems invested more in

terms of SNR right, but then we made a transition from 2 G to 3 G; for example, CDMA,

CDMA uses excess bandwidth and much lower power. So, it invested more in terms of

bandwidth than power in order to get a better capacity. This is simple way to justify why

CDMA was chosen over the FDMA, TDMA systems when we transited from 2 G to 3 G

ok, but there are many other implications in terms of bandwidth and power tradeoffs.

So, other thing that tells me is that we can trade off bandwidth for power in terms of

performance, but we will come to that shortly. So, we go back to our slide.
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And come to some of the interesting take home messages from the information capacity

theorem.  The  information  capacity  theorem  is  one  of  the  very  important  results  in

information theory. In a single formula one can see the tradeoff between the channel

bandwidth the average transmitted power and the noise power spectral density is a one

formula  that  links.  Before this  there was no clear  idea  as to  how to look a tradeoff

between say channel bandwidth or the average transmitted power or how the noise power

relates to the capacity, right.

Given the channel bandwidth and the SNR the channel capacity can be computed. So, I

can give you actual numbers this channel capacity is the fundamental limit on the rate of

reliable communication for a power limited, bandwidth limited Gaussian channel. So, it

gives a theoretical limit on the rate of reliable communication, but it should be kept in

mind that will meet some assumptions.

And one  of  the  most  important  assumption  is  that  the  transmitted  signal  must  have

statistical properties that are Gaussian in nature; this was not always true and therefore,

this is only a theoretical limit. But in order to achieve the capacity X should tend towards

Gaussian. Note that the return channel capacity and information capacity have been used

interchangeably  so  far.  So  with,  sometimes  talking  about  channel  capacity  of  the

Gaussian  channel,  sometimes  we  are  talking  about  the  information  capacity  of  the

Gaussian channel; well the theorem is called the information capacity theorem.
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So, let us look at a holistic view first; so, what are the current challenges? So, just for the

sake of discussion let us see we are going to design a wireless communication system,

the next generation may be 5 G and what are the challenges in front of us?.

So,  the  designer  has  to  look  at  several  things  right  from  the  coverage  area  to  the

performance in terms of bit error rate, frame error rate, delay jitter took the cost security

aspects becoming very important and energy efficiency it has a fancy name today called

green communications. So, these are all the things that a person must juggle so, as to get

things right and sell the product in the market.

But how does this relate to our information capacity theorem? Well if you see already we

have how to trade off the power versus bandwidth versus performance. So, one thing that

we have not really made it very clear explicitly is how the performance gets related? And

that we will shortly link to, but before that let us understand that these are the current

challenges and the number of users you can support, what is a coverage you can provide,

what is the performance you can give in terms of bit error rate to the different users, how

much battery power will the user have to expend, how much bandwidth will you allocate

to the user  all  of  this  gets  captured by one single formula given by the information

capacity theorem.
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Now, we look at a very very interesting thing called the Shannon limit. So, again this is

the follow from the information capacity theorem, let us consider a Gaussian channel

once again which is limited both in power and bandwidth. Now we wish to explore the

limits of communication system under these constraints. So, let us define an ideal some

system since we are looking at the limits which can transfer data rate data at bit rate R b

which is equal to the capacity.

Please recall capacity they have been finally, able to nail it down in terms of the units

bits per second. And this capacity if you remember your source rate should be less than

this capacity so, as to get reliable communication let us say we are running at capacity.

So, R b which is the data rate in terms of bits per second is equal to C fine.

So, this is whatever we are going to derive under this condition will be the limit; if you

go even 0.1 bits per second above this. We enter into the red territory where reliable

communication may not be guaranteed. Now we make another assumption which is the

energy per bit now this is again a very practical thing we always deal with energy per bit

if you have to compare apples to apples in terms of higher order modulation schemes.

So, the average transmitted power is nothing but E b into R b because E b is energy per

bit and R b is bits per second. So, we get say joules per second which is watts in terms of

the power and are we has already been put equal to C; so, we have E b into C. So, P is

equal to E b into C ok. So, now, if you recall the information capacitive theorem we had



the C equal to W. So, that W has been put on the left hand side now with C over W is

equal to log to the base 2; 1 plus what do we have here? We had P over N naught W, but

P we have substituted as E b into C.

So, now, the differently expressed information capacity theorem running at capacity is C

over W equal to log to the base 2 1 plus E b over N naught C over W. Why am I doing

this? I have got the C over W and C is equal to R b that is equivalently R b over W at 2

places and I have got E b over N naught as at 2 places.

(Refer Slide Time: 37:01)

So, if we write it out we can express it as; please note C equal to R b in this case. So, it is

equivalently R b over W equal to log to the base 2 1 plus R b W times E b, where N not.

