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Professor: We shall  talk about spectral  properties of line codes.  You may recall  we were

interested in looking at the power spectral properties of line codes which may typically like

this, line coded signal will typically look like this, consisting of positive and negative pulses

in general of arbitrary amplitudes with pulse widths equal to let say some value t sub 0 and

with pair of t sub 0 which corresponds to the data rate, the symbol rate or the pulse rate that

you are using in your digital system, digital transmission system. 

As we discussed that day, instead of computing the power spectrum of directly this pulse

train,  it  will  be more convenient  to  1st look at  the power spectrum of  the corresponding

impulse train whose strengths depend on these amplitudes or amplitudes of these pulse trains

and impulse trains and this impulse trains are related to each other. Because once we have the

power spectrum of this kind of impulse train we can use that to compute the power spectrum

of not only this kind of pulse, pulse rate but any arbitrarily kind of pulse train in the sense that

the pulse shape could be different from the rectangular one we are using here. 

All we have to do to do that is to regard this pulse train as having been obtained from passing

of this impulse train through a filter whose impulse response is pt where pt is the shape of this



pulse, right. For example you want a rectangle pulse of width t0, all you need a filter of

impulse response with, with a width of t sub 0, right. Because passing of this impulse train

through a filter of that kind will obviously produce a person of this kind, this hardly needs

any explanation. 

And in that case the power spectrum of this pulse train yt we obtained from, in terms of the

power spectrum xt by simply the well-known result sy omega here would be the sx omega

which is the power spectral how the input multiplied by p omega magnitude square, all right,

this is what we were talking about last time. So we will now be interested in obtaining the

power spectrum of this impulse train xt, all right, which occurs here periodically, it is not a

periodic impulse train but the  consecutive impulses occur every t0 seconds, capital t sub 0

seconds. 

And we have the impulse trains in general, the kth impulse has a strength of a sub k occurring

at the time instant k t0. Now how do we go about obtaining the power spectrum of such an

impulse train? Any suggestions on that? How do you go about obtaining the power spectrum

for the impulse train of this kind?

Student: Spectral integration (())(4:39). 

Professor: Any specific definite approaches?

Student: Autocorrelation, auto (())(4:49), autocorrelation and take fourier transform. 

Professor: Very good, what we have to really do is compute, you have to realise 1 st that these

amplitudes are random in nature, right. And therefore we have to obtain the autocorrelation

function of this impulse train, at least the time autocorrelation function and then what is the

relationship between power spectral  density  in autocorrelation function? They are fourier

transform pair, fourier transform pair by the virtue  (())(5:20) theorem that you must have

heard  of.  The  autocorrelation  function  and  power  spectral  density  function  are  fourier

transform pair, that is the result we shall use. 

And to do that is what we 1st need to do is to compute the autocorrelation function of this

impulse train. In order to do that we shall make another transformation from this impulse

train back to rectangular pulses. What will be like to do is, all of you are familiar with this

fact, you can regard an impulse as a limiting form of a specific kind of pulse shape that you

may choose. For example we could choose a rectangular pulse shape whose width and height



are such that the area under the curve should be equal to the strength and the limit as the

width is decreased to 0, the amplitude of that pulse will go to infinity becoming an impulse

with the strength a sub k, right. 
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So we shall do that, we shall therefore approximate to start with this impulse train once again

with the rectangular pulse train but with a different purpose now. And if the limit as the width

of those pulses is made 0, we shall obtain our impulse train back. So that is the situation

depicted here, each of these pulses is supposed approximate the impulse corresponding to it

in the impulse train sequence that we discussed a few minutes ago. The height x of k of the

kth pulse and the width epsilon k, epsilon, epsilon will be constant for all pulses are chosen

such that hk epsilon would be equal to a sub k, right. 

So that in the limits like this, epsilon is made 0, area is kept constant, by increasing the height

we will again get back our impulse train, all right. So therefore to start you will not compute

the autocorrelation function of the original impulse train, what we will like to do is compute

the autocorrelation function of this kind of a pulse train and then take the limit as epsilon

tends to 0 keeping the area constant. That is the approach we are going to follow. Is the

approach clear?

