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Welcome  everyone  to  lecture  2  of  this  course  on  adaptive  control.  Last  time  we  had

introduced the idea of adaptive control and we had discussed a couple of examples where

adaptive  controllers  are  advantageous  over  traditional  fixed  gain  controllers  and  also

mentioned that for this course you need to have some prerequisite background in nonlinear

systems, nonlinear control or Lyapunov stability theory.

Having said that in this class I will talk about some preliminaries, which will be required for

you to take this course forward; however, I encourage that you can go back and read about

these  preliminaries  on  your  own  in  more  detail.  So  in  this  class  I  will  talk  about  the

fundamental concepts involved, okay, so let us start with the stability of equilibrium points.

(Refer Slide Time: 01:15)

So as I mentioned these stability notion is tightly tied to the equilibrium points of a system, so

normally there are various notions of stability that you might have heard about for example

bounded input, bounded output stability which talks about the stability of the system where

bounded  inputs  result  in  bounded outputs.  This  notion  of  stability  is  slightly  tied  to  the

stability of equilibrium points, which is small pertubation about the equilibrium point result

in small pertubation in the state.



So let us consider a nonlinear system x dot = f of t, x; where f of t, 0 is = 0 for all time >/= t0.

So here as you can see this function f is an explicit function of time and so this is an example

of a non-autonomous system and the fact that f of t, 0 = 0 suggest that x = 0 is the equilibrium

point. So the idea is that you substitute the right hand side of the equation to 0 and the value

of x for which this is satisfied for all time gives you the equilibrium point.

So in this case x = 0 comes out to be the equilibrium point and for simplicity we will consider

without  loss  of  generality  that  x  =  0  is  equilibrium point  for  a  nonlinear  system.  I  had

mentioned in the last class that you could always do a change of variables and even if you

have a nonzero equilibrium point  you could convert  that back to 0. So this function f is

piecewise continuous in t and locally Lipschitz in x.

So both these properties they suggest that the solutions exist and are unique. So existence and

uniqueness of solutions is guaranteed if the function f is piecewise continuous in t and locally

Lipschitz in x and this domain D on which x is defined contains the origin x = 0 alright. So

let us look at the first definition.

So the origin x = 0 of the system is stable if for each epsilon which is positive and initial time

>/= 0 there exist positive constant delta which is dependent on epsilon and the initial time t0

such that if the initial state at time t0 starts within a ball of radius delta then for all future time

the state trajectories lie within the ball of radius epsilon. So this is illustrated by this diagram

here where x = 0 is the equilibrium point.

And the system starts at some point x of t0, which lies within this delta ball and for all future

time these state trajectories they lie within the epsilon ball. So this just suggest that the state

trajectories lie close to the equilibrium point if the initial conditions are sufficiently close to

the equilibrium point, okay. A thing to note here is that the constant delta depends on epsilon

as well as the initial time t0.

For autonomous system that is for systems where the function f is not explicitly dependent on

time t this constant delta is only a function of epsilon. So the task here is for each epsilon if

you can find a delta which satisfies this relation then we say that the equilibrium point is

stable. However, if this condition is not true we say that the equilibrium point is unstable that



is even if there exist one epsilon for which there exist no delta such that if the initial condition

start within the delta ball they are constrained to be within epsilon.

So  even  if  there  exist  one  epsilon  for  which  this  condition  is  violated  we  say  that  the

equilibrium point  is  unstable.  So  an  example  of  a  stable  equilibrium point  that  we  had

discussed last  time as  well  was that  of  a  pendulum.  So for  this  system we consider  the

equilibrium point to be theta  = 0 and theta dot = 0 that is equilibrium point that  we are

considering.

You can see that if we perturb a system slightly from the equilibrium point and suppose we

assume that there is no friction in the system then for all future time the pendulum keeps

oscillating about the equilibrium point and we can say that the system is stable. However, if

we consider the other equilibrium point which is vertically upward equilibrium point for the

pendulum.

So here theta = pi and theta dot = 0, so for this case for any epsilon that we choose it is not

possible to find a delta such that if we start within, if the initial condition start within some

delta ball they stay within the epsilon ball for all time. So this is an example of an equilibrium

point which is unstable.

(Refer Slide Time: 07:41)

Let us take another example of a Van der Pol oscillator. So the equations of the Van der Pol

oscillator are given by this it has 2 states x1 and x2 which are related like this. If you draw

the face portrait of the system this is what it comes out to be, the origin is the equilibrium



point  and  for  any  state  trajectory  which  starts  with  a  nonzero  initial  condition  it  will

eventually converge to this limit cycle.

