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Welcome everyone to lecture 6 and in lecture 5 we had finished the analysis for the indirect and

direct MRAC cases. In this lecture we will talk about the case where the plant is not entirely

linear which is the case for real systems where you may have some nonlinear terms in your

system dynamics. So, let us assume that the plant in this case is given as Ax+ Bu+ delta x so

instead of the lti plant Ax+ Bu here we have a nonlinear term delta of x.

So, it is a non-linear function uncertain so delta of x is not known. So, how do we design the

controller u in this case so typically when we have a certain sum uncertain terms and uncertain

non- linear terms in the system dynamics. We try to cancel those nonlinearities using the control

input. In many cases the nonlinear terms main fact will be helpful for the stability but then we

need to know exactly know what those nonlinear terms are.

In case those terms are uncertain we are not sure whether those are in fact going to be useful for

the stability and it is in fact better to somehow account for these terms using a robust controller.



Certain non – linear terms can also be dealt with in a different way using adaptive control. As we

see this  in this  lecture  so we assume that  these nonlinear  term and delta  of x is  in fact  we

structured uncertainty.

So,  there  are  two  types  of  uncertainties  one  is  structured  uncertainty  and  the  other  is  an

unstructured  uncertainty. Structured  uncertainty  is  one  where  all  over  the  entire  term is  not

known but we know the structure of the uncertain term and unstructured uncertainty is where we

do not  know the  structure  of  the uncertain  term.  So here  we assume that  this  delta  of  x  is

structured uncertainty.

And in this case it is also a matched uncertainty so why it is matched because delta of x occurs in

the same channel as the controller so using our control input in u. You can directly account for

the effect of this nonlinear term that is delta of x if say we had some term like+c times delta of x.

Then we could say that term is unmatched uncertainty that would be more difficult to deal with

the control input u.

In this case we assume that the uncertainty is matched structured non-linear uncertainty so again

in this case I consider a scalar case so let us reduce these matrices to scalar terms just make the

analysis much easier and then you can later work on the vector case. Okay as I mentioned we

assume that delta of x has a structure and it also has a very special structure which is called as

linear parameterization.

So delta of x is given as theta transpose phi of x so it is a linear combination of basis functions

these basis functions and phi of x are known the ways that this basis functions are combined are

unknown and given by theta. So, theta is the vector of unknown parameters and theta is defined

as theta 1 theta 2 till theta n and phi of x denotes the basis function and it is a vector of known

basis functions and 1 of phi x phi 2 of x so notice that theta transpose phi of x is theta scalar.
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Okay so the objective is again to follow the reference mod and so we want you to be a model

reference adaptive controller. Which follows the reference model given by am xm+ bmr and

again we say that am <0 r is bounded which means that xm is also bounded. Okay so I should

write that this uncertainty is linearly parameterizable and that is why it can be handled using an

adaptive controller.

Otherwise you have to use some other kind of controller so we will see how this. The fact that

this uncertainty is linearly parameterizable helps us in adaptive control design. Okay so again we

get the mechanics remains the same and by now I hope that you are familiar with the mechanics.

We start with the tracking error which is the difference between the plant state and the model

state and then we construct the open loop fun system given by e.

In this case we get the b delta term because of this nonlinear term which we did not get before

but  in  this  case  we do  consider  the  system.  Okay  so  for  the  controller  how do we  decide

challenge here is how to design the controller u to stabilize the system so if the delta term was

not there we would go ahead and design the direct MRAC and indirect MRAC case because

there is a delta term.

We would have to modify this controller  may be add an extra term to account for this non-

linearity.  So,  the  control  intuitively  would  be  a  combination  of  two  terms  one  would  be  a



nominal controller and the other one would be a term which is used to account for this non-linear

term delta. 
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So u would be a combination of the nominal MRAC. So u would be kx hat+ k r hat r+ u delta

term and let us call it as nominal term. This is the term u delta is the term which use to account

for this  term b delta  so let  us just  substitute  for the term delta.  The e.  is  given by ax+ not

substitute for u right now since theta is unknown we can choose u to be a certainty equivalence

controller. 