Student: Sir. 

Professor: Yes?



Student: Why go from a pulse train to an impulse train and then back to the impulse train,

why not…?

It is convenient, you will see that it is very convenient, there are certain kinds of things we

can understand nicely if we follow this approach, we will see that as we follow. Now let us

look at the autocorrelation function calculation which we do by, i will come back to this

diagram in a minute but let recalls the definition of an autocorrelation function that you are

all familiar with. Let me also, let me just denote this approximation by x hat t, right, this

member  that  xt  was  the  original  impulse  train  and  x  hat  the  t  is  approximating  it  by

rectangular pulses of relatively small amplitudes, relatively small duration epsilon. All right. 
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So you may recollect the definition of a time autocorrelation function of r x hat tao, how

should you define it, we will define it as limits as some t, capital t tends to infinity, 1 by dark t

is into integral from - t by 2 to + t by 2 x hat t into x hat t - tao dt. That is the autocorrelation

function definition. Now recollect this definition, we basically take an observation interval

which is sufficiently large, take original waveform x hat t, take its shifted version with the

delay of tao, corresponding to which you obtain, you want to obtain the correlation between

the 2 waveforms. 

You are basically obtaining correlation with the lag tao of the waveform with itself, right. So

just we take an observation of length t, compute these integrals over these limits and that take

the limit as t tends to infinity, that is the definition of time autocorrelation function. As the tao

is 0, the 2 waveforms, the undelayed and the delayed versions will perfectly coincide and you

will  get  the  peak  of  the  autocorrelation  functions.  You  will  get  the  maximum  value  of

autocorrelation  function  for  tao  equal  to  0  which  is  a  well-known  property  of  an

autocorrelation function. And also we may remember that autocorrelation function is an even

function of tao for real signals, right. 

That is whether you delay one way or the other, the value of the autocorrelation function is

the same for equal values of tao on both sides, right. So whether you delay or advance it by

tao,  you will  get the same kind of average behavior of this product,  this  integral.  Let us

consider to start with the values of delay which are small. Let us consider taos which are

small, specifically smaller than the pulse duration epsilon that we have been using. Let me

show it here. We are considering this waveform and its delayed versions and i have picked it

here only one of these pulses instead of the whole of it because it is not really required. 

So what you can say is that this dotted waveform is shifted from the original waveform,

original pulse by an amount which is equal to tao which is shown over here, very small

amount which is less than epsilon the pulse duration, right. And obviously the contribution to

the integral, what we are interested to know is what is the value of this product because that

product  is  what  is  going to  contribute to  the value of  this  integral.  This  product  will  be

contributed now by a number of such pulses, right, all of which lie in the interval between - t

by2 + t by2 which we are integrating. And where looking at the contribution of the kth pulse,

kth pulse here is, between x hat t and x hat t - tao which is depicted like this. 

Student: (())(12:58) gap between 2 pulses is greater than epsilon. 



Professor:  That  is  right  because  epsilon  the  anyway  assume  it  to  be  vanishingly  small

eventually, that is understood. Okay. So what will the value of the autocorrelation function

for  this  value  of  tao?  Well  it  depends  on  this  overlapping  area  as  we  know  and  that

overlapping  area  will  depend  on,  will  actually  be  proportional  to  epsilon  -  tao,  more

specifically it will be hk into epsilon - tao, right. And every pulse in the region which we have

chosen,  let  say  between -  t  by2 to  + t  by2 will  contribute  a  similar  value  but  the  only

difference will be the amplitude hk is different from pulse to pulse. 
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So we can say therefore for tao less than epsilon, the value of the integral, i will just call it i,

value of the integral will be equal to hk square because you are multiplying hk with hk in the

kth pulse pair situation into epsilon - tao which is the duration of the overlapping interval,

right. Or if this is confusing you can write epsilon - tao into hk square. So as not to confuse

this with the argument of hk, this is a product. And okay, this is, this is the contribution to the

integral from only the kth pulse pair. 