So if we construct an epsilon ball of radius 1, which lies within the limit cycle then can we

find a delta ball wherein my initial conditions lie such that for all future time the trajectories

stay  within  this  epsilon  ball  of  radius  1,  the  answer  is  of  course  no.  So  because  these

trajectories eventually will escape from this epsilon ball and converge to the limit cycle. So

this is an example of system whose equilibrium point is unstable.

So you can also see that the trajectories since they converge to the limit cycle they always

stay bounded that  if  the trajectories  do not grow to infinity;  however, the system is  still

unstable. So there is a difference between stability and boundedness.

(Refer Slide Time: 09:18)

Okay, so the next is the origin x = 0 of a system x dot = f of t, x is convergent or attractive if

for all initial time t0 >/= 0, there exist a constant c which is dependent on the initial time such

that  if  the initial  conditions start  within this  ball  of radius c then as t  turns to infinity x

converges to 0. So this is an example of the equilibrium point being convergent or attractive.

That is if this is the ball of radius c and if the initial condition start somewhere inside it then

eventually they will converge to the equilibrium point.

So note here that the property of convergence or attractiveness is different from the notion of

stability where we have to find a delta for each epsilon, here the delta epsilon condition is not

to be is not required to hold rather the only condition is that the state trajectories eventually



converge to the equilibrium point. The second is asymptotic stability, so the equilibrium point

is said to be asymptotically stable if it is both stable and convergent and we just discuss what

stability is.

And we also discussed what convergence is. So if the equilibrium point is both stable and

convergent then the equilibrium point is said to be asymptotically stable. So this illustrates

the asymptotically stable equilibrium point where the initial condition start within some delta

ball and for all future time they stay within this epsilon ball so this has to be satisfied for all

epsilon.

So if it is indeed true we say that the equilibrium point is stable and in addition to that we also

see  here  that  the  state  trajectories  eventually  converge  to  the  equilibrium point.  So  this

equilibrium point  is  not  just  stable,  but  it  is  also  convergent  or  attractive.  So  it  is  also

illustrated here where you have a 3 dimensional part of the states x1 and x2 and times. So

here as t goes on the trajectories eventually converge to the equilibrium point.

Okay, so let us take another example here of a system where the equilibrium point is the

origin. So here this is special system where if the state trajectory starts from any non-initial

condition then they will  reach a curve c and then eventually  they will  come back to the

equilibrium point okay. So can we say that the system is convergent? Yes. It satisfies the

definition of convergence that we just mentioned.

Is this system stable? No, because if we consider this epsilon ball of radius 1 we see that any

initial condition will eventually leave this ball and reach the curve c. So we cannot constrain

the state trajectories to lie arbitrarily close to the equilibrium point even if we start very close

to the equilibrium point. So convergence in general does not imply stability, okay, so how

about the reverse, does stability imply convergence?

So that is also not true, a system in equilibrium point maybe stable. The convergence may not

hold that is the state trajectories may not converge to the equilibrium point.

(Refer Slide Time: 13:28)



So next we go to the concept of uniform stability, so this concept is very critical for systems

which are nonautonomous that means where the function f is explicitly dependent on time t.

So the origin x = 0 is uniformly stable if for each epsilon greater than 0 there exist a delta

which is dependent on epsilon which is a positive constant. Independent of t0 such that if the

initial condition start within a delta ball they stay within an epsilon ball for all future time.

And for all values of the initial time >/= 0. So the important thing to note here is that the delta

that we have used here is independent of the initial time t0. So in general for non-autonomous

systems the stability behaviour is also dependent on the initial time that is if we start the

system at some initial time it will have some stability behaviour. If we start the system at

some other initial time it will have some other stability behaviour.

When we say that a system in the equilibrium point is uniformly stable what we mean is that

the stability behaviour is independent of the initial time and equilibrium point is uniformly

stable. Okay so the second concept here is uniformly asymptotically stable. So an equilibrium

point is uniformly asymptotically stable if it is both uniformly stable and uniformly attractive.

So we just talked about uniform stability.

So what does uniform attractiveness means, it  just means that if there exist a constant,  a

positive constant Phi which is independent of t0 such that if the initial condition start within a

ball of radius c then the state trajectories eventually converge to the equilibrium point as t

tends to infinity uniformly in t0 that is the convergence is also uniform with respect to the

initial time t0.



