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Welcome everyone to lecture number 7 of this course on nonlinear and adaptive control. So far

what we have seen is the basic framework of adaptive control. We have seen directed adaptive

control, indirect adaptive control which started off with the scalar case and then we extended that

to the vector case for plants which have parametric uncertainty that is where the system matrices

or the control input matrix are unknown.

It is easier if the control input matrix is known as we saw in the vector case where the matrix b

was required to be known for the analysis to be done in attractable way, but there are cases where

you could do analysis and control design for systems of both A and B matrixes are unknown so

there  is  left  for  you  as  an  exercise.  So  today  in  this  class  we  will  focus  on  systems  with

disturbances, unmolded dynamics, unstructured, uncertainties. So their does the MRAC that we

have designed so far work where we have plants with such effects.

So we will start off with slight detour so I get these questions many times. Students ask why do a

nonlinear control analysis for linear system? So for in this course we have covered LTI system,

MRAC basically concerns control of these linear systems, but we have used nonlinear analysis

and design tools for developing the MRAC. So natural question arise is if it’s a linear system

why not use linear control tools so I just want to clarify that question in this class before we

move on to Robust adaptive control.
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So why use nonlinear analysis for MRAC? So you have an LTI plant. I am taking scalar case X

dot = ax + bu and the reference model is again LTI system xn dot is anXm + bmr. So we have

done this many time in this course so this system should be familiar to you now. So now this is

open loop linear system so we have not really designed the controller yet and it is an LTI system.

Now if we design our u as a modern reference adaptive controller such as what we have done

this class before Kx hat * X + Kr hat * r where we have these usual matching conditions and

there exists Kx and Kr such that a + bKx = am and bkr = bm. This is just for completeness, but

the point that I want to make is that when you write down the closed loop error system that is

when things get interesting.

So we define the error as x - xm and then we write down the expression for the aerodynamics so

the closed loop in fact the tracking error should be specific here because we have the parameter

estimation errors well in this case so tracking error dynamics are given by e dot = ame - bkx tilde

* X - bkr tilde okay. So we can also go ahead and write down the dynamics for the parameter

estimation errors.

So parameter because once we introduce these parameter estimates through our controller we get

these 2 extra states Kx tilde and Kr tilde and when we consider the overall system we need to

consider the parameter estimation errors also as overall  system dynamics. So Kx tilde dot is



given as bx series what we have designed and Kr tilde dot is given by bre. So this is you mean

that b is known. So here we want to express this as state space system.

So we look at the right hand side. Suppose we know that the states are e Kx tilde and Kr tilde.

Now if we can express the right hand side in the form ax + b + br or something like that then we

can say it is a linear system and we could use linear design tools for stability analysis. So let us

see what the right hand side here comes out to be. So what we see here is that we can replace

certain terms on the right hand side.
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So let us rewrite the tracking error dynamics in terms of e so we replace x by e + xm so what we

get is - bkx tilde e - bkx tilde Xn - b Kr tilde r and Kx tilde dot also we similarly modify so we

replace x by e + xm and what we get is b square + bxne and Kr tilde dot as bre. So this is the

overall closed loop error dynamics and to prove that e is bounded or e goes to 0. We need to also

consider the dynamics of the parameter estimation error Kx tilde and Kr tilde and the cause now

they are included in the extended state space.

We have to see whether the right hand side even did a linear system and this we have terms were

like be square, Kx tilde * e, a product of states. So these terms indicate that this is no longer a

linear system and we cannot go ahead with linear design tool unless you want to linearize but



here we want to do the analysis in a global manner so we want to go ahead with nonlinear

control tools.

So this explains why the overall state space, the extended state space indicates nonlinear system

and that motivates the need for doing nonlinear design in this case. So I hope it is clear why we

are using Lyapunov stability analysis instead of say looking at just the Eigen values of the a

matrix for a linear system. So now we can move on to the topic of this class.
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So let me write the topic. So this is adaptive control under plant uncertainty unmodeled dynamics

and external disturbances. So let us consider a mass spring damper system so this is probably one

of the simpler systems that you could consider, but that just helps in illustrating the point that I

am trying to make here. It has got a damper, we have got a spring the mass and there is a force

which is acting on this mass which is denoted by F.