Really speaking i must modify this to be this equal to sigma hk square into epsilon - tao for

all those values of k, all those values of the index k which keep the corresponding to the

pulses in the interval between - t by2 + t by2, right. So we can therefore write that rx hat tao

equal  to  limit  as  t  tends  to  infinity  of  1  by  t,  i  can  replace  this  integral  now with  this

summation, right. Is that fine? Further, i note that hk square hk is ak upon epsilon because hk

was elected to be such that hk epsilon is equal to a sub k, right. 
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So let us substitute for that and we will get ak square into epsilon - tao upon epsilon square,

all right. Any doubts? Please speak out if you have any problem. We will go proceed further

then. Or further we can write r x had tao, i will define a quantity r subzero in a minute, upon

epsilon t0 into one - tao by epsilon, where let me just quickly look back it is difficult to see,

or we see like this. This epsilon square i am taking outside, so that gives you this expression 1

- tao by epsilon, actually we are taking epsilon outside because this one epsilon cancel. 

And r 0 is defined by limit t tends to infinity t0 upon t, just convince yourself that is okay, all

right. 

Student: (())(18:07) is arbitrarily chosen?

Professor: No, t0 is the, just, just for some convenience i have introduced this t0, it was not

required to be introduced, right. All that we really need to define was limits 1 by t ak square,

right.  We have deliberately done it  because it  is convenient to do so as we will  proceed

further, right. T0 is the period of the… it is the repetition period of the pulse train. It is not

exactly the repetition period, it is the time interval at which the impulses are going or the

pulses are undergoing, corresponds to the data rate, this is the interval corresponding to the

data rate, right. This expression is fine, we can proceed further then. 

Now to proceed further, the 1st thing that you would like to notice is this expression has been

obtained under the assumption that tao is positive in less than epsilon. And we have already

discussed, it is an even function of tao, autocorrelation function is an even function of tao. So

the same expression should be valid or similar expressions should be valid for negative tao,



except that this will become + or better it is more convenient to write like this, 1 - mod

epsilon by, sorry mod tao by epsilon, right. Because (())(19:45) shift on one side, r on other

side, you expect the same value as autocorrelation, right, for the same value of tao, provided

mod tao is less than epsilon. 

What will happen now as, as tao is increased? It is

Student: (())(20:09)

Professor: Good, very good, it will become 0 at what point, at tao equal to…?

Student: Epsilon. 

Professor: You have a triangular shape up to tao equal to epsilon and 0 beyond, not entirely

beyond but after sometime. 

Student: Then next one will start. 
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Professor: That is right. So we will say that this is, this is not really a complete expression,

this is for magnitude of tao greater than epsilon but less than t0 and so on. We will try to

appreciate it more and more as we go along. So is this fine? So as we just noticed as tao tends

to epsilon, r x had tao tends to 0 because of the 0 overlap between the kth pulse of x hat t and

the kth pulse of x hat t - tao. But as tao is increased further…

Student: Excuse me sir. 

Professor: Yes please?

Student: In the previous expression it will be 0 for tao greater than epsilon but for tao less

than t0 - epsilon. 

Professor: Yes, that is right. 

Student: Because right half of it will…(())(21:43)

Professor: Yes, you are absolutely right, this should be t0 - epsilon because as soon as tao

becomes t0 - epsilon and overlap between 2, 1 will be a displaced version of each other,

crossing of each other will start to take place. Very good. Now as tao is increased further, this

is what just as been pointed out, the kth pulse of the tth pulse of x hat t - tao will overlap with,

will start overlapping with k + 1th pulse of x hat t, right, very clearly as tao approaches t0,

more specifically at the point where it becomes equal to t0 - epsilon has just been pointed out,

right. 



So what will happen then? We will get another triangle, right, around tao equal to t0 with the

difference that the amplitude of this triangle would be slightly different because now it will

involve product of ak and ak +1, right. So i think all of you now appreciate this fact that r1

that will come into picture will be limit as t tends to infinity of t0 by t summation over k a sub

k into a sub k +1, right. Again we are assuming that all those terms will matter for which,

which lying between the interval -t by 2 and + t by 2 that you are considering. Similar things

will happen for tao equal to 2 t0, 3 t0 and so on, right. As you…

Student: (())(24:15) expression will also change in the…

Professor: The corresponding expression in r1, r2, etc. Will also change. 