So this is very important and this is a stronger notion of stability than just saying that an

equilibrium point is asymptotically stable. The fact that we can say that the equilibrium point

stability behaviour is independent of the initial time is a very strong notion. For autonomous

system, that means systems of the form x dot = f of x stability and uniform stability are the

same notions.

Similarly, asymptotic stability and uniform asymptotic stability are the same notion. Because

here the solutions x of t of the systems are not explicitly dependent on the initial time t0 and

so the stability behaviour is anyways independent of the initial time t0. So both these notions

are  equivalent  in  the  case  of  autonomous  systems.  Yet  stronger  notion  of  stability  is

exponentially stable.

So in the uniform asymptotically stable case this condition does not talk about the rate of

convergence towards the equilibrium point it just states at the state trajectories asymptotically

converge  to  the  equilibrium  point.  So  exponentially  stability  demands  that  the  state

trajectories converge exponentially fast towards equilibrium point.

So the condition is like this if there exist positive constant phi, k and lambda such that if the

initial condition start within some region of radius c then the trajectories x of t for all time are

</= an exponentially decaying function where the rate of convergence is given by lambda and

this quantity is also dependent on the initial condition x of t0. So as we can see here this term

is not explicitly dependent on t0, rather it is dependent on t - t0 and x of t0.

So what we can conclude from here is that exponential stability implies uniform exponential

stability. So we do not have when we say the equilibrium point is exponentially stable. It

implies that it is uniformly exponentially stable because the definition itself is independent of

the  initial  time  t0.  Now  the  next  question  is  does  exponential  stability  imply  uniform

asymptotic stability, the answer is yes.

So  in  fact  it  is  a  stronger  notion  of  uniform  stability,  it  also  defines  that  the  rate  of

convergence  is  exponential.  The  next  question  is  the  reverse.  Does  uniform  asymptotic

stability imply exponential stability. So the answer is no in general because as I mentioned

asymptotic stability does not demand the rate of convergence. However, this relation is true in



the case of linear  systems that  is  uniform asymptotic  stability  of a linear  system implies

exponential stability of the linear system.

(Refer Slide Time: 19:30)

Alright  another  very important  notion in  analyzing stability  of nonlinear  systems is  local

versus global stability. For linear systems stability is always global. However, for nonlinear

systems we need to talk about local stability so whatever notions of stability that we have

done so far were all local. So let us look at what global stability means. So the origin is

uniformly globally asymptotically stable.

Or in short we say it is UGAS if all the conditions of uniform asymptotically, asymptotic

stability that we discussed in the previous slide are satisfied for any initial state x of t0. So if

you go back here we stipulate that x of t0 start within some region of radius c. So we say that

this kind of stability is local that is initial conditions have to be within some local region of

radius c. However, if we say that c = infinity that is initial conditions can be chosen anywhere

in the state space.

We say  that  stability  is  global.  Similarly  have  global  exponential  stability  that  is  if  the

condition of exponential stability is satisfied for any initial state in the state space we say that

the equilibrium point is globally exponentially stable. So if we go back here if we say that c =

infinity that is the initial conditions can be anything in the state space and this condition is

true then the equilibrium point is going to be globally exponentially stable.



As I mentioned for linear time invariant system stability is always global. So either they are

globally stable in fact they are globally exponentially stable or they are marginally stable or

they  are  unstable.  So  let  us  look  at  this  example  where  I  have  a  system with  multiple

equilibrium points,  so we can see here that this  equilibrium point  is a stable equilibrium

point, that is if we perturb the ball slightly from it is equilibrium position it will eventually

stay within the vicinity of the equilibrium point.

However here if we disturb the ball from it is equilibrium position it will not stay within the

vicinity  of  the  equilibrium point.  So  this  equilibrium point  is  unstable.  If  I  ask  you the

question about the stable equilibrium point whether this is local or global stability, then the

answer here would be local stability because I just mentioned that for global stability the

initial condition, the initial state can be anywhere in the state space and it will eventually stay

within the neighbourhood of the equilibrium point.

However, if the initial state here is chosen to be the unstable equilibrium position then it will

just stay there for all time. So this equilibrium point which is stable is only locally stable.

Okay so the stability definitions that we discussed thus far are very rigorous; however, they

as you can see they are very hard to verify because it requires that you solve the nonlinear

differential equations which is not a straightforward task.

