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Okay welcome everyone to the first class of adaptive control. So today we will talk about,

firstly we talk about the different textbooks that will be useful for this course. I have already

mentioned that in the course webpage, but I will just mention that again.

(Refer Slide Time: 00:39)

So the important textbooks to follow for this course are as follows. Adaptive Control Tutorial

this  is  by  Iannou  and  Fidan.  Then  we  have  Stable  Adaptive  Systems  by  Narendra  and

Annaswamy. So these are the 2 main text books that I will be following for this course. In

addition to these there are a couple of other text books that I have mentioned on the course

webpage which are by Sastry and Bodson which is again on adaptive control.

And then there are 2 texts on Nonlinear Systems and Control by Khalil and by Sastry. So in

the introductory  video I  had mentioned that  basic familiarity  with nonlinear  systems and

Lyapunov  stability  methods  is  required  for  this  course.  So  in  case  you  do  not  have

background in that area I encourage that you read these very standard text by Khalil  and

Slotine, okay.



So now we can start looking at other aspects of this course. So this is a 4-week course and we

will primarily cover adaptive control for linear systems in this 10-hour course but the same

methods that we develop for this course can also be utilized to study adaptive control for

nonlinear systems. Okay so now the main keyword in adaptive control is adapt, and adapt

literally means to change ones behaviour.

You know when you have change circumstances or new circumstances. So any controller

which is able to tune itself based on the change plant dynamics can be considered to be an

adaptive  controller  in  general  and  in  this  course  we  will  be  talking  about  developing

techniques or approaches for controlling plants where the parameters are unknown or where

the parameters change in an unpredictable way, okay.

So in this course we will mostly deal with controllers for plants with unknown parameters. So

when I say plants with unknown parameters I mean that plants which were the dynamics can

be parameterized and in the parameters of those dynamics are not know, okay. So how do you

then design a controller for such a system. So this idea of adaptive control is an old one, it

originated  in  the  1950s  when  people  started  looking  at  designing  autopilots  for  high

performance aircrafts.

So these aircrafts are highly nonlinear, time varying plants where they operate in wide range

of altitudes and speeds. So let us consider that for a given operating point, when I say for a

given operating  point  I  mean that  for  a  given operating  point  of  altitude  and speed,  the

complex longitudinal dynamics can be approximated by an LTI system of the following form.

Where the initial conditions are given by x of t0 = x0.

Here x of t denotes the state, u of t denotes the input, y of t denotes the output of the plant and

the plant here is the longitudinal dynamics of an aircraft. So i here refers to, i denotes the new

operating point. Example, i can be one to denote one operating point and i can vary from one

to say k where the aircraft operates in k different operating points and for each operating

point you have different plant dynamics.

So typically what would you do? How would you design a controller u to stabilize a plant

like an aircraft? So if you were to use a fixed gain controller.
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Say u = -kx and this k can actually be tuned or it can be found out by some pole placement

method or by using LQR, but you would find that this k would work really well for a certain

operating condition, but when the aircraft goes into a different operating condition the same k

would not give you the same consistent  performance and stability  that  it  would give for

which this k was designed right.

So  a  fixed  k  will  not  give  consistent  performance  and  ensure  stability  for  all  operating

conditions. So if you were to use this kind of a controller for this plant and let us try and

make a block diagram for that. So this is the aircraft dynamics. So it has an input u and an

output y and then you connect a controller, this is a general fixed gain controller let us not

specify what it actually is.

So the input to the controller is a reference command. So this output also is an input to the

controller  so  where  the  controller  block  would  then  compare  the  actual  output  with  the

reference  command  and generate  an  error  signal  which  can  then  be  used  to  control  the

aircraft. So this is what a typical block diagram for a fixed gain controller would be.

So now as I mentioned that a fixed gain controller may not give you consistent performance

and  ensure  stability  for  all  kinds  of  operating  conditions.  So  a  better  method  to  design

controller would be to design an adaptive controller to achieve consistent performance over a

large flight envelope. So the adaptive controller would be able to automatically tune the gains

of  the  controller  and  give  you  consistent  performance  for  a  wide  range  of  operating

conditions for the aircraft.