Certainty  equivalence  controller  is  one  where  you write  the  controller  first  and there  is  no

uncertainty then whatever terms are uncertain you just consider their estimates. So, in this case

suppose kx and kr were known we would choose the control input to be kxx+ krr+ for this case

we would chose theta transpose phi–theta transpose phi. And cancel and trying to cancel this

nonlinear term but since we do not know this theta we chose an estimate.

So, u is given by kx hat x+ kr hat r and let just say that this is - theta hat transpose phi. Okay so

this is the nominal controller and this is the part which is used to account for the nonlinear term. 

Okay so we need to design the update laws for kx hat kr hat and theta hat. The fact that this term

is parameterizable as right said write it simply as linear combination of the function x r and Phi.

So, again we for nominal case it is a simple case of MRAC.



So, we consider that there exists ideal kx and kr a+ b kx=am and bkr=bm and these are the

matching conditions. They are trivially satisfied in either case. For the vector case they may not

be satisfied so you have to be careful when you do the vector case. They may not exist enough

structural flexibility in the plant to satisfy these magic conditions in the vector case. So, the

sedentary equivalents controller is given by this combination of two terms.

When we substitute that in the error system we get the closed loop error system which is given

by. So, here like before kx tilde is the parameter error estimation error for kx and is defined as kx

– k x hat kr tilde is defined as kr - kr hat and theta tilde is the parameter estimation error for the

parameter theta. It is given by theta – theta hat. So, these are hats are time varying and kx kr

theta are constants. 

So, this is the closed loop error system which will be useful for us in when we do the Lyapunov

analysis. 
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So, let us go head and chose Lyapunov analysis function candidate which is always the next step.

Let us chose Lyapunov function candidate so V in this case is the function of e kx tilde and kr

tilde and it may also be function of time. But what we chose is in fact trying in variant function

so as I said there can be other choices of Lyapunov functions from what I showed here. This is



just one way to choose Lyapunov function candidate.

But they may exist many ways to choose Lyapunov function You can try some other options and

see if they work out. So, if you remember for the case where both A and B are unknown. So, this

is the scaler case we consider for the direct MRAC we found that a good Lyapunov function

would involve the absolute value of the parameter b so this is the positive number.

And by 2 gamma x and this is very similar to the Lyapunov function candidate that it shows for

the direct case without the non-linearity. Since we have a non-linear term here which is linearly

parametrizable  with  the  unknown  parameter  theta.  We need  to  include  that  as  well  in  the

Lyapunov expression since theta is the vector so the way to include that would be through this

expression. 

Okay so here we consider that this gamma theta is adaption again and positive definite so this is

very similar to the gamma x and gamma r that we have chosen which are the nominator gamma

theta inverse. So the next step is so this is Lyapunov function candidate that we have chosen. Let

us look at the time derivative of v v. is given by e e.+ kx tilde – kx .+ b gamma r kr tilde – kr .+ 2

and so 2 will disappear tilde transpose gamma theta inverse - theta hat .

So, let us substitute for the closed loop error system from above that we get ame. I think there is

sin mistake here we get the positive term - bkx tilde x – bkr tilde r+ b theta tilde transpose phi of

x then we have – b/gamma r K r tilde Kr hat. So, now we have set the the problem for designing

the update laws for kx hat and kr hat and theta hat. So we have to generate the update laws for K

x hat. kr hat. theta kr hat. 

Okay for kx hat and kr hat we can simply use what we have obtained earlier is in fact going to

cancel these 2 terms. So, those would be – gamma x x e sin of b. Okay if you chose it then this

term will cancel with this term. Let us chose kr hat –gamma r r e sin of b then this term will

cancel this term. Okay for this case we have to choose the update law as gamma theta Phi of x so

you want to cancel this term.



So, the update law for theta hat would be like this. So, here we assume that all the b is unknown

but the sin of b is known. If you extend this to vector case the sin of the matrix b it is very hard

to think about. You could probably think about knowing the sins of the different entries of the b

matrix but that would be bit unreasonable to assume. So, the case where both the A and B metrics

are unknown. It is little hard but you can try that on your own.