For  linear  systems it  is  easy  because  you could  solve  the  linear  systems and you could

comment on stability; however, for nonlinear system in general it is not straightforward to

solve nonlinear differential equations and so the stability definition that we discussed are hard

to verify.
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So Lyapunov theorems are useful in this scenario because they help us determine stability

without solving these nonlinear ordinary differential equations and that is the real power of

these  Lyapunov  theorems.  So Lyapunov proposed 2 methods,  one is  the  indirect  method

which  is  given  a  nonlinear  system.  You  could  linearize  nonlinear  dynamics  about  the

equilibrium point.

However, you could only and then so what we do here is that given any nonlinear system we

use the Taylor series expansion about the equilibrium point and we get Jacobian matrix then

we can check the Eigen values of the Jacobian matrix if they lie on the open left half plane.

We say the system is locally asymptotically stable if any of the Eigen values lies on the right

hand plane we say that the system is unstable.

However, if any of the Eigen values are the real part which is 0 that is the any of the Eigen

values lies on the imaginary axis we cannot conclude.  So although this  method is  useful

because it takes you to the linear region and then you could look at the Eigen values, but it is

inconclusive  for  certain  cases  and  so  the  Lyapunov’s direct  method  is  the  more  general

method for determining stability.

So the basic idea is  that  it  is  based on generalization of energy concepts.  So it  involves

finding a positive definite energy like function say V of t, x where t is the time and x is the

state,  so it involves finding a positive energy like function.  So why do I say energy like

because I certain situations it is easy to find the t total energy of the system for example for



mechanical  systems  you  could  find  the  potential  and  mechanical  energy  similarly  for

electrical circuits it is easy to evaluate the energy of the system.

But for many systems the notion of energy is not very clear; however, we could still come up

with a positive definite function of the states and we call that as energy like function and

further if the time rate of change of this V of t, x is non-positive. We say that the equilibrium

point is stable. So that is the basic idea, it is similar to the notion of the energy of you know

of a system, which is continuously dissipated and if a system dissipates energy continuously

it will eventually settle close to the equilibrium point.

So this method gives sufficient conditions for stability and it also talks about local as well as

global stability, so it is a very general method.

(Refer Slide Time: 26:44)

So let  us  look  at  the  main  theorem,  which  is  theorem  4.8  in  the  book  by  Khalil,  so  I

encourage  that  you look at  this  theorem in more detail.  So this  theorem says that  let  us

consider x = 0 to be the equilibrium point of the system. So this can be said without loss of

generality  as I  mentioned before and let  us consider, let  there  be a  function V, which is

defined  like  this  where  D  is  the  domain  containing  the  origin  and  this  function  is

continuously differentiable and it satisfies these relations.

So the first relation says that V of t, x is upper and lower bounded by time invariant positive

definite functions W1 of x and W2 of x okay. So what this relation means is that V of t, x is



positive definite. So if you can find a lower bound of this time varying function V of t, x and

this lower bound is positive definite then we say that this function V is positive definite.

So when is W1 positive definite? So W1 of x is positive definite when W1 of 0 is 0 and W1

of x is greater than 0 when x is not equal to 0. This is what is meant by positive definiteness.

The second condition where V of t, x is upper bounded by a positive definite function W2 of

x this just implies that V of t, x is decrescent, okay so the first condition basically states that

the function V is both positive definite and decrescent okay.

Okay so let us move on to the second condition. So the second condition is slightly more

involved;  however,  if  we  look  at  it  more  closely  this  is  simply  the  derivative,  the  time

derivative of V. So V dot of t, x can be computed by using the chain rule. So we first take the

partial of V with respect to t and then we take the partial of V respect to x times x dot which

is same as saying.

So we replace x dot by f of t, x. So we in a way we take the derivate along the system

trajectories, the fact that we substitute for x dot using the function f, we say that this is the

time derivative of the function v along the system trajectories. So if the time derivative of V

is </= 0 for all t >/= 0 and for all x on D, we say that the equilibrium point is uniformly

stable.

Okay, so the definition that we had discussed previously which was very hard to verify can

now be verified by using this Lyapunov theorem. So what this theorem essentially says is that

if you could find a function V which is positive definite and decrescent and it is time derivate

is </= 0 which in a way means that V dot is negative semi-definite then the equilibrium point

is uniformly stable. 