So how it would be able to achieve that is say we have another block here, which denotes the

strategy for adjusting the controller. So it probably would use an input to the plant and the

output coming out from the plant and then the output from such a block would then be used

to tune the gains of the controller automatically. So you see how this controller would be able

to  make  appropriate  adjustments  to  accommodate  changes  in  a  plant  whose  operating

conditions are changing, right.

So that is the power that you get when you design an adaptive controller, okay. So this was

way back in the 1950s and at that time there were various terms which were introduced to

denote these controllers and so the people used terms like self-learning, self-organizing, self-

optimizing adaptive controllers. So all these terms were used to refer to the same kind of

controllers,  which  would  automatically  adjust  their  control  parameters  for  different  plant

parameters okay.

So that was a basic motivation for adaptive control. We will consider more examples just to

illustrate why these adaptive controllers are useful. So let us consider another example which

I would also mention in the introductory video.
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So another  example  of  a  pick  and place  robot  manipulator. So let  us  consider  this  stick

diagram of a robot with a gripper at the end and it is lifting objects on the conveyer, which

come in different shapes and sizes and different mass distributions and it is lifting them up



and then say let us have an object at the end of it, so the robot is lifting it and then placing it

at some desired location.

So it is picking it from the conveyer and placing it here, okay. So again if you were to use

classical methods to design controllers for such a task you would try and tune your control

gains to get an optimum performance and ensure stability, but that would probably work in a

situation where you are lifting just a certain kind of pay loads. Now in this conveyer you have

various kinds of payloads.

So for each payload your robot dynamics will change for example the inertial parameter of

the robot will change each time it picks a different payload and because the initial parameters

will change the performance and stability property of a system will also change. So the same

fixed gain controller that you designed for one kind of payload may not work as well for the

other payloads.

So here that calls for designing and adaptive controller where you do not have to manually

tune your gains for every kind of payload rather the controller is intelligent enough by using

input,  output  data  from the system to tune  itself  even if  you know even when there are

multiple payloads, right. So this is another example just to illustrate you know why adaptive

control is useful in situations where it could be useful.

Okay, so I want to consider another example because this is the first class so I do not want to

make  it  so  involved  in  the  beginning.  So  let  us  go  slowly  and  introduce  the  topic  by

motivating the need for it.
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So let us consider another example of a mass spring damper system. Okay so we have a

spring, a damper connected to a mass then you have a force, which is acting on the mass. So

the spring constant is denoted by Ks, the damping constant is denoted by B and we can easily

write down the plant dynamics as Mx double dot + Bx dot + Ksx = F. So x here is say the

position of the mass from this point on.

Okay, so here the objective is to design a controller F of t such that x of t goes to 0 and with

some desired transient specifications, okay. So I hope the objective here is cleared. So we

would like to design a force F of t which is we control input to the system such that when this

mass is perturbed from it is initial position it comes back to x = 0 with some desired transient

specification for example some desired settling time with some desired over shoot.

So these are some transient specifications that we want a system to meet. So how would you

go about designing such a controller so from our classical methods we know that we could

design straight feedback, pole placement, controller of the form, so u is given by – K1 K2 x

and x dot right. So K1 and K2 can be chosen using the pole placement method. Now an

assumption that we are making here is that all the parameters of the system M, B and Ks are

known.

And using those parameters we use the pole placement method to come up with K1 and K2

which can achieve this objective. Now if I tell you that, so let us say that M, B and Ks are

unknown parameters.  So now how would you design a  controller  F of  t  to  stabilize  the

system. So using fixed gain controllers can you do the same task. Of course you cannot use



pole placement or LQR now because all of these methods they require the system parameters

to be known.