So we know that this is a linear system then we could write down the equation of motion as Bx

dot + Kx = F. So I ask you to do an adaptive controller for this system such that the state X

which is a position of the mass tracks Xd which is a desire trajectory then you could use what we

had done in the last class were we had developed an adaptive controller for a command tracking

problem instead of an MRAC problem.



You  could  use  similar  method  to  design  an  adaptive  controller  for  this  command  tracking

problem and it  would be a straight forward use of what we had done last  time. So here we

consider  that  M,  D,  K  which  are  the  mass,  the  damping  constant,  the  spring  constant  are

unknown constants and we can still go ahead and design the adaptive controller for this case. So

this case, we can design an adaptive controller.

Now we know that real systems are not exactly linear. There is some nonlinearity or the other. So

now if  I  modify this  mass spring damper system and include some uncertain terms like say

friction and say a nonlinear spring so let us see the dynamics get modified as Mx double dot +

Bx dot + Kx so in addition to that we also have say some friction affecting the movement of this

mass and let us see this is a Coulomb friction so we model this as Bc sine of x dot and then we

have a nonlinear spring term.

So let us say that these can be this can be written as some delta. So this delta denotes a nonlinear

uncertainty. Can we design an adaptive controller for this case using the methods that we have

done so far? So we have to look closely here so this delta consists of the Coulomb friction term

as well as this nonlinear spring term, so what we know here is that this serve in deed the coulomb

friction and we have modeled it like this and the nonlinear spring as this cubic term in it.

The constants Bc and Kn are in fact unknown but the signum of x dot and x cube are things that

we know. So this kind of an uncertainty falls in the quite category of a structure uncertainty. So

the structure is known. The structure of the uncertainty is known. In fact, we can further qualify

this by saying that this structure uncertainty is linear in the parameters. So this is linear in the

parameters.

What do we mean by that is that we can separate out the unknown constants in a linear way. So

we can write delta as w of x * x dot transpose theta whether this w is a regressors of known

terms so here what are the known terms. The known terms here are signum(x dot) so these terms

may be nonlinear and x cubes these are nonlinear terms, but we can separate out the unknown

constant terms from these known terms in a linear way.



So the unknown constants come out as theta and this is W transpose. So, have we handled such

kind of uncertainties before? Yes, we have in the previous class we considered a case where we

had a linear system and in addition to that we had a structured uncertainty which is linear in the

parameters. So such cases can also be handled using our classical adaptive control approaches.

So we can say that structure uncertainty which is linear in the parameters can also be handed

with our existing tools or the tools that we have done in the class so for.
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So number 3 could be we have delta which includes a slightly complicated model of friction. So

let us say we have Mx double dot + Bx dot + Kx + delta f = F. So delta f refers to another model

of friction which is a slightly more complicated but it is commonly used and it is given by Fe

signum(x dot) [1 - exponential of - x dot square/vs] + Fs signum(x dot)[1 - e to the power - x dot

square/vs square] and then we have Fv x dot.

So the first term represents the coulomb friction. So this is coulomb friction. This term represents

static friction and this term represents the viscous friction. So we have 4 unknown constant here

Fc, Fs, Fv and vs. vs is a stripe back parameter. So all these unknown constants are present in

this model of friction but can we separate out these unknown constants from these known terms

in a linear way. So the answer to that question is no.



So in this case because we have so the viscous friction can be linearly parameterized so we have

Fv * x dot. So this is in the linear in the parameter form. So this can be handled with the tools

that we have done so far, but what about these 2 terms so signum(x dot) signum(x dot) can be

factored  out  but  then  that  gets  multiplied  by this  exponential  term which has  this  unknown

parameter vs which unfortunately cannot be factored out in a linear way.

So this kind of model of friction is called nonlinear in the parameter and in a short this is NLIP

the 1 of the data above was LIP linear in the parameter. This is nonlinear in the parameter and it

is not straight forward to design adaptive control loss for such cases. So we have a recent paper

where we do a adaptive control design for nonlinear in the parameterized plant so if you are

interested you can search on Google and you will find the paper, but the results are not very

common.

