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Welcome to this module on Source Coding. Let us start with a brief outline of today’s

talk. We will start with Uncertainty and Information, then we look at the notion of Self

Information. We will then graduate to Mutual Information and finally, we will talk about

Average Mutual Information. So, this is the general outline for today’s talk. 
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So, let us start with this notion of information. Let us start with this three sentences.

Sentence one, tomorrow the sun will rise from the east or the phone will ring in the next

1 hour and the third sentence, it will snow in Delhi this winter.

Now, if you look, if you count the number of letters in each of the sentences, they are

different. In fact, the first sentence appears to have the maximum number of letters and if

you map one letter of the English alphabet to 8 bits, you will find the maximum numbers

of bits are really used to represent the first sentence. But does it really warrant so many

bits? Does it really need so many bits to be used to express whatever is being conveyed;

tomorrow the sun will rise from the east? 

So, let us have an intuitive feel first and then we will go to the mathematical rigor. The

first sentence intuitively probably does not convey anything right. It hardly contains any

information, why? Everybody knows, the sun will rise from the east regardless of how

many bits I put in to express that sun will rise from the East; however, we should be a

little careful making predictions as risky, when it involves the future. But coming back

on  the  serious  note,  we  will  realize  that  a  statement  which  has  a  very  very  high

probability of occurrence is likely to contain very little information as the first sentence.

Now, if you go to the next one, which says looks like the phone will ring in the next 1

hour. Well it may ring or it may not. So, we look at the probability of that happening and



somehow you will see that the information contained in that sentence, the phone will ring

in the next 1 hour is somehow related to the probability of occurrence of that event.

Now we come to the last sentence, it will snow in Delhi this winter. It has really never

snowed in Delhi and if I say, it will it is likely to snow in Delhi this winter, it is likely to

raise eyebrows. It will catch your attention, simply because it is a rare event. It is never

happened and the probability of it happening is very very low. 

So, it is possible that the information contained in the third sentence is really the highest

even though if you measure the number of letters it has it is the least. So, somewhere

there appears to be a mismatch. The number of bits we are using to represent an English

sentence is completely different from the amount of information it is conveying. 
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So, let us look at the intuitive feel. We observed from the first three sentences that the

occurrence of a less probable event conveys more information. So, if you have a higher

degree of uncertainty which is tantamount into a lower probability of occurrence, then it

appears to be inversely connected to the quantity of information, it is conveying. In this

lecture, we will use this correlation between uncertainty and information for all physical

interpretation. As we move along, we will see that there is a strong intuitive feel to this

information conveyed by a random variable. 
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So, let us start with our first point, our first observation that occurrence of a less probable

event conveys more information. So, let us take it a one step further. Consider a discrete

random variable X with possible outcomes x i’s i equal to 1 to up to n. Now here we are

saying up to n, but it could be up to infinity. So, the self-information of the event X is

equal to x i, we mathematically defined as I x i equal to log over log of 1 over P x i

where P x i is the probability of occurrence of the event x i. Well you can write it as

minus log P x i.

Now, the log we will come to it; why there is a log, but assuming that the base of log is

2; then the units of information here, self-information is expressed in bits. At the same

time, if you make the log the natural logs, then the units are nats which is the natural

units. 



(Refer Slide Time: 06:00)

Let us start with an example. Consider a binary source which tosses a fair coin. So, how

come a source is tossing a coin? Let us imagine a person sitting on a chair, tossing a fair

coin and each time a head comes up, he shouts a 1 and if a tail appears, he shouts a 0. So,

indirectly we assume that and a source is generating a sequence of 1’s and 0’s. Of course,

it depends on the heads or tails it is generating.

Now since it is a fair coin, let us assume that the probability of 1 and probability of 0 is

equal to half. The question, then we asks is how much information is contained in each

of the outputs? For example, how much information is in the event that heads come head

comes up or the tail comes up. So, if you plug in the values, you find that I of x i if you

put in the formula is minus log to the base 2 P x i, but P x i for head or for tail is half and

so, it is 1 bit.

So, it intuitively fits in that every time either a head comes up or a tail comes up, you can

represent  that  information  in  1  bit.  Luckily  it  falls  into  place  because  well,  we had

already designated 1 to be the head and 0 to be the tail right. So, it fits our intuition. But

the comfort level stops right here because suppose I tell you that it is not a fair coin. It is

indeed a biased coin with say probability of 1, probability of head appearing is 0.8 and

probability of tail is 0.2. Then if you plug into the value then I x i is not going to be 1 bit,

it will be something less.