Suppose this condition of decrescent was not true then we could only say that the equilibrium

point is stable. The uniform uniformity part is coming from the condition that the Lyapunov

function candidate is decrescent. Okay so the second important theorem is theorem 4.9 in

Khalil, which says, which is very similar to the previous condition so this just means that V

of t, x is positive definite.



This means that V of t, x is decrescent and this condition implies that V dot is </= -W3 of x.

So W3 is the positive definite function so –W3 is the negative definite function which means

that V dot is </= some negative definite function which just implies that V dot is negative

definite.  So  if  these  conditions  are  true  the  equilibrium  point  is  said  to  be  uniformly

asymptotically stable.

So for asymptotic stability we see that we have a stricter condition for V dot. In the previous

case V dot was only required to be negative semi-definite. In this case V dot is required to be

negative definite. So then we look at the last condition that means if this domain D is the

entire state space and the function W1 is radially unbounded then the equilibrium point is

uniformly globally asymptotically stable. 

So the fact that W1 is radially unbounded and the domain D is the entire state space suggest

that we could include the notion of global stability here along with UAS. So what does radial

unboundedness  means,  it  just  means  that  W1  of  x  goes  to  infinity.  For  all  norm of  x

pertaining to infinity. So this is what we mean by radial unboundedness. So as you can see

here  we  have  not  solved  any  nonlinear  differential  equation,  but  we  have  been  able  to

comment on the stability properties of nonlinear systems.

So  these  are  very  powerful  condition.  However,  the  main  challenge  here  is  to  find  the

function V. So how to find this Lyapunov function V to comment on stability properties is a

perennial challenge in this area and by intuition, by experience, by some trial and error we

could choose suitable Lyapunov function candidates. Not just to analyze stability but also we

will see later to design controllers.
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Okay so some more remarks about Lyapunov stability theorems. So the first one is that these

are sufficient conditions for stability. So they are not necessary they are only sufficient which

means that  failure of a Lyapunov function to satisfy the theorem does not mean that  the

equilibrium point is unstable. So if we choose a Lyapunov function candidate that is you

could find a function V of t, x which is positive definite and it is time derivative is at least

negative semi-definite then we could say that the equilibrium point is stable.

However, if the Lyapunov function candidate does not satisfy the negative semi-definiteness

of V dot we cannot say that the equilibrium point is unstable because these are only sufficient

condition for stability. So you could find another Lyapunov function which may satisfy all

these conditions. For linear systems Lyapunov theorem provide both necessary and sufficient

conditions  for  stability  and  as  I  mentioned  finding  a  Lyapunov  function  for  a  nonlinear

system is typically a nontrivial task.
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Okay so let us consider some examples, so let us consider this scalar system given by this

nonlinear  differential  equation  which  is  also  time  varying  which  means  that  this  is  the

nonautonomous system and we have been asked to analyze the stability of the equilibrium

point, okay. So the first step is to determine the equilibrium points.

So for this we substitute the right hand side of this differential equation to be equal to 0 and

we see that if this equation is true for any value of x for all time t >/= 0 and we find that yes it

is indeed is true when x = 0. So we say that x = 0 is equilibrium point in this case. Second we

choose Lyapunov function candidate. So we choose a function which is positive definite. 

So  here  we have  chosen a  very  simple  positive  definite  function  x  square  over  2.  Now

choosing this function requires some trial and error, some experience and we will get better at

it  with time.  So let  us  just  right  now assume that  we choose  this  as  Lyapunov  function

candidate and let us see if this satisfies any of the conditions that we laid out in the theorems.

Okay so this function is positive definite right.

This function is also decrescent because here W1 and W2 are simply equal to the Lyapunov

function candidate itself. So it is easy in this case because we have chosen a function which is

not  time  varying.  Next  we,  okay  just  one  more  thing.  So  this  function  is  also  radially

unbounded. So it is radially unbounded, positive definite and decrescent.

So we take the time derivate  of  V along the system trajectories  that  is  we differentiated

respective time and using the chain rule and then we substitute for the system dynamics x dot



= this fraction site and what we get is this as a V dot. We see here that we have this time

dependence in V dot. So V dot is in fact dependent on time although V was not time varying.

Now this expression can be upper bounded by –x to the power 4.

So  can  we  conclude  anything  from here?  So  as  we  said  we  have  been  able  to  choose

Lyapunov function candidate which is positive definite radially unbounded and decrescent.