There has been some research and they are not very elegant, not as elegant as say MRAC or the

other rapid control methods. So this still falls so this is still NLIP structure of uncertainty so we

know a structure of this uncertainty so is still called this structured uncertainty although in this

case this is a NLIP. So we cannot handle this case using the adaptive controllers that we have

done so far. In literature, there have been works which tackle this kind of uncertainty, but not

using the tools that we have done.
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So then we come to say number 4. So number 4 could be unstructured uncertainty so where we

do  not  exactly  know  the  structure  of  an  uncertainty  you  could  also  talk  about  unmodeled

dynamics so there are systems for which we cannot model certain parts and we then call them as

the unmodeled dynamics. They may be neglected under normal operating conditions, but may be

under high frequency these modes also may get exited, but for normal frequency range we may

neglect certain dynamics.

So those dynamics which we cannot which we not capable of modeling or which we can safely

ignore for the operating conditions we call them as unmodeled dynamics and you can also these

unstructured uncertainty unmodeled dynamics and external perturbations they can actually be

clubbed under say d. Because this represents unstructured uncertainty unmodeled dynamics or

external disturbances.

So of course this is very simplistic case where I have considered just an additive uncertainty or

an  additive  disturbance.  There  may  be  cases  where  you  have  more  complicated  dynamics

involved for now let us just focus on this additive disturbance. So there are various ways in

which such unmolded dynamics so uncertainty with channel disturbances can be handled and the

most popular robust control methods so we take the worst case scenario for such uncertainty or

such dynamics and then we design controllers which account for this worst case scenario and

still be still able to maintain stability.

So that is the class of robust controllers. Can we use the adaptive control techniques that we have

studied so far for this scenario? So where we do not know anything we do not know the structure

of this disturbance d. So in a mass spring damper system this could be like if you are saying

pushing the mass you are giving some external stimulus to the mass and those forces we cannot

model.  We do  not  know  what  the  structure  of  those  external  perturbations  is  so  we  club

everything under this term d.

So can we design rapid controller for such a scenario. So using the existing techniques of course

since we do not know the structure of d we cannot design so that is the focus of this lecture that

we would like to design adaptive control  loss which can work in scenarios where you have



external disturbances and that is a fairly realistic scenario because these are terms where which

in real systems you do not know these term, but may be by some experimentation we can say

that we can upper bound these terms.

So if I say that the upper bound of such term is known we may be able to handle such terms

using  robust  adaptive  control  methods.  So  let  us  begin  talking  about  these  robust  adaptive

controllers in a general setting. So again we go back to the plant model that we have x dot = Ax

+ Bu. So this is the plant. The reference model is given by copy paste of that we have done many

times before. For this plant and for this reference model we know what is the MRAC?

We design as Kx + Kr at r. So if I ask the question that suppose this plant experiences certain

channel  perturbation  we denote  that  by  d.  So  let  us  just  also  make  the  small  complete  by

mentioning the dimensions here and d is Rn. So all we know about this disturbance term d is that

it is bounded. It is uniformly bounded. This d is and d bar is a positive constant okay and here

Am and Bm have appropriate dimensions Am is hurwitz and r is a bounded reference signal

okay.

So and we also follow the matching conditions and we write that again. Now let us see that if the

same model reference adaptive control that we have designed for the disturbance free case works

in the case the plant experiences the disturbance. So as a control engineer I do not say I design

the controller thinking that there is no disturbance and the model of the plant is this.

X dot = Ax + Bu even though A and B may be unknown, but I do not expect this model to be

something other than this, but in real life this may not be true so the controller that I design for

this situation how does it fair when the plant in fact experiences external disturbances so that is

the analysis that we are going to do now.
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So again using the similar analysis as before we can write down the closed loop tracking error

system e dot. So this was what we had gotten previously because of this disturbance term we

have an extra term in our tracking error system which is d. So now we do Lyapunov analysis. So

let us consider the same Lyapunov function candidate that we had considered before of course

you can do a different Lyapunov function candidate.