So, you can always write this quantity as X this quantity as Y and this quantity again is

X. So, you have X is equal to oh thank you this is a Y. So, we have Y equal to log to the

base 2 1 plus xy.

So, it will be if I write it neatly it becomes Y equal to log to the base 2 1 plus xy and this

we should be able to plot. But we will have physical significance for both E b over N

naught and R b over W. So, R b over W is the normalized rate and E b over N naught is

kind of a SNR.
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So, if you go back to the slide we can write now equation E b over N naught is equal to 2

C over W minus 1 over C over W; this is if you want take 2 layers of power on both

sides.

So, now we plot the bandwidth efficiency R b over W versus E b over N naught. So, we

have is R b over W which we designated as Y; versus E b over N naught which we

designated X and whatever we get is called the bandwidth efficiency diagram.

(Refer Slide Time: 39:30)



So, let us mark this axis first; on the X axis we put E b over N naught this is what we put

as X, on the Y axis we have R b over W and if you make the plot you get this blue line as

the Shannon’s limit. This represents the condition that R b is equal to C anything below it

will be R be less than C anything above it is R bigger than C. So, we will back to this

diagram again.

(Refer Slide Time: 40:13)

But let us look at this limit those called the Shannon limit which we will come very

quickly it is also a little counterintuitive. So, for infinite bandwidth; so, what do you

mean by infinite bandwidth? W is the bandwidth, infinite means this R b over W goes

very low. So, I go down this limit. So, if you see if I go down this curve tends to SM

totally become it tends to some value asymptotically this limit is the Shannon’s limit that

will talk about. So, for infinite bandwidth the ratio E b over N naught tells to a limiting

value E b over N naught as W tends to infinity is nothing but ln 2 is 0.693 in terms of dB

it is minus 1.6 dB this is called the Shannon’s limit.

Now, comes the counterintuitive part the Shannon’s limit is a fraction what does it mean?

This implies that for very large bandwidth reliable communication is possible even when

the signal power is less than the noise power. Now if you do not understand the full

import of it let us draw and tell you.
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 That suppose for a certain case; I have this as my signal and suppose I have this has

noise;  then  when  we  add  the  signal  and  noise  we  get  something  like  this.  What

Shannon’s limit tells us is given infinite bandwidth I should be able to recover the signal

from this seemingly junk data.

So, this shows that even if the noise power is larger than the signal power, if the SNR is

minus 1.6 dB fine still  I can get reliable communication and how reliable? Well  you

name it the trailer tends to understand you got it, but you give me infinite bandwidth;

well  how will  I  use that  infinite  bandwidth? I  will  use some kind of a stronger and

stronger and stronger error control code to do this fine.

We come back to our slide the channel capacity corresponding to this limiting value right

C with W tending to infinity. Well, what is it? It is P over N naught log to the base 2 e

this is a constant what the capacity for infinite bandwidth is nothing but P over N not just

decided only by the signal power and then noise power.

So,  the  capacity  is  completely  determined  by  the  signal  to  noise  ratio  for  infinite

bandwidth; I just keep does not keep growing. So, it is not that I keep increasing the

bandwidth and my capacity will keep increasing; this is a very interesting result if you

ponder over it. So, just if somebody gives a lot of bandwidth and keeps giving you more

and more bandwidth it does not mean that you can keep increasing your capacity.
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So, let us look at that Shannon’s limit and this plot for this R b equal to C condition once

again. So, this is the capacity boundary; so, this blue line is called the capacity boundary.

On the X axis again you have E b over N naught on the Y axis if R b over W bandwidth

here sometimes we sometimes you note bandwidth by b, where it is R b over W.

And what you have is this region this red dots which is R b greater than C. R b greater

than C means that reliable communication is not possible you cannot limit your error

rate. So, it is all over this place right, but above this blue line. So, this is your R b greater

than C. On the other side is the region where we can design practical systems where R b

is less than C.

And again below this blue line all of this region right is your R b less than C here we can

have a reliable communication with arbitrarily low probability of error. And this blue line

which  is  the  capacity  boundary,  which  separates  this  region  of  for  practical

communication and other region.
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So,  basically  the  bandwidth  efficient;  so,  diagram  shows  the  tradeoff  between  the

quantities R b over W and E b over N naught and in terms of the probability of error. So,

for  designing  any  communication  system;  so  the  basic  design  parameters  are  the

bandwidth available  would you pay money for it,  the SNR well  that  will  decide the

battery life and it is expensive also and the bit error rate. So these are the 3 things we

must check.
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So, let us now summarize what we have studied so far. We started off revisiting the

channel capacity then we jumped directly to the Gaussian channel which is a practical

channel  as  far  reaching  consequences.  Then,  we  looked  at  the  information  capacity

theorem we stated and derived the information capacity theorem. And we understood

what do we mean by the Shannon limit.

That brings us to the end of this module.