Further we have also been able to find W3 which is positive definite, that is we can invoke

theorem 4.9 and conclude that the origin is in fact uniformly globally asymptotically stable.

(Refer Slide Time: 39:05)

Let us move to the next example, so this is system with 2 states x1 and x2 and again we can

see that this is a nonautonomous system and we have been asked to analyze the stability of

the equilibrium points. So as we did before we determine the equilibrium point. We set the

left hand side to be = 0 and we find that x1 = x2 = 0 which is the origin is the equilibrium

point.

So next step we choose Lyapunov function candidate so we try to choose a positive definite

function. So let us choose this as our Lyapunov function candidate and how we choose this is

you know we can talk about that later, but right now let us just go ahead with this choice. So

as you can see here as opposed to last time this Lyapunov function is in fact time varying

okay.

So you could try different Lyapunov function candidates and you know eventually converge

on a Lyapunov function candidate which helps you conclude about stability. So we say here



that  this  function V can be  upper  and lower bounded by time invariant  positive  definite

functions, so this is w1, this is w2, so which means that V of t, x is positive definite and this

suggest that it is decrescent. 

Further since w1 is radially unbounded we can conclude that V is also radially unbounded. So

next we take the time derivate of V along the system trajectories, so we do the same thing.

We take the time derivate, substitute the dynamics and what we get is, so we get some time

dependence  here  then  we further  upper  bound the system like  this  and then using  some

manipulations we convert it to this and this.

So this  is  a  negative  term,  so we just  throw it  out  and further  upper bound this  by this

expression. So this expression says that V dot is negative definite. So we have been able to

choose  Lyapunov  function  candidate  which  is  positive  definite,  decrescent,  and  radially

unbounded and V dot is negative definite. So we can again invoke theorem 4.9 to prove that

origin is uniformly globally asymptotically stable.

Further in this case you could also prove that V dot is </= -1/2 V of t, x. So maybe you can

try this and then exercise so with this you can in fact say that the equilibrium point is globally

exponentially  stable.  So  wherever  we  can  get  this  we  can  say  that  V of  t  is  </=  sum

exponentially decaying term and since V is dependent on x1 and x2, we could potentially

make similar conclusions about x1 and x2.
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Okay so we move on. So the next thing that I wanted to discuss was signal norms. So given

any time varying signal how do we find the size of the signal. So these norms give us a

measure of the size of any signal. So let us talk about the Lp norm of the signal x of t which

is piecewise continuous. So the Lp norm is defined like this, so here p is any number from 1

to infinity where infinity is not included.

So it is defined as this integral from 0 to infinity of the absolute value of x raise to the power

p and then for the whole you take the p’th root of this. So we say that the function, the signal

x of t belongs to the space Lp, if it is Lp norm exist, that is that this integral is finite. So this

Lp is the space of all piecewise continuous functions for which the Lp norm is finite. Let us

look at L2 norm. So we just substitute 2 in p and we get this p2 norm of the signal x of t.

So it is defined similarly. So we say that x of t is L2 if the L2 norm exist that is that this

integral is finite. So this is the space of square integralable functions. Now in this definition V

of Lp norm we said that p cannot be infinity because L infinity norm of the signal is defined

slightly differently, it is defined like this as supremum over all t of the absolute value of x of

t.

So we say that the signal belongs to the L infinity space if the L infinity norm exist and that

just means that the signal is essentially bounded. So L infinity is the space of all bounded

functions. So this will be useful when we do analysis in this course.
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Okay the other concept I wanted to talk about was asymptotic properties of signals. So we

say that so there are certain misconceptions about the asymptotic properties of signals. The

first one being that if there exists function f which converges to a constant Phi that is not

imply that it is derivate converges to 0. So as an example you can consider this and try and

prove that this is in fact a misconception.

And secondly we can also look at the reverse which is if the derivate of signal converges to 0

that does not imply that the function itself converges to some constant example we can take

this function to the log of t and verify that this is the case. Alright, so very important result

that we will be using again and again in this course is the Barbalat's lemma. So what the

Barbalat's  lemma says,  so  here  in  fact  I  am taking  about  the  corollary  of  the  Barbalat's

lemma.

So if the function f of t belongs to L2 and L infinity, so it is both L2 and L infinity. It is both

bounded as well as square integralable and the function f of t is also uniformly continuous.

Now uniform continuity is a stronger form of continuity or without going into the actual

definition of uniform continuity what I want to tell  is that  it  is sufficient  to say that the

derivative of the function is bounded that just implies that f of t is uniformly continuous.