So this Lyapunov function candidate has worked for us so far so let us try this out. This is a trace

operator. We have discussed as before. So this is the Lyapunov function and here p is symmetric

positive definite solution of the Lyapunov equation. AmP + pAm transpose = - Q and Q is also

positive definite and symmetric and since Am is Hurwitz this will have resolution and that is

given by P. So now let us check the so this function is positive definite with the unbounded

decrescent we go ahead and take the time derivative.

So I will skip a few steps here Kx tilde dot, Kr tilde transpose gamma r and s and Kr tilde dot. So

these gamma x and gamma r are also positive definite matrices. So now we can go ahead and

substitute for the error dynamics and all these terms so we substitute for e dot in the first 2 terms

and then we design Kx hat dot and Kr hat dot. So I am going to skip a few steps here and I will

come to the expression for V dot.
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So V dot is given by - half e transpose Qe - X transpose Kx tilde transpose * B transpose Pe - r.

You can go back to the notes and check if we get the same expression. - trace of Kx tilde expose

* gamma x inverse, Kx hat dot - trace of Kr expose and so this is what we had obtained so last

time, but there is an additional term this time which is + e transpose pd. So when you substitute

for the error dynamics where we see that there is term d in the error system and that shows up

here Lyapunov function derivative.

So and here of course the control  designer  assumed that  this  a  disturbance free case so the

control design is already done. We have already done the adaptive laws and we have given us -

gamma x B transpose Pe x transpose Kr hat dot = - gamma r * B transpose P e r transpose alright

okay. So once we substitute for these in the expression these expressions are including trace what

we get is V dot as - half e transpose Qe.

So these update law designs will cancel the second and the third terms and what we get is simply

is e transpose Pd. So suppose d was 0 then we would have gotten - 1/2 e transpose Qe and you

would have concluded that this was negative. Semi definite and this would lead to Lyapunov

stability. We could go ahead and prove that e goes to 0 using the Bob -lemma all signals are

bounded and we are happy.



But just in the case that the plant experiences an external disturbance is the controller that we

have designed robust to search external perturbations that is the question that we are trying to

answer here. So if we look at this term we do not know the sign of this term, because e can have

any sign it is the error, it is a state, it can have any sign positive, negative, we do not know. The p

is of course a constant positive definite matrix. d is a disturbance term which is a function of

time again it can have any signs.

So this term is in fact sign indeterminate. We cannot say what the sign is so the best that we can

do with such terms is  to upper  bound it  so we say that  V dot is  upper  bounded as -  1/2 e

transpose Qe + so in fact what we can do here is that also upper bound the first term so we what

we get is - lambda min so the minimum Eigen value of Q. So this expression will upper bound

the first term and then upper bounding the second term we have.

Because here we have a positive sign so the maximum Eigen value of the p matrix * the norm of

e * norm of 10 * the norm of d which can be upper bounded as d bar. So this is what we get here.

So what can we say here? The first time of course is not a problem because it is negative. The

second term is a positive term. Now what we have to see here is can we dominate the second

term with the first term.

If we can completely dominate then of course we can still say that V dot is <= 0 and we could

still conclude Lyapunov stability. Let us see if we can do that. It does not seem very clear how

we would be able to do that so V dot what we can say is that we take the lambda max. So this is

what we get. So what we can see here is that if the term in the square bracket is positive then we

can say that V dot <= 0 and we can conclude Lyapunov stability. So we can consider 2 cases

here.
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So case 1 when norm of e is > 2 lambda max/lambda min * d bar. Suppose this case this is true

so what this would lead to is V dot <= 0 so which means that V dot is negative sign definite and

we can conclude that V is bounded because V is positive and V dot <= 0 so V is bounded and

since then V is bounded we can further say that e of t, Kx tilde of t and Kr tilde of t are also

bounded.

So this is a good situation to begin, but what happens when e is <= 2 lambda max in fact I think

what we can do is we can have the quality here so what if this case 2 is true that the tracking

error is the norm of the tracking error is < this constant. All the terms here are constant terms. We

have the maximum Eigen values p minimum Eigen value of Q and the upper bound on the

disturbance.