So, that brings us to a very interesting question. Even though, I toss a coin and I get a full

1  or  a  full  0,  the  mathematical  rendering  tells  us  that  we require  less  than  1 bit  to

represent the outcome. Here is where the interesting stuff starts. How can we represent

the outcome of a head or a tail by fewer than 1 bits? That is the question we will address

in the subsequent slides. 

But for now since we are using a fair coin, we are happy that we use 1 bit to represent

either  a  head  or  a  tail  from  an  information  theoretic  point  ok.  It  is  not  just  for

convenience that a head is a 1 and tail is a 0, information theory tells me that if a fair

coin is tossed, then the outcome can comfortably be represented using 1 bit, but not so

for an unfair coin. 
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Now, we do not stop at 1 toss. We toss the same coin several times. In fact, m times and

suppose this source is memory less that is my output of the second toss does not belong

to or does not depend on the first toss, outcome of the first toss and subsequently any of

the later  tosses. So, if  this  is really an independent statistically independent series of

binary bits, then if you look at it there are 2 raised power m possible m bit blocks which

are equally probable with a probability 2 raised to the power minus m.

So, now we ask for this series of m tosses, what is the self- information? If you plug in

the value I x i equal to minus log to the base 2 2 raised power minus m, you get the

answer m bits. We are relieved once more because hey there were m tosses each time a



head or a tail came up and then to represent each one of them, I can represent it using m

bit blocks. So, if suppose a head, head, tail, tail, head came; then I will write 1 1 0 0 1

because 1 represents a head and 0 represents a tail. So, far so good, we are representing

the outcomes using certain number of bits. 
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Now, we extend this analogy a little further. Let us talk about a source C that generates 2

bits at a time. So, far we were concerned with only 1 bit at a time. Now consider 2 binary

sources A and B which form a bigger source C combination ok. So, now, what we can do

is if we assume A and B are independent; so independently A generates a bit, it could be

a toss of a coin and B has its own coin and it tosses it and generates a 1 or a 0. 

These two bits are now thrown out by the source C and this is the output of the source C.

So,  my  source  C  is  generating  2  bits  at  a  time.  What  do  we  expect?  Well  from

information theoretic perspective, the information contained in C, the big source C, the

aggregate  source  C should  be  the  sum of  the  information  generated  by  A or  B for

example, if B switches off and only A keeps generating its bits. So, the total information

coming out of the source C is the information of A.

Similarly, if A shuts down and only B keeps generating information, then it is the output

of B. So, it intuitively, we are dealing with the sum of the information right. And here if

you look at it, if A and B are indeed independent, then the probability of the occurrence



of 2 bits, it is related by the product because independent in events their probabilities

multiply and if you look at the self information for C, it comes out to be 2 bits.
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So,  far  we  are  consistent.  This  gives  us  an  answer  to  why  the  proposers  of  this

logarithmic  measure  of  information  chose  the  log?  See  they  needed  a  mathematical

operation  that  could  change  the  product  into  a  sum  and  it  should  be  such  that

independent  events  whose  probabilities  multiply,  the  information  contained  in  that

should add up. Logarithm seems to do the job. So, if you do a visual representation, this

green box is my aggregate source and I can pack in as many sources as I want and I am

interested in the amount of information being generated by this aggregate source green

box. So, I have packed in source A and I have got source B, they can be individually

present or they can be independently present.

So, why do not we put them together source A and source B and we would like to know

what is the total information contained? Only when A and B are independent would their

probabilities multiply and there an we will have the output as the sum of the 2 sources.

So, the independent sources should be such that the information should add up. So, for

all you know source is toss in its own coin A source B toss in its own coin B and the total

information generated is the sum of A and B. Please note coin A could be a fair coin, coin

B could be a biased coin.



So, the rate of information generation from source A may not be the same at the rate of

information  generation  by  source  B.  What  do  you  mean  by  rate  of  information

generation? Well if I toss a coin, a fair coin once every second and I shout 1 0 0 0 1 every

second, then clearly the rate of information that I am generating is 1 bit per second. 