You could try using a PD controller here, but you probably not be able to get the same kind of

performance. So this further illustrates the point that adaptive controllers can be used in the

situations where you have systems with parameters uncertainty. So you could use adaptive

controllers for plants, so here the plant is parameterized with the parameters M, B and Ks and

because there is uncertainty in these parameters we would like to design adaptive controller

for achieving this objective.

Okay, so hopefully this is adequate motivation to study this area and I stop at these examples

and now I will take a more concrete mathematical case just to again illustrate the limitation of

the  fixed  gain  controllers  or  the  classical  controllers  and motivate  the  need for  adaptive

control. Okay so let us consider a very simple scalar system.
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X dot = ax + u, so again here x is the state, u is the input, a is positive parameter and the task,

the objective here is that x of t goes to 0 as t goes to infinity. Okay, so to meet this objective

let us design a state feedback controller u = -kx okay. So the closed loop system in this case

becomes x dot = a – kx okay. So we need to make sure that x tends to 0 as t tends to infinity.

So how would you go about designing k to meet this objective?

So of course you would want to choose the Eigen values to be on the left hand side, so in

order to do that you would have to choose k to be greater than a to ensure stability and to



make sure that x of t goes to 0, x t goes to infinity right. Now this again is based on the

assumption that the parameter a is known to us right.
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So now let us consider the case where a is unknown, then how would you design k right. It is

not very straightforward to come up with the k for an unknown a right. So for this case we

want to choose k right. So it is not easy right. It is not straightforward. So let us relax this

little bit and say that let us say that we have an upper bound for a, where a bar is known. So

although a is not known, but the upper bound of a which is a bar is known.

So we can still think about designing k in this case, so we can choose k such that k is greater

than a bar right. So if you choose k to be greater than a bar we meet our objective right. So

that is the case where what is the problem with this case, I mean what is one problem with

this case although we can still meet our objective. So one is that here we consider the worst

case scenario. We consider k to be greater than the upper bound of a.

Now a can be 2, but the upper bound can be say 100 and then we will have to choose k

greater than 100 and we know what is the problem with these high gain controllers. So if the

designer controller with the really high gain we know that it will amplify noise and it will

also saturate our actuators. So it is not a very prudent design; however, it works in this case

okay. So this  works  but  high  gain  controller  which  are  very conservative  leads  to  noise

amplification and actuator saturation, okay.



So it turns out that you could design an adaptive controller in this case and I can in fact write

down the adaptive controller that we could design. So for the system x dot = ax + u we could

design u to be = - k of tx. So here k is time varying not the fixed k in that we had considered

earlier and the way this k of t is changing is from this differential equation which is given by,

so of course we can write down the initial condition, okay.

So using this as our controller we could potentially make sure that we could prove that x of t

goes to 0 as t goes to infinity. So how this is possible is something that we will consider later,

but  right  now you can just  take this  on faith  that  an adaptive controller  like this  can be

designed without knowing the parameter a, but at the same time it can still give you the, it

can still satisfy the control objectives okay.

Alright so this was the case where this k appropriately changes with time to make sure that

you have stability okay. So now the question is how to design such controllers. So as I had

mentioned before in the introductory video a prerequisite to this course is background and

nonlinear control or nonlinear systems or familiarity with Lyapunov stability methods. So if

you do not have this background I would like that you go through the standard text.

But I would still like to go over some preliminary material just so that you know what to

study in detail. I will just go over it in brief, okay.
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So let us look at some preliminaries to be covered by you okay. I will only discuss that in

brief. So first dynamical systems, so we consider the plant to be a dynamical system, so plant



is modeled using ordinary differential equations with finite number of states, okay and the

way you would represent a dynamical system in general which is represented using ODE is

using this equation.

X dot = f of t, x where f represents any nonlinear function. X as we all know is a state, t is the

time and system starts with some initial condition at t0, which is given by x0. So x of t gross

to Rn, f is the function which takes the arguments R + gross Rn to Rn okay so here you can

see that  the function  f  is  explicitly  dependent  on t  and these systems are called  as  non-

autonomous systems.