Student: (())(24:20) 1 -…

Professor: That will stay say as so because basically you will get a triangular shape over 1,

over 2 epsilon period around each t0, around n t0, right. Because as you move along the

overlap 1st increases,  as you approach the next period the overlap 1st increases gradually,

becomes maximum and then starts to decrease. 

Student: (())(24:46) it will be tao - k t0 only, like you put the…

Professor: I am only talking about the shape. Obviously each of these triangles is centred

around n t0 whatever, tao equal to n t0, you are quite right, let me show that pictorially. The

thing that all of you recently mentioning is precisely what i also mean. That is at the centre

around dot equal to 0 we have a triangle like this of duration 2 epsilon going from - epsilon +

epsilon, amplitude which is r 0 by t0 epsilon, around t0 you have the amplitude which is r1 by

t0 and so on. Okay. This r0 by t0 epsilon if you notice, comes from this here, do not worry

about that, it is okay. 
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This way, this amplitude here, arbitrary angle. So this is the autocorrelation function of that

approximating pulse train, right. And obviously what you would like to do is get back to

autocorrelation function of the original impulse train. Let me before i do that, we must note

the generalisation of this expression would be, this will become r sub i and everything else is

same, this will be a sub k into a k +1, right. That is the value that will govern the amplitude of

the triangle located at tao equal to m t0, right. So r sub m will be governed by the summation

a sub k into a k +, a sub k + n. 

Now  to  get  back  to  the  original  situation  what  we  would  like  to  do  is  make  epsilon

vanishingly small, make epsilon smaller and smaller, keeping hk into ak constant or keeping

the area under this triangle constant, right. So what is the area of this triangle, it is twice of



this, sorry half of this into this, right. So r 0 by t0, right, that is the area, so as we make

epsilon smaller and smaller, this amplitude obviously becomes infinity, once again to get

back and impulse located at each of these pulse. The impulse trains are r0 by t0, right. 

Student: Should not we decrease epsilon keeping the condition epsilon into ak equal to hk?

Professor: No, we are now talking about what will happen to this limit,  what will be the

limiting form of this impulse, this triangular pulse train. 

Student: That is true but to get the corresponding autocorrelation function for the pulses from

where we have started by making…

Professor: No, we have obtained for that pulse train, this autocorrelation function, right. As

epsilon tends to 0 and that area is constant, we get that pulse train. We would like to see what

happens to this autocorrelation function which has an amplitude which also tends to infinity,

right. So we get a different kind of impulse train whose amplitudes are these, okay. So you

get a limiting form of this as the autocorrelation function of the limiting form of the, also an

impulse train whose autocorrelation function we really desired. 
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So as you can see this will be either very symmetrical, this is r1 by t0, this will also be r1 by

t0,  this  should be r2 by t0,  not epsilon t0,  similarly this  will  be r2 by t0 and so on.  So

mathematically we let epsilon tends to 0, this will make the width of each of these triangles

tend to 0, also the height will tend to infinity because the amplitude is r sub m by epsilon t0,

there is an epsilon in the denominator of the amplitude which will make the height of the



impulses of the triangles tend to infinity. But the area will remain finite, which is equal to r

sub m by t0 for each of these. 

And therefore in the limit as shown in here, you get r sub x now equal to1 by t0 sigma rn

delta tao - n t0, n equal to - infinity to + infinity, where we keep in mind that rn is limit t tends

to  infinity  t0  upon  t  a  sub  k  a  sub  k  +1  whole  k,  right.  So  this  is  our  result  for  the

autocorrelation function. This is what we would like to study in detail in connection with

various kinds of line codes which may be of interest to us, which will give us a better insight

about  what  kind of  spectral  properties  the various  line codes  possess  and therefore what

conclusions can we draw regarding their behavior. 
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Before doing that,  is  it  okay, to take it  away? Before doing that we should go from the

autocorrelation functions to the spectral domain and that we do simply by taking the fourier

transform of this function. I think i can do that here itself so that you can appreciate, sx

omega will be equal to… very easy, is not it? The fourier transform of an impulse function

located at m t0 which spent r sub n will be given by e to the power - j omega n omega t0, n

going from - infinity to + infinity. 
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Now we can also use the fact that r sub - n is the same as r sub n, right. And we can obtain

alternative expression which is dependent only on cosine functions, 1 by t0, i have taken out

the r0 term here from this + 2 sigma n equal to1 to infinity r sub n cosine n omega t0, right.