On the other hand, if I am tossing a biased coin, say source B is a biased coin again 1

toss per second, I am generating 1 0 0 1 0 whatever be the output of source B, but please

note that the rate of information is less than 1 bit per second simply because the self

information for the biased coin is less than 1. We will delve into it in further detail as we

move along, but it was important  to understand why a logarithm has been used as a

measure for information, why the logarithm measure is important. 
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Now, since we are setting the stage up for a larger task, let  us look at the notion of

mutual information. This is to say that we have two discrete random variables X and Y

maybe they are related somehow; maybe they are connected through a channel. What we

would like to do is having observed Y, how much can we say about X? Would not it be

great  to  have  a  measure  of  information  which  is  conveyed  mutually?  So,  having

observed Y, what can I say about the occurrence of X? Having observed X, what can we

say about the occurrence of Y?

So, this notion is captured by mutual information. Let us look at it further, but please

note,  it  is  not  just  a channel  which links  X and Y. It  could be in  the area  of DNA



sequencing, it could be relating diseases to certain genetic defects. So, you make certain

observations Y could be a profile of the disease and X could be the genetic code and you

can derive a mutual information relationship between X and Y. X could be the Bombay

stock exchange, Y could be the London stock exchange and there could be a mutual

information between these two. 

So, having observed the performance of the London stock exchange, how much does you

how much do you say or conclude about the performance of X? Can we predict  the

outcome?  Can  we do  something  more  with  it?  Those  are  the  questions  that  mutual

information will help us answer. But right now, this green arrow that you see could be as

well be the channel connecting X and Y. 
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So, let us do some more intuitive thinking on it. Suppose X and Y are really independent

that is the connection is really broken. Whatever X does has no relation to whatever, you

observe for Y. So, in this case mutual information should be 0. So, when we build up a

mathematical  framework,  we must  make  sure  that  if  the  X and Y events  are  really

independent, then the mutual information conveyed should be 0.

On the other hand, if  Y and X are completely dependent  on each other right.  So,  Y

actually can determine, what X did or vice versa, then there should be a high level of

mutual  information being communicated.  So, we will keep these two observations in

mind. With that we come to the mathematical definition of mutual information.
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Now please note, we are talking about the mutual information of the occurrence of x i

and y j. Please note capital X in as we showed in the last time is a random variable. It has

many possible outcomes. Y is also random variable with Y 1, Y 2 up to Y n possible

output and y j happens to be a particular output.

So, we can relate x i to y j and how do we do that? The mutual information x i semicolon

y j; so please note, how we denote it is x i semicolon y j is given by log in the numerator,

this conditional probability P x i given y j by P x i. Again log has been used without

specifying the base of the log. So, if the base is 2, we will have bits. If the base is e, we

will have nats. So, this is the mathematical definition of mutual information. 
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Now, let us make an interesting observation. So, we have just established x i semicolon y

j, the mutual information between these two is log P x i given y j over P x i, but if you

write P x i given y j over P x i as P xi given y j into p y i and same with the denominator,

then the numerator can now be represent as represented as P x i comma y j and in the

denominator we have P x i into P y j which can again be written as P y j given x i over P

y j. So, what do we see? Well we see that x i semicolon y j is nothing, but I y j semicolon

x i. So, there is a two way relationship. It is symmetric. This will come handy as we

move along. 
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So, let us look at the physical interpretation. Clearly we look at two extremes. Suppose X

and Y are statistically independent, what does it mean? It means P x i given y j is just P x

I, it does not matter what y j is. They are independent. And if this happens, then if you

plug into the in the formula for mutual information, you get 0. This fits very well with

our intuition because the mutual information is indeed 0 for 2 statistically independent

random variables.

Now, we look at the other extreme where the occurrence of Y uniquely determines the

occurrence of the event x i. This means given y j, the probability of x i is 1. It uniquely

determines. In that case, the numerator becomes 1 and the mutual information reduces to

log of 1 over P x i is nothing, but minus log of P x i which is a self-information of x i.

Whatever uncertainty was there in P x i remains so, because having observed y j your

transformed right up to x i and now you are dealing with x i directly fine. So, if you see

there  is  a  very  strong  physical  feel  for  this  mathematical  definition  of  mutual

information. Now why do not we put this to use in terms of a channel?
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So, if you look at a binary symmetric channel, it transmits a 0 or a 1. So, most of the time

when I send a 0, it goes as a 0 and when I send a 1, it goes as a 1 and I am happy about it,

but once in a while it makes an error. So, even though you sent a 0 with probability small

p, it appeared as a 1. There is noise in the channel; if it is a wireless channel. There is



fading, there is distortion; there is so, many extraneous factors which can cause an error

in the channel. .