There are some assumptions you have to make and the result may not be global and although you

may end up with global result.  If you come up with the result like that you would probably

publish the paper in good journal. Okay so with this we are able to cancel all this terms and or

we end up with v.=am e square so which means that the equilibrium point so this is the negative

semi definite.

The equilibrium point given by e= 0 kx tilde= 0 kr tilde=0. The origin is Lyapunov stable since

v=0 and v.>0 we can similarly say that v is bounded which means that v of tk. So, the signal

changing is something that you all should do although it looks very similar to what we had done

before it is important that you go through with it in the indirect case we found that when we go

through with it the control input in fact and not bounded in certain case.

So, we have to modify the update law so it  is  important  that  you prove that  all  signals are

bounded. So using this we can further show that x of t kx hat of t kr hat of t and theta hat t are

bounded. Okay so what is left is to prove that control u is bounded so if you go back to the

controller  we see that we are prove that K x hat is bounded. Theta hat we just proved to be

bounded from the Lyapunov analysis and phi.

So, we have to assume here that  Phi is  bounded whenever  x is  bounded so that is an extra

assumption that we make on basis function and the basis functions here such that so assumption

here for the basis function is that. That Phi of x is bounded if x is bounded so we have already

proved using this analysis that x is bounded. So we can say that the basis function Phi is also

bounded.

So, we can say that the control input u of t is bounded. Then similar to the previous case we can



also go ahead and use the barbalats lemma and you can easily show previously that e of t and e .

of t are bounded and the fact that e of t is L 2 and 2 barbalats lemma can be used to show that e

of t goes to 0 as t goes to infinity and so again in this case we have been able to prove that the

tracking error converges to 0.

Although the same cannot be said about the parameter estimation errors all we can say about the

parameter estimation errors are that they are bounded in many cases this is all we need our most

important objective is for the tracking goes to 0. Okay so that is all about the case where you

have structured a matched structured uncertainty like this we have done the scalar case. So, you

can also attempt the vector case for this it is very similar to this analysis.

And this is in fact a realistic scenario because real systems are not entirely linear and there is

always  some  non-linearity  or  other  and  if  we  can  say  that  the  non-linearity  is  linearly

parameterizable then we can use this kind of model reference Lyapunov controller to stabilize the

overall system. So, now I move on to slightly different problem which is the command tracking

problem.

So, far what we have discussed is a model reference adaptive control approach where there is a

plant which is which is any system that you are going considering for example an aircraft or a

chemical system or a biological system which is linear time in variant system. Or the case that

we just did with structure and certainty and then there is a reference model which we want the

plant to follow.

So, the objective is given in terms of reference model which in capsulate the desired behavior

that we require from the plant. And sometimes the objective can simply be a tracking objective

that is we want the plant state to track some desired time wearing signal.
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So, that is the problem of adaptive command tracking which we will do now adaptive command

tracking. So, again I consider the scaler case but you could again go ahead and do the vector case

to be slightly more involved in  pulling traces  in  the Lyapunov function  but  the approach is

similar and and by using this they scale it because it it is easier to follow and for students who

are interested in learning more about it.

They can go ahead and do the more complicated vector case okay so again the plant is a linear

time invariant plant given by the ax+bu we say that b is non-zero for controllability and the

object is so there is no reference model here. So, we do not want x of t to follow some state of

reference model instead the objective is given in terms of a trajectory which is x of t so we want

x of t to follow x t of t so x d of t could be any time varying signal of your liking.

That you want the plant to follow and what we assume here is that this desired trajectory is

smooth it can be differentiated and these derivatives are bounded. So, we say that x t of t so until

the second derivative we say that it is bounded. So, we will see where this assumption is used

okay so whenever we are given a problem like this we always start with the with the tracking

error e of t is defined as x of t-xd of t and then we try to find the error dynamics.

So, the open loop error system is given by taking the time derivative of the tracking error ax+bu-

xt. Okay okay so just for just for my ease of analysis what i do here is i add and subtract that a x



d okay. So, what it does is it converts the error system into a form which is similar to what we

had obtained before. So, it just helps to make the analysis easier so but does not change anything

mathematically.