If you solve this equation you will find that x of t, which is the solution of this differential

equation will depend on the initial state x of t0, the initial time t0 and the current time t right.

Now there were also systems where this function f is not explicitly a function of time t. So

those systems can be represented using x dot = f of x. So here there is no explicit dependence

on t. So these systems are called as, so f is not explicitly dependent on t.

The system is called as autonomous systems and the solution for these systems x of t depends

on the initial state x of t0 and t – t0. So that is very important to see that the solution does not

depend on t0 independently, it depends on t – t0 the difference between the current and the

initial  time.  So this  difference  is  important  because  as  we will  see  later  when we study

stability of the systems we will see that their stability properties vary depending on whether

you are looking at an autonomous system or a non-autonomous system.
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Okay, so  the  next  topic  is  equilibrium points.  So  for  the  system x  dot  =  f  of  t,  x.  the

equilibrium point x star is defined by f of t, x star 0 for all t >/= t0. So x star is the point

which satisfies this equation f of t, x star = 0 for all time t >/= t0. It just means that if the

system solution or the system trajectory is at the equilibrium point then, it stays there for all

time because at x = x star the right hand side of this differential equation is 0 which means

that x dot = 0.

Which means that if you are at x = x star you would remain there for all future time, so that is

the definition of an equilibrium point. Okay so now suppose for system x dot = f of t, x with

equilibrium point denoted by x star we can always do a change of variables and convert the

system in to a system where the equilibrium point is the origin. So we can consider z as a new

variable which is noted by x – x star.

And then we can write down that dot as f of t, z + x star then we can further write this as z dot

as sum function g, t, z right. So here the equilibrium point for this system has the origin z = 0

as the equilibrium point. So this is just to show that given system with a nonzero equilibrium

point you could always do a change of variables and convert that into a system where the

origin in equilibrium point.

This will be useful later on when we do the definitions of stability. Okay so let us consider an

example of a pendulum. So we all are familiar with this example.
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So we consider the pendulum system with the mass M and length L and we can write down

the dynamics as ml square theta double dot + b theta dot + mgl sin theta = 0 okay and the

question  is  determined  the  equilibrium points  for  the  system okay. So  let  us  follow the

procedure that we laid down previously and then see if it agrees with our physical intuition

that we have, okay.

So convert to state space so that would be the first step. So we can define the states as x1 is

defined to be theta and x2 is defined to be theta dot so then we can write down set of first

ordered differential equations as x1 dot = x2 and x2 dot = -b over ml square x2 – g over l sin

x1 alright. So we have represented the dynamics in the straight space form. So now we can

find out the equilibrium points by setting the right hand side of these differential equations to

be equal to 0.

So which means that x2 = 0 and so if we set the right hand side of this equation to be equal to

0 what we will end up with sin of x1 to be equal to 0 because x2 is 0. So which means that

the equilibrium point, there are multiple equilibrium points in this pendulum system and they

are given by k pi, 0 where k pi corresponds to x1 and 0 corresponds to x2 and this k is 0 + -1

+ -2 and so on. 

Okay so this agree with our intuition and it does right because we know that the pendulum

system has one set of equilibrium points which denote the vertically downward position and

another set of equilibrium points which denote the vertically upward position right. So this is

just  an example to illustrate  that  you could,  if  you know the differential  equation of any

dynamical system you could find out the equilibrium points.

So for linear systems x dot = ax for example where a is non-singular, you would only have

one equilibrium point x = 0, but for nonlinear systems you could have multiple equilibrium

points. You could have systems which have no equilibrium points, so the behaviour of these

nonlinear system is very different from the linear counter parts and that is why the motivation

to study and analyze these nonlinear systems. Okay so now we go on to the next topic which

is concern with stability of equilibrium points.
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So stability, I am pretty sure you would have some concept of stability. So in your classical

control  classes  you  must  have  looked  at  bounded  input,  bounded output  stability  in  the

context of linear systems, but there is also a notion of stability in the sense of Lyapunov or

where you are looking at the stability with respect to the equilibrium points.