So, what we do is now we find out, what is the probability of Y being 0 and Y being 1

given the input probabilities of 0 being 0.5 and 1 being 0.5; So, if you work out the math,

then based on that you can calculate the mutual information between x 0 and y 0. What

does it mean physically? What is the information being conveyed having observed 0 at

the  output  about  a  0  being  sent?  Let  me  repeat,  we are  asking  a  very  fundamental

question. I receive as 0 at the far end of the channel. 

Now I would like to know, whether a 0 was sent or a 1 was sent? So, the information that

is been conveyed having observed y 0 what is the chance that x 0 was sent, the mutual

information between them is characterized by I 0 semicolon 0 and if you plug into that

formula, you get it is log to the base 2 2 times 1 minus p.

So, we are relieved to see that small p enter the picture. Because if p were indeed 0 that

the channel makes no mistake, we look at this case; then we should get 0 always as a 0

and 1 always as a 1. On the other hand suppose y 0 was received that is you receive a 0

at the receiver, but you are curious to know that 1 was indeed sent. What is the mutual

information between x 1 and y 0? So, if you plug in you get an expression log to the base

2 2 times p.
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So, we will look at the interesting applications now. Suppose it is indeed an ideal channel

right. So, 0 goes always as a 0, 1 goes always as a 1. It never makes a mistake. In that

case, if you compute the mutual information I 0 x I x 0 semicolon y 0, you get the answer

1 bit. What does it mean? It means simply that 1 bit of information is conveyed right

through this channel, every time you use this channel right. So, having observed with

certainty the output, we can determine what was indeed transmitted.

So, where does it come to? Well the self-information about the event X is equal to x 0

was 1 bit. So, whatever uncertainty, please remember information deals with uncertainty

is the uncertainty of the input. The channel is not introducing any further uncertainty. So,

the take home message from this is, whatever uncertainty you observe at the receiver

side is primarily the uncertainty at the transmitter side. 

There  is  uncertainty;  sometimes  1  comes,  sometimes  0  comes.  If  there  was  no

uncertainty, there would be no need to transmit the information ok. So, this channel does

not introduce any uncertainty on its own. It merely communicate without error what was

set. 
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So, now we look at another case, the worst part. Suppose this channel makes a mistake

with probability 0.5, the half the time the bit is flipped; I send a 0, half the time it is

received as a 0, half the time it is received as a 1. Same is the story with 1. It has a

probability 0.5 being 0 and probability 0.5, it being received as a 1. If you plug in the



values, now it  says that I x 0 semicolon y 0 is 0. This channel basically conveys no

information. Having observed output 0 or 1, really you cannot say anything about with a

0 or 1 was sent. It is a useless channel. I mean might as well throw away the channel and

toss a fair coin at your other end because a fair coin was being toss at the transmitter

side. There is no need for this channel. The mutual information is 0. 
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So, let us now see the variation of I x 0 semicolon y 0 with p. Remember we looked at

two cases; p equal to 0, ideal channel and p is equal to 0.5 were in half the time, we were

making errors, but what are the other values.



(Refer Slide Time: 29:14)

So, if you look at it, you see an interesting variation. We have plotted from p is equal to 0

up to p is equal to 0.9 and you see a monotonically decreasing value of I x 0 semicolon y

0, but this is part of the story. If you look carefully at 0.5, the value of I x 0 semicolon y

0 that is 0, that is what we found. But if you increase p beyond 0.5, I x 0 semicolon y 0

becomes negative. So, can information be negative? Well here is the first example that

mutual  information  has  touched  the  negative  boundary.  It  has  gone  below  0  and

continues to go do so.

So, we will talk about the physical interpretation of this negative information shortly, but

it is important to observe that this mutual information can be negative right. The way to

look  at  negative  mutual  information  is  that  if  you  go  back  to  your  original  binary

symmetric channel, if I have a high value of x 0 semicolon y 0, the mutual information

between these two; that means, having observed 0 you high chance that 0 was indeed

sent right. If the mutual information I x 0 semicolon y 0 is 0; that means, you cannot say

anything, this channel is not telling you anything. 