(Refer Slide Time: 44:00)



So if the tracking error goes below this value then the term in the bracket in fact becomes < 0 and

then V dot becomes <= some positive number right. So what that means is that we cannot really

conclude about V dot it could be a negative, it could be positive. All we know is that V dot is <=

some positive  number  so  we cannot  conclude  from here  and  we cannot  say  that  V of  t  is

bounded. We cannot say that.

We cannot guarantee that V is in fact bounded but what we can say from this case is that the

tracking error is bounded because that is the case that we are talking about that the tracking error

goes below a certain value so e of t is bounded, but what about the parameter estimation errors

Kx tilde and Kr tilde in this case. So in this case we cannot really guarantee that the parameter

estimation errors are bounded.

In fact, we could say that the parameter estimation errors can go and bounded in the presence of

disturbances so we cannot guarantee using this Lyapunov analysis that they are in fact bounded.

In case 1 we could say that  both the tracking error  and the parameter  estimation  errors are

bounded, but in case 2 which can also happen we cannot say that the parameter estimation errors

are bounded.

And  what  that  means  is  that  the  controller  which  consists  of  the  estimates  the  parameter

estimates can also go unbounded which is highly undesirable scenario we of course do not found



any signals in our system to be unbounded. Here in fact the control can also go unbounded so it

is a very it is a scenario that should not happen and this phenomena is in fact called as parameter

drift so the adaptive controller that we have designed is not robust to disturbances.

These are the parameter estimates may drift away and go unbounded in the presence of external

bounded disturbances. So this phenomenon came to light many years ago when a NASA flight

crashed and there were lots of investigation into the reason why that could have happened and

one of the things that came out of that investigation was that if the model is not perfect.

And there are some unmodeled dynamics or some external disturbances that can lead to certain

parameters to go unbounded and can lead to a catastrophe which is what happened. So this is a

very important case in adaptive control we need to be able to ensure that the adaptive control are

robust.
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So this MRAC that we have design is of course not robust is not robust to external disturbances

unfortunately. So how to overcome this parameter drift that is the next question to ask. So one

way that we can overcome this parameter drift is somehow we could cancel the effect of this

disturbance term from the closed loop error dynamics so if we go back to our closed loop error

system so we have this term d in e dot.



So if we can say add an additional term here in the controller which we call as a robust term and

that cancels the effect of the disturbance then maybe we can handle such scenarios that means we

have to consider a non certainty equivalence controller and we can surely design such controllers

where we have an extra robust term in addition to the nominal MRAC so such robust term for

example sliding mode can cancel the effect of these disturbances you can still guarantee stability.

So that is out of scope of this class because we are only concerned with adaptive controllers here

so we are not going to use a robust control law rather we are going to use a robust adaptive law.

So there are 2 ways in which to handle such cases 1 of course is that we robustify the control law

so we add in addition to the nominal we add some robust term and how do you design this robust

term that is not the focus of this course so out of scope of this course.

So number 2 is we robustify the adaptive law. So when I say robustify I mean that we consider

the  worst  case  scenario  for  this  disturbance  and  we  develop  a  controller  which  is  highly

conservative  so  the  performance  might  degrade  but  more  important  than  performances  is

stability. So the first requirement for a control system is that it should be stable and it should be

stable under uncertainty and the disturbance and then of course we look at performance.

So a robust adaptive law may not be as well  performing as the laws that we have designed

previously, but because of this robust element we might be able to account for the effect of the

external disturbances so which is what we will do in the next lecture or 2 so the first technique

that we will consider is dead zone.
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So this is we are trying to modify the adaptive laws so these are techniques which fall under the

category of robust adaptive control. So that is also a very intuitive idea so if we go back to the

analysis that we have done previously about how disturbance effects and MRAC system we see

that case 1 is alright because here we could prove that all the errors are bounded. The problem is

with case 2 where we could not prove that the parameter estimation errors are in fact bounded.

So Kx tilde and Kr tilde being bounded we do not know okay all that we could say that tracking

error is bounded and because we cannot guarantee this one way in which we can make sure that

in this case the estimates are bounded is by stopping the adaptation for case 2. So in case 1 we

just follow the adaptive law that came out from the Lyapunov analysis and when the error goes

below a certain bound then we stop the adaptation.