So, e. is ae+bu+axd-xd. okay now assuming a and b are exactly known how would you design

the controller u. Suppose a so I make the assumption so that a and b are known so then we could

design the controller u as 1/b so we want to cancel terms that are unwanted here. So, we since a

all the ways is known and it can be either positive or negative. So, we want to cancel this term

and we want to place our own term am here.

And we also want to cancel these two terms because they are not really helpful in proving that e

goes to 0 . So, we want to cancel these terms involving in desired projectory so we would use

-a/p xd+1/b xd. So if we use this and substitute this in our open loop error system expression

then we would get e.=ame where am we have chosen to be <0 so am it could be any desired

value. But you could also think of it as a pole as a desired pole location.

That you want the system to obtain so the closed loop error system in this case would come out

to be e.=ame and am would then represent the the desired goal location so this could also be

thought of a pole placement controller adaptive pole placement controller. Here the idea is that

instead of instead of the the open loop pole location we want to place the pole at some desired

location given by am which is on the left hand left hand plane.

And this controller would do the job but here we assume that both a and b are exactly known so

what if when we are not exactly known. So, like in the previous case we simply use certainty

equivalent controller. So, for the case where a and b are unknown which is the which is the

adaptive case the controller u is simply given by taking the estimates of the unknown terms. So,

a-ahat+am so wherever you have these terms we replace them by their estimates okay.

And we can call these coefficients as k1, k2 and k3 k1 hat k2 hat and k3 hat and these could be

k1 k2 and k3 okay since we do not exactly know a and b in we we also have k1 hat k2 hat and k3

hat.
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Or what we do assume is that there exist k1 k2 and k3 such that the matching conditions again

they come into place again directly found from the algebraic equation expressions that we had

formed. So, bk1=-a+am bk2let us look at that look at what he so b this entire expression is =k1

so bk1-a+am -a=k2so bk2=-a amd 1/b=k3 so bk3=1 so these are our matching conditions for this

case.

Okay u is given y k1 hat e +k2 hat xd+k3 hat xt. here k1 hat k2 hat and k3 hat are the estimates

of k1 k2 and k3 okay let us now substitute this into the open loop error system and get the closed

loop error system. So, the closed loop error o system is if given by e.ae+bu a+b k1 hat e+p k2

hat+a xd+b k3 hat -1 xd. okay so here we use the matching conditions and replace the terms

which are unknown that is a and b.

But we should be a little smart about this substitution so here of course we want to combine bk1

hat but this term we choose the matching condition given by this to replace by a/am-bk1 so this

is am -bk1 this is obtained from the from the matching condition from the matching condition 1

the second term in the bracket bk2 +a we we can manipulate this by by replacing a in this case

by-bk2 which is given by second matching condition.

So, here we replace by -bk2 and because we want to combine bk3 hat with a matching term that



we get an error we replace 1 here by bk3 okay. So, after making these manipulations what we get

is ame-dk1 tilde e -bk2 tilde xd-bk3 tilde xd. alright so this is our closed loop error system for the

command  tracking  case.  Okay  so  now the  next  step  would  be  to  again  consider  Lyapunov

function candidate and try and prove stability.

So, Lyapunov analysis will also help us in designing the update laws for k1 hat k2 hat and k3 hat.
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Okay let  us choose the Lyapunov function we want to choose the Lyapunov function which

involves these error states the tracking error and all the parameter estimation errors k1 tilde k2

tilde and k3 tilde and we want that the entire function should be a scalar should be positive

definite. So, these are some of the things that we have to keep in mind the first thing that you

always try is the quadratic function it just makes it simpler. 

But there could be many choices available which could yield the yield similar result okay let us

choose the Lyapunov function as because in the scaler case it becomes easier for me to choose it

very similar to the direct MRAC case so gamma 1 and gamma 2 are positivize quantities which

we see would be the adaptation gains. Okay, okay so let us now take the time derivative and

substitute for the error dynamics.