On the other hand if you have a negative answer; that means that having observed 0, you

should more likely to guess 1 was being sent and the channel made a mistake rather than

a 0 being sent. So, it is indicating to you that given a choice go up for 1 rather than 0

because there is a negative mutual information between I x 0 and y 0; that is the physical



way to look at this negative in mutual information. So, we already went to this figure and

please note the take how message I x 0 semicolon y 0 is negative for p greater than 0.5.
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So, we have been talking about this binary symmetric channel, but now why do not we

kind of remove this symmetric part and make it a binary channel ok. So, please note that

the p 0 and p 1’s may not be the same. That is a 1 being an error, may not have the same

probability of being an error as a 0 right. The probability of 1 flipping is not the same as

0 flipping over the channel. Are the real world examples? Of course, there are right. I just

put  different  power associated with transmission of 1 or a 0 and I  will  get different

probabilities of error and the receiver. So, there are many practical channels where it

does not have to be symmetric. So, let us look at this binary channel. 

So, if you do the basic math, you can first calculate what is the probability of occurrence

of a 0 and probability of occurrence of a 1 at the receiver end fine; in terms of p 0 and p

1; Of course, here we have assumed that the input probabilities are equal half and half.

Question, does it always happen that the input probabilities are half and half? Answer is

no. In many real life applications, the occurrence of 0’s and 1’s may not be the same. 

Over the internet, if you just count the 1’s and 0’s, chances are they may not be equal or

near equal. But here for most of the applications, we can assume that occurrence of 0’s

and 1 are the same. They are equiprobable and therefore, we have the expressions for y 0

and y 1 right. 
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So now, we look at the binary channel in further detail and we were talking about. So, we

are talking about binary channel and we are now talking about the application of this

mutual information to this binary channel. As i mentioned before, the probabilities of 0’s

and 1’s flipping over being in error is not the same. 

So, we do the same exercise that we did for binary symmetric channel, but this time we

do only for binary channel. So, I x 0 semicolon y 0 that is I 0, 0; If you work out the

basic math is given by log to the base 2 in the numerator 2 1 minus p 0 over 1 minus p 0

plus p 1. So, my expressions are in terms of p 0 and p 1 where p 0 is a probability of 0

being in error and p 1 is a probability of 1 being in error. 

Similarly, if you look at the mutual information between I x i semicolon y 0, you get the

expression log to the base 2 in the numerator 2 p 1 over 1 minus p 0 plus p 1. How does

it help us? Well it helps us analyze this channel, in terms of p 0 and p 1. After all mutual

information will yield 1 more very very interesting thing. It will tell me the goodness of

the channel. If you ask an information theoretic person compared to channels, here she

will look at the mutual information and therein it will do some extra work and derive the

goodness of the channel based on mutual information.

So, physically mutual information is a measure of goodness of a channel. After all what

is a channel for? It is supposed to communicate information. How much? How much



information  can a  channel  convey? That  is  exactly, what  mutual  information  tells  us

right. So, I would like all of you to understand this basic idea about mutual information.
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Now, sometimes we would like to know, what is the average mutual information because

in  all  of  the  previous  exercises,  we  found  out  the  information  between  the  mutual

information between x 0 and y 0; that is having observed y 0, how much information is

conveyed about the occurrence of x 0. I can observe 0 at the receiver and argue how

much information is communicated about the occurrence of 1. Similarly having observed

1 at the receiver, what information was communicated about 0 and 1? So, there are four

combinations.

Now, sometimes more information is conveyed about 0 versus 0 0 versus 1 and so and so

forth. We had seen in the previous case, in the case of binary symmetric channel that the

mutual information can even be negative. So, if you go back to your binary symmetric

channel,  it  is  possible  that  because  of  the  choice  of  p  right  sometimes  positive,

sometimes negative information is being communicated; if you observe 0 about 0, if you

observe 0 about 1. 

So, we did that exercise earlier and now we have moved to binary channel and in this

binary channel we observe that depending upon this specific values of p 0 and p 1, I can

make this fraction greater than 0 or less than 0. I can make this right hand side, positive

or negative.  I can playing with just  the numbers p 0 and p 1, I can make this  I x 0



semicolon y 0 positive negative more less. But there are specific cases. Given 0, what

can I say about 0? Given 1, what can I say about 1 and so and so forth?