We can combine the positive frequencies and the negative frequencies to the cosine terms for

nonzero values of n. So this is an alternative equation for sx. This is the power spectrum of

the impulse train and if you remember, we started by saying that we can obtain the power

spectrum of a pulse train with an arbitrary pulse shape pt by passing xt through a filter with

impulse response pt. 

And let say we are now interested in that, power spectrum of a pulse train yt, pulse train yt

which uses pulse shapes, basic pulse shapes p of t. And obviously we discussed that earlier,

sy omega would be p omega square into this expression over here, sx omega and substitute

for that upon t0 r0, right, so that this general result.  Any questions? As earlier, this pulse

shape  pt  could  be  totally  arbitrary,  for  example  i  could  have,  in  fact  i  probably  have

something here. I could have a pt like that, right. 
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This is the basic pulse shape in the interval of 0 to t0 and then we get a pulse sequence like

that, need not necessarily be rectangular in shape, right. But what may seem desirable from

what we have been talking about is that pt should be limited to the interval t0, 0 to t0, right.

But as we will see later, in reality we do use pulses in data communication which may not

necessarily be limited to the data rate, basic data rate interval, right, for reasons which will

become  clear  soon  enough.  But  problem  remains,  we  shall  impose  that  condition  and

consider line codes with this property, right. Any questions we have? I will stop for a few

questions as you may have?

What we will do next is take-up various line coding schemes which when we use and see

what  kind of  spectral  properties  have and derive important  and useful  information about

them. Any questions? Okay. Let us 1st take the class of unipolar signals which we, we have

argued earlier not to be a very good thing to do, right. We will never see that from a number

of points of view that is so, we have already seen some, we look at them again but we will

start by looking at a description of a class of unipolar pulse trains. 
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And this  class of pulse trains is  typically known by the name of on-off signalling,  right.

Because when you are transmitting 1, you are transmitting a finite energy, a finite amplitude

level in a pulse which may have some arbitrary duration. It will not necessarily be equal to t0,

the pulse duration need not essentially be equal to t0, it may occupy one of the intervals. If it

occupies whole of the interval, we are one kind of condition, if it does not we have another

kind of condition but 1st basically what we are talking about is the fact that 1 is represented by

a positive amplitude, a positive, maybe negative but usually a positive amplitude and a 0 by

0. 

This positive amplitude pulse may have a duration equal to t0 or less, right. When it has a

duration equal to t0, we get a situation which is similar to nrz, in fact this is the most general

name of nonreturn to 0, right. That is if your pulse duration t0 is taken to be equal to t0,

during a 1 we are not returning to the 0 level and that is what we call  a nonreturn to 0

signalling scheme, right. If however we take t0, which is less than t0, right because we are

transmitting a pulse, this is your t0 let us say, what pulse width is less than that, even during a

1 you are at the 0 level for part of the interval, right. 

Let us call  it  return to  0 signalling unipolar  signalling scheme,  right.  This  is  the general

definition  of  nrz,  we will  discussed only special  case of  that  last  time when we discuss

bipolar schemes, right. But this is a general case of nonreturn to 0 and this is what is called

return  to  0.  We will  consider  both of  these  another  class  of  on-off signalling  first.  Now



remember we have taken for our analysis interval equal to, interval from - t by 2 to + t by 2,

right. And then of course you make t tends to infinity. 