So here the notion of stability is very tightly tied to the equilibrium points. In fact, we never

say that a system is stable or unstable. We talk about if the equilibrium point of a system is

stable or not. So if I ask you for the pendulum system can you analyse the stability of the

pendulum. So of course it  will  not be possible  to say whether the pendulum is stable or

unstable, you would have to look at the equilibrium point that we are referring to.

So for the vertically downward position we know that the pendulum is stable whereas for the

vertically upward position the pendulum is unstable. So how can we say that, how can we

state this in a better  way. So you could of course look at the mathematical definitions of

stability from the book, but here I will just give you a flavor of that. So let us say that we start

x star is the equilibrium point and we start in the neighbourhood of the equilibrium point so

let us say we start from x, from here okay.

So it is a little bit away from the equilibrium point and as times goes on we evolve, the state

of the system evolves and if it stays with an another ball say of radius epsilon then we say

that the system is stable. So what we are trying to say here is that you could stay close to the

origin or the equilibrium point for all time provided you start sufficiently close to it.



So this is what these 2 balls are representing here that given any epsilon that is the ball where

you want your trajectories to lie, so given any epsilon if you could find a delta ball where you

start from, then you could say that your system is stable okay. So this is you know how you

illustrate  the  concept  of  stability,  so  which  just  mean  that  small  pertubation  from  the

equilibrium point result in small deviation from the equilibrium point.

Or the trajectory can stay close to the equilibrium point by starting sufficiently close to it, so

if you consider the example of this pendulum, so this is the vertically downward position and

we start say here and then we let this pendulum go, suppose there is no friction in the system

then we would keep oscillating back and forth, but we would stay close to the equilibrium

point.

And  we  can  in  fact  stay  arbitrary  close  to  the  equilibrium  point  by  starting  you  know

sufficiently close to the equilibrium point. So this is what you call as a stable equilibrium

point which is the vertically downward scenario. So for unstable it is pretty clear that you

could always find. If you could find an epsilon ball for which there is no delta such that if you

start inside of it then you always stay within the epsilon ball.

So if you could find even a single epsilon for which this delta is not possible to be found out

then you say that the system is unstable and to illustrate this we could consider the pendulum

again and we could look at the vertically upward position of the pendulum, so if we start

sufficiently close to it we would not be able to keep close to the equilibrium point no matter

how close we start from it.

So this is an example which illustrate the unstable behaviour of the equilibrium point. Okay

so there is another definition before we close there is another definition which I want to talk

about which is asymptotic stability.
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So here, so this just means that you are stable and you are convergent. Assume that the state

trajectories they start somewhere inside this delta ball and for all epsilon you could find a

delta such that if you start within delta then you stay within epsilon for all future time. In

addition, these trajectories as t goes to infinity would converge to the equilibrium point.

So that is the additional  condition that we have for asymptotic  stability  that as t  goes to

infinity the solution trajectories of the system would go to 0. Where 0 denotes the equilibrium

point and without loss of generality we can consider 0 to be the equilibrium point because we

could  always  do  a  change  of  variables.  Okay  so  how would  we consider  the  pendulum

situation for the scenario.

So let  us  consider  pendulum with  friction  and if  we start  and we look at  the  vertically

downward position and we start somewhere close to the equilibrium point and because there

is friction the system would continuously dissipate energy and could settle at the equilibrium

point. So this is an example of equilibrium point which is not just stable that is, it is not just

you know it stays close to the origin, but eventually it converges to the equilibrium point.

So this equilibrium point is in fact asymptotically stable. So just to be clear we can say that

stability in general does not imply convergence and convergence also does not imply stability.

Okay so we can close at this point and we will continue these definitions in the next class

where we will consider some more definitions and then talk about some concepts which will

be useful for us to design adaptive controllers, okay. Thank you.