People observed that the channel is conveying not only 0 or not only 1 is communicating

both either 0 or 1 sometimes 0, sometimes one. So, it makes sense to talk about the

average mutual information. Hey it is possible because it is a binary channel, it is not

symmetric that it is it creates 0 very well. Almost always when i send a 0, I get a 0. So, I

am very confident about receiving a 0 right, I get excited whenever I receive a 0, but this

channel is partial to 1 as you can see from the different probabilities of error.

So, whenever I get a 1, I am worried, I am scared whether 1 was sent, whether 0 was sent

and it became a 1; I do not know. So, what do I tell about the channel? Is this a good

channel? Is this  a bad channel? Well  a mathematician would tell  you, hey average it

right. It would be great for 0, but not so, good for 1. So, maybe if you want a 1 line

answer, you average it. So, that is what I will do. I would define the average mutual

information between two random variables x and y and if you look at it, it is nothing, but

I x i semicolon y j which is the mutual information multiplied by the probabilities P x i y

j. So, the joint probability x i y j and then double summation which can be expressed as P

x i comma y j log P x i comma y j divided by P x i y j right. 

Now, here is the interesting part. Even though mutual information as you saw could be

negative and we also saw the physical intuitive feel, for what does a negative mutual

information say? The average mutual information can never be negative. It is greater

than or equal to 0 right. It is fairly easy to show this, but right now we are only stating

the fact that the average mutual information can never be negative. It is a non negative

quantity and 0 is achieved if and only if X and Y are statistically independent.

So, if my channel is such that having observed Y, the output nothing is conveyed about

the occurrence of X. In that  case,  the mutual information is 0,  but a channel  cannot

convey negative information and we are very relieved to hear that because it was a hard

task explaining on an average, how can a channel convey negative information? Yes it

makes sense that if I have a connect between 0 being sent and a 0 being received, I can

have a negative mutual information. But the average mutual information which tells you

about the overall  capability of the channel, how much information it conveys is non-

negative ok. This is a very important observation and we have established earlier that I X



semicolon Y is the same as Y X semicolon Y is the same as X Y semicolon X. So, we can

change the order.

So, the amount of information being conveyed from X to Y is the same as the amount of

information  being  communicated  from  Y  to  X  and  again  we  are  happy  that  this

mathematical result exists for a very simple reason that if it were not so, then I would be

worried which side of the wire to plug in to my laptop and the other side to plug in on to

the internet jack ok. I can just flip over the channel the wire and I am not worried about

whether I get more information from one side to other and vice versa.

So, please note what we are stating is that we are able to communicate, the same amount

of information from X to Y as from Y to X. Make sure this is different from different

bandwidth allocation in the uplink and downlink of certain wireless channels, where you

can indeed communicate different amounts of information one way or the other way, but

those are two different channels; one for the uplink and one for the downlink. So, we

have come to that.

(Refer Slide Time: 44:00)

So, this brings us to the end of today’s lecture and I would just summarize what we have

discussed  today.  We started  off  with  the  notion  of  uncertainty  and  connected  it  to

information,  what we observed was that uncertainty which is linked to probability of

occurrence has an inverse relationship. The less likely an event is the less likely it is to



occur the higher amount of information, it contains ok; this is intuitive also, but what is

not intuitive is the logarithmic measure.

So, we went over and discussed, why it is important to have a logarithmic measure of

information and the basic idea behind it was that if you have independent sources, then

the information should add up whereas, the probabilities multiply and log is the only

function that does the job. And of course, it is a monotonically increasing function. So,

we have the probabilities, if we have a log of that it does not change the inverse relation

that we wanted.

So, we talked about self information and then we quickly graduated to the notion of

mutual information wherein we brought in two random variables X and Y. Now these

could be the input of the channel, the output of the channel or we looked at some other

examples where it could be the stock markets in two different countries and we can relate

them through mutual information. Lot of investment banking people look at this kind of

stuff. 

They use information theory, mutual information to predict the behavior of certain stock

markets based on the observation of other stock markets. And then we finally, concluded

this module with the notion of an average mutual information. We made an observation

that  even  though  mutual  information  in  parts  can  be  negative,  the  average  mutual

information is never negative. So, this brings us to the end of this module. If there are

any questions we can address those questions all right.

Thank you. 