Let us 1st try to understand what happens, what kind of properties you will like to get, we will

get for a sequence of unipolar pulses in this interval. 1st of all how many pulses you are likely

to get in this interval, if t is sufficiently large? Number of pulses in this interval that you will

see is of the order of t upon t0, right, a new pulse is coming every t0 seconds at the rate of at

the data rate. Approximately we will get t0 pulses and if t  is sufficiently large and if we

assume that ones and zeros are equally likely, that is some of the assumptions we make. 

Then  we  can  go  and  calculate  our  autocorrelation  function  of  power  spectrum.  But  the

important thing to note here is that your power spectrum depends not only on the pulse shape

but also on the specific sequence of aks that are being used to transmit via those pulse shapes.

Aks,  the  strength  of  these  pulses  also  have  a  bearing  on  the  spectrum,  remember  that

expression, in fact i forgot to point this out earlier but this is a very important fact that one

should remember. 
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The power spectrum of s sub x or sub y depends on these ri or rns and rns in turn depend on

the summation ak into ak + n. So the specific data sequence that you are transmitting is going

to have a important bearing on the power spectrum that finally results. Not only just the pulse

shape, which is just a multiplying factor, this of course has a very important role to play, the

shape of p omega but equally important is the role of these functions, ri, rns, okay. That is

why you have to consider what kind of aks we are talking about. That is why i have got a



model for aks that we shall use in our calculation of power spectrum and that is one of the

assumptions we shall make when ones and zeros are equally likely. 

Student: Why number of pulses are approximately equal to t by t0 (())(43:00). 

Professor: Well, I have got said here that t is a multiple of t0 and all those things, one can do

that but it since (())(43:10). 

Student:  When you say  ones  and zeros  are  equally  likely, that  means we tend to  set  of

particular kind of sequence strength pattern ak, ak?

Professor: No, data sequence is random yes but in general if you take, if you observe the data

sequence over a very large period of time, you are likely to see as many ones having occurred

as number of zeros, right. 

Student: Within this there may be different sequences of…

Professor: Within this you can have infinite set of sequences, right. So it is hardly imposing

any restriction, it is only talking about the fact that your source of data is balanced in ones

and zeros. 

Student:  Each  combination  would  have  a  difference  spectrum,  that  is  what  is  reflected

power…

Professor: But since we are talking of everything ak into ak + n over k, right, it is going to

become sequence is independent more or less, provided the average interval is sufficiently

large, under certain conditions. Strictly speaking what you are saying is true but under certain

assumptions like ergodicity of sequence and things like that, it will become, you know the

time averages will become equal to ensemble averages, right. 

So we are assuming that the source, we can assume that the source is ergodic in which case

even if we compute specific sequence, if the averaging interval is sufficiently large, we can

assume it to be more or less representative of the structure for any sequence. As we saw, this

assumption was satisfied. So i did not want to go into those questions but since you have

raised it, we can assume that the force is also ergodic , okay, you can replace time averages

with you can replace ensemble averages with time averages. There is a whole motivation for

taking of time autocorrelation function. 



Right,  otherwise one has to do a slightly different kind of treatment.  We can also do an

alternative treatment in which we can do a statistical averaging rather than time averaging, by

and large we will get similar results, this is more convenient so i did this. 

Student: If ones and zeros were not to occur with equal probabilities… (())(45:18) then only

this would have mattered. 

Professor: No, it does not affect the expression that we have derived, it will affect what we

are going to derive. Right, what we are going to derive from this because we went to compute

the value of rns and that computation we are going to do under that assumption, okay. It does

not affect this computation, it does not affect the result that we already derived. But it is not

going to affect for a specific case of on-off signalling, the computations that we are going to

reach, right. 
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Okay so if we assume ones and zeros equally likely, what we are saying is the value of ak is

going to be 1 for approximately half the number of pulses that we are observing in the double

t, right, which was t by t0. So it is 1 for t upon 2 t 0 pulses and equal to 0 for equal number of

pulses. Consider then, is it all right, any questions in that? Consider then r0, that is given by

limit as t tends to infinity t0 upon t summation a sub k square, right. Now what can we say

about this summation?