So, v. s given by e e.+ okay now I have set up the problem for the development of the update



laws. Okay, so let us substitute for the closed loop error system -b/gamma 2 k2 tilde k2 hat.-

b/omega 3 k3 tilde k3 hat. 
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Okay, okay now so let us choose the update laws for k1 hat k2 hat and k3 hat okay so k1 hat we

want to choose so as to cancel this term involving bk1 tilde e so the way to choose this would be

to use a -gamma 1 e square and sin of b then we want to choose k2 hat. in such a way that we

could cancel this term again while we are cancelling this term because the they are not really

important not really needed in the Lyapunov derivative.

We want to have terms which are sin determinant and preferably negative so that we can take

care of them and these terms which we want to cancel are the sins are not really known because

they are dependent on these errors state and the designed trajectories which vary with time and

their sins also may vary. So, k2 hat. is designed like this and so ext sin um of b okay and k3 hat.

we will design similarly to cancel last term in the in the brackets.

So, which will be e x d. signum of b okay so if we choose these update laws so these are the the

adaptive update laws. One more thing to notice here is that so since we have used k1 hat k2 hat

and k3 hat and we have gone ahead with the analysis  with these estimates.  This  is  a direct

approach we can also do an indirect approach where we simply considered a hat b hat and go

ahead with the analysis.



And then try and design the update laws for a hat. and b hat.so that is something that you could

try on your own. This is the direct adaptive command tracking controller okay so substituting

these in v. what do we get is v.is am time v square okay so again this is negative semi definite

and you could say that the it will be on point is Lyapunov stable important to go through with the

analysis.

And we can show that v is bounded which implies that e of t k1 tilde of t k2 tilde of t k3 tilde of t

are all bounded.

(Refer Slide Time: 50:33)

Which further implies that x of t is bounded because we have assumed that xd of t is bounded

and since k1 is simply a constant k1 hat of t is also bounded k2 hat of t and k3 hat of t are all

bounded okay and then we can go back and try and prove that the controller is bounded okay so

here we see that k1 hat is bounded e is bounded k2 hat is bounded xt is bounded. K3 hat is

bounded xt. is bounded because that is something that we had assumed.

So, since all these terms are bounded what we can say is that in the controller u of t is also

bounded. Okay so what were not shown here so far is that the tracking error e of t goes to 0 so let

us go ahead and prove that we have already proved that e of t is bounded and using previous

similar to previous analysis we could also prove that e of t is L2 that is apparent. The thing we



have to be careful about is proving that e. e is uniformly continuous.

So, for that we need to look at e. and prove that e. is bounded. So, let us look at e. so e is

bounded k1 tilde is bounded e is bounded tilde is bounded xd is bounded k3. tilde is bounded xt

is bounded so all these is bounded so what we can say is e. of t which implies e of t is uniformly

continuous okay I am using these 3 facts we can claim using Barbalats lemma. Then e of t goes

to 0 as t goes to infinity.

So, okay okay so in in this lecture what we have so you can in fact go ahead and do the indirect

adaptive controllers. Because in this lecture we have studied two different controllers from what

we had done before. The first one is a case where we have matched structure and certainty the

fact  that  the  uncertainty  is  linearly  Para  materializable  allows  us  to  use  adaptive  control

approach. And and design the entire controller as an adaptive controller.

So, there we have a nominal controller which is the MRAC controller and controller which is

used to account for the nonlinear term which is again an adaptive controller for cases where we

have unstructured uncertainties or uncertainty which are not linearly para materializable it is not

straightforward  to  use  adaptive  controllers.  They  are  popularly  used  for  cases  where  the

uncertainties are linearly para materializable. 

The second case that we discussed today was a related case where instead of the plant following

a reference model the plant state tracks a desired time varying signal given by xt which which we

assume to be smooth with bounded derivatives. So, using direct adaptive control approach we

designed a stabilized controller for this case. And you can go ahead and do the indirect command

tracking adaptive controller.

Okay in the next lectures in fact in the next few lectures what we will discuss is robust adaptive

control  where  instead  of  the  uncertainty  being  structured  uncertainty.  The  uncertainty  is

unstructured and how do we tackle that case so normally we use some kind of a robustifying

elements in our control laws. Either the controller or the or the adaptive laws which make sure

that the stability is preserved. 



So, in the next couple of lectures we will study robust adaptive controllers thank you.