So the adaptive esteem the parameter esteem is they stay wherever they are and we do not go

ahead with their adaptation so that will make sure that these error estimates are in fact not going

to go unbounded and so we prevent the case of parameter drift by introducing a dead zone, a

zone in which there is no adaptation. So let us just do a recap. So case 1 was okay because we

could guarantee that the tracking error and the parameter estimation errors they are all bounded.

So this case was okay. For case 2, we stop the adaptation of Kx hat and Kr hat. So what that

means is that Kx hat and Kr hat they stay constant in case 2 and which means that they will not



be unbounded so what we have to do is we have to modify the update law as Kx hat dot will be

now in 2 cases so we follow the same law that was used before so here we say that this is the

case where the tracking error is larger than a certain thresholds and we call that as a dead zone.

We can of course take a dead zone which is larger than this. So this was we say that Kx hat dot is

in fact 0 and this Kx hat is a matrix. It is an m x m matrix so we just use those dimensions here.

So the tracking error is larger than the dead zone that we have used here then if we follow the

adaptive law that classical adaptive law and when the tracking error falls below that value then

we say that Kx hat dot = 0.
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And similarly we do it for Kr hat dot so we use a similar adaptive law as we had run for Kx hat.

So  what  happens  to  the  adaptation  in  both  the  scenario  so  let  us  just  look  at  a  pictorial

representation here so this is norm of e versus time and in the case where so let us also have the

dead zone so this is 2 lambda max/lambda min of Q * d bar so this is our dead zone. So anything

above this suppose the error starts above the dead zone then of course we know.

We will follow the classical adaptive laws and v dot in this case is <= 0 which means that e, Kx

tilde, and Kr tilde are bounded okay. Now when the tracking error tries to go below the dead

zone that is when we say that we stop the updation so in this case we say that Kx hat dot is 0 and



Kr hat dot is 0 so at this time instant say t1 whatever value that Kx hat and Kr hat had they will

stay the same as long as the error stays within this dead zone.

When the error moves out of the dead zone we again start the updation of Kx hat and Kr hat. So

during this time the value of Kx hat will be what it was at t1 and the value of Kr hat will be what

it was at time t1 okay. Of course when the error goes outside of the dead zone we start the

updation adaptation of Kx hat and Kr hat using the classical update laws, the unmodified update

laws. So with this strategy what we have made sure is that for all time the tracking error and the

parameter estimation errors are bounded.
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So e of t Kx tilde of t and Kr tilde of t may stay bounded so which means that the control input

U(t) also remains bounded. So here interesting thing to note here is that because our case is here

depend upon the evaluation of the dead zone and for that we need to know the upper bounded

disturbance so we say that for this dead zone modification of the adaptive laws we need to know

the upper bound on the disturbance so for dead zone modification based update laws the upper

bound of the disturbance is required to be known.

So  another  curious  aspect  of  this  dead  zone  modification  is  that  suppose  we  make  this

modification of the update law and thinking that they would be a disturbance d whose upper

bound is d bar, but say in reality there is no such disturbance so the plant just follows x dot = Ax



+ bu and the control is of course hard that might be a disturbance with an upper bound d bar so

the adverse effect of in the disturbance free case is that we no longer would be able to guarantee

that the tracking error asymptotically goes to 0.

So this is what we had achieved using the unmodified adaptive laws done previously where we

used the Barbalat's lemma to prove that e(t) goes to 0 as t goes to infinity. So here since we have

modified  the  update  laws  even  in  the  case  where  say  the  disturbance  is  not  present  in  the

disturbance free case we will not be able to guarantee the cause of this modification that the

tracking error goes to 0 okay.

So  this  of  course  degrades  the  performance  of  the  adaptive  controller  especially  in  the

disturbance free case, but what it provides us its robustness to external disturbances whose upper

bound we know. So this is the first of the 4 modifications that we will make to the adaptive laws

to make it robust to the effects of external disturbances. So we will continue with the robust

adaptive control in the next class.