This in the observation interval t we are considering which is large, ak square equal to1 for

half the time, right, and zero half the time, only those pulses which are 1 will contribute to the

solution, those which are 0 will not contribute to this. So this will be equal to t0 by t, this is



going to be t by 2 t0 into 1 square, right because each has an amplitude 1. I have forgotten the

limit here because this t and this t will cancel, so it will become independent of t as far as t is

sufficiently large. 

So we will get precisely equal to half, similarly consider now r sub n. The case of r sub 0 is

okay? R0 for this kind of situation will become equal to half and we shall now consider what

is r sub n. 

Student: 0. 

Professor: No, it is not going to be 0, let us see that. This is equal to limit t tends to infinity,

yes, that is right, i am sorry, this should be ak into ak + n. And once you got ak into ak + n,

we can have this pair, consider the pair ak ak + n, and we can have the values 1 into 1, 1 into

0, 0 into 0 and 0 into 1, right. Again under the equally likely assumption that we have made,

only one 4th of these terms will really be contributing to the, assuming that t is sufficiently

large, only one 4th time you will have this situation, we get this answer to be equal to 1 by 4,

right, just like we have half over here. 

Student: T by2. One by 4. 1 by 4. 
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Professor: This is 1 into 1 when they are both 1 and that occurs one 4th of the time, so this will

become, this is going to be t0 by 4 t0, t by 4 t0, right. So the conclusion is that r 0 equal to

half, rn equal to 1 by 4 for n not equal to 0, substitute that in your expression for s x omega,

we have 1 by 4 t0 + 1 by 4 t0, now this is a complex exponential form that i have taken. I



have deliberately skipped the r equal to r0 term into 1 by 4 + 1 by 4, where i can write this,

right. Now let me give you a small exercise, if you do not know this result already, try to

prove this result. 

This is known by the name of poisson’s sum formula, it can be obtained from simple diagram

in single in signals and systems that we already have. We have a result e to the power - jn

omega t0 summation over - infinity to + infinity, can be written as 2 pie by t0, that is right,

delta omega - 2 pie n by t0. Please try to prove this result,  okay. This is one of class of

formula known by the name of poisson’s sum formulae, right. Very easy to prove, by just

looking at the fourier transform properties and we shall use that here to get sx omega equal to

1 by 4 t0, i will substitute this by this over here to give you 2 pie by 4 t0, delta omega -2 pie n

by t0. Yes, you have a question?

Student: (())(52:20) 1 by 2, rn is from - j n omega t0, so we will not get that constant term. 

Professor: This term?

Student: Yes. 

Professor: I just told you are sitting with life that must have all the ri equal but my r0 is half,

otherwise i have 1 by 4, so i am splitting this into 1 by 4 + 1 by 4, taking one of the 1 by 4 out

and writing like this, right. Any other doubts? Today we have a lot of maths but this is more

or less the final point of maths. Let us see a little, just a few more equations before we start

discussing the results. 
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Coming back to sy omega for an arbitrary pulse shape, this will become p omega square up

on 4 t0 into one +2 pie by t0 delta omega -2 pie n by t0, n going from - infinity to infinity,

where p omega is the fourier transform of pt. Now let us consider the return to 0 situation

assuming that your pulse pt has a duration equal to t0 by 2, we call it half width rectangular

pulses, okay. So your p omega is going to be, let me specify pt more precisely, we will denote

it by pie, this is just a notation, this is a notation for rectangular pulse of width t0 by 2, right,

generally we write t by now, sometimes we can also write equal 2 t upon t0. 

This is a notation for this kind of rectangular pulse. What is the fourier transform of such a

rectangular pulse?

Student: Sinc function. 

Professor: Sinc function, more specifically we will not really go into that, i assume that all of

you can verify this, all of you know this, that is this function. And we get our final result

which we shall look at in detail now which is this, right. We are just at about 11, so i think we

will have to stop here, we look at this expression again next time and try to understand the

nature of the power spectrum of the rz signal and nrz signal with respect to on-off signalling

and go on to other forms of line codes signals. 

Student: (())(56:22). 

 Professor: That is something which we will discuss separately if you do not mind. 