So it is just sufficient to say that the derivative is bounded. So if the function f is uniformly

continuous then we can say that as t tends to infinity, this function goes to 0. So these 3

conditions have to hold that if the function has to be absolutely square integrable, bounded

and uniformly continuous then as t tends to infinity this function converges to 0.
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So let us consider another example so here we have a system consisting of 2 states e and theta

and omega is given to be bounded and we have to analyze the stability of the equilibrium

point. So the first step is always to find the equilibrium points. So we set the right hand side

to be = 0 and we say that e = 0 and theta = 0 satisfies this equation for all time. So this is the

equilibrium point.

And we have to analyze the stability with respect to this equilibrium point. So let us choose a

Lyapunov function candidate V of as 1/2 e square + 1/2 theta square. So this is the most

commonly used Lyapunov function candidate the sum of squares, it is the positive definite. It

is  decrescent,  it  is  radially  unbounded,  so  it  satisfies  all  the  nice  properties.  Let  us

differentiate this so V dot = e times e dot + theta times theta dot which is = e times.

We substitute the dynamics. So we see that these 2 terms cancel out and we are left with –e

square. So what can we conclude about V dot. So V dot is only negative semi-definite. So

why not negative definite. Maybe you can take that as an exercise. So V is positive definite,

decrescent, radially unbounded and V dot comes out to be negative semi-definite. So we can

invoke theorem 4.8 in Khalil  to conclude that the equilibrium point is uniformly globally

stable, that is U.G.S., okay.

So can we say anything more? So it turns out that we can so let us look at the signals, the

signal  e  of t  and let  us see if  we can use any of our theorems or lemmas that  we have

discussed. So here V is positive and V dot is </= 0, which implies that V of t is bounded,



okay. So since V is bounded and V is sum of squares of the states e and theta that just implies

that e of t and theta of t are also bounded, okay.

(Refer Slide Time: 53:19)

So let us look at the equation so V dot = - e square, so let us integrate this equation both sides

from 0 to t. So what we get is V of t – V of 0 = - 0 to t of e square. So we have already proved

that V of t is bounded and this is some finite number. So that means the left hand side is

bounded which means that the right hand side should also be bounded. So this quantity e

square should be less than infinity which means that e of t is square integralable.

So far we have concluded that e of t belongs to infinity and it belongs to L2. So it is both

bounded and square integralable. The only condition that we need to prove for e to go to 0 is

that if e is uniformly continuous. So to do that we will have to look at e dot and I mention

before  that  if  we can  prove  that  e  dot  is  bounded  that  implies  that  e  of  t  is  uniformly

continuous.

So we go back and see what e dot is, so we look at e dot, so e dot is –e + theta omega t, so

from here we know that e we have already prove as bounded. Theta also we have proved to

be bounded, omega is given to be bounded which means that e dot of t is also bounded. So

we have proved that e dot of t is bounded which implies that e of t is uniformly continuous.

So we have satisfied all the conditions that is e of t is both an infinity and L2 and e of t is

uniformly continuous.



So using 1 and 2 and invoking the corollary of the Barbalat's lemma, we can conclude that e

of t goes to 0 as t goes to infinity. So using Lyapunov theorem we could only prove that the

system, that the equilibrium point is uniformly globally table; however, then we used another

lemma called as the Barbalat's lemma to prove that the state e of t converges to 0. So in this

case although we can prove that e of t goes to 0 we cannot prove at least in this scenario it is

not possible to guarantee that theta of t also converges to 0.

So that we cannot guarantee so the system cannot be guaranteed at least we cannot prove that

the system is asymptotically stable although we have proved that this is uniformly globally

stable and one on the states that is e of t converges to 0. So this system in fact is going to be

very useful when we look at adaptive systems in general and this will be like a benchmark

example for the adaptive systems that we will study in this course.

Alright, so just to summarize in this lecture we discussed the preliminaries which are required

to  understand  this  course  that  is  the  notion  of  Lyapunov  stability,  the  different  stability

definitions, and then we also talked about the Lyapunov stability theorem which enable us to

determine stability without solving the nonlinear differential equations and then towards the

end we read Barbalat's lemma which is set of conditions that enable us to prove that certain

signals converge to 0 as time goes to infinity.

So these will be useful for us as we go on I encourage all of you to go back and read about all

the topics that we have discussed in this course in detail. Thank you.


