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We talked about the concept of information and how it is to be measured or defined, both

from intuitive as well as engineering point of view. And we also looked into the definition of

what we call entropy of a source in terms of both the information measure as well as entropy

of the source are attributes of the source itself. And they are really defined by the message

probabilities, this source symbol probabilities associated with the source.

(Professor – student conversation starts)

Student: Sir, 0:01:40.3 the continuous distribution theorem?

Professor: As I said, for the time being, for convenience I am taking discrete sources. If we

have time we will look into continuous sources. I plan to do that, right? But for the time being

we are looking into discrete sources because it is easier to formulate these concepts in terms

of discrete sources. The basic definitions will remain the same, they will not change from

when you from discrete to continuous. The concepts will be the same but some of the details

will obviously be different.

(Professor – student conversation ends)



In any case we also looked into the concept of entropy and by taking an example of equi-

probable sources that is, a source in which the message probabilities are all equal, we could

appreciate the fact that it is possible to represent this source by an average number of bits

which  is  given  by  the  entropy  of  the  source,  average  number  of  bits  per  symbol.  I  am

representing each symbol, on an average, in fact, for equi-probable, all symbols will require

same number of bits,  right?  For equi-probable sources all  symbols will  require  the same

number of bits and that will be equal to the entropy of the source. 

And another result we discussed was that for entropy of the source to be maximum, all the

message probabilities should be 

(Professor – student conversation starts)

Student: equal

Professor: equal. So these are some of the results that we discussed last time. 

(Professor – student conversation ends)

Now we will continue on that discussion today and try to show, to start with, that even for a

general source in which the various message symbols may not be equi-probable, it is possible

to encode it in such a way 
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that the average length of the code required to represent every symbol of the code, every

symbol of the source is still equal to the entropy of the source. That is, somehow entropy is to



be largely now interpreted as a measure of what is a minimum number of bits required, or on

an average how many bits are required to represent the source digitally using binary digits,

Ok.

So to discuss that, as I said, I think we had already started on this aspect, let us consider a

source m with message symbols given by, n message symbols 
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m sub 1 to m sub n. Let us say this is associated with the probability vector p sub 1 to p sub n.

That is message symbol m 1 is associated with the probability p 1, m 2 with p 2 and m sub n

with p sub n. 
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What I want to demonstrate, that even for a source distribution of this kind, it is possible to

think of entropy as the average number of binary digits represent to, required to represent

each symbol of the source; the average value of course. The actual value will be different

from symbol to symbol, right. 

And I will try to demonstrate this through construction that is by showing a procedure, an

encoding procedure wherein this will be possible, Ok. So let us look at that. The construction

procedure that we will adopt is as follows. 

As I said, we are considering a memoryless source. This is another assumption that we are

making for the time being, alright? 
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What is a memoryless source? That is from symbol to symbol the emissions are independent,

uncorrelated. So we will consider a message sequence coming out of this source, right? Let

us say the length of this sequence; the message sequence is n, Ok. 
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So in the first, the first entry of the sequence will be one of these symbols, the next one will

also be one of these symbols but picked up randomly and independently from the previous

one and so on and so forth. 

So we will essentially have, let us say some arbitrary message sequence may be, this may be

a typical example, right? Gong up to, going up to some value whatever it may be. m sub k

where k goes from 1 to n. But the 
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total length of the sequence we are considering is N, 
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arbitrary, where N is arbitrary, N is arbitrarily large to start with, Ok. Picked up randomly

from this message because let us say these are the conse/consecutive, let us assume these are

the consecutive emissions from this source in every succeeding interval of time, whatever the

unit of time, fine? 

So let us just analyze the structure of this N-symbol message sequence that we have got to

start with, right? Let us try to analyze it for how many of these symbols are going to be m sub

1, how many of these are going to be m sub 2, and so on and so forth. What can we say about

that? Provided that N is sufficiently large, right, that is, if N tends to infinity, it is quite easy

to argue from the basic understanding of probability, definition of probability that you might

have as essentially relative frequency of occurrence of a particular event, that is how you

understand probability, relative frequency of occurrence of a event in relation to the total

number of trials, right. 

So if our total number of trials is N, that is total number of symbols I am considering is N, N

is very large, N tending to infinity, what can we say how many times the symbol m 1 will

appear in this message sequence?

(Professor – student conversation starts)

Student: p 1 

Professor: p 1 times 

Student: N



Professor: So m 1 will appear N times p 1 times. Similarly m 2 will appear N times p 2 times

and so on. 
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m sub n will appear n times p n times, 
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Ok.  And  this  fact  is  independent  of  what  particular  message  sequence  is  actually  being

considered, right? 

(Professor – student conversation ends)

This message sequence may be different from one instance to another instance, 
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right? In this case I have got this particular sequence. In another case I might start with m 1,

go to m 3, m 5 and so on and so forth, right? No matter what particular message sequence of

length N is being considered the structure, the structure of the sequence will be such that it

will have so many times, so many occurrences of m 1, N p 1 times, so many occurrences of m

2 and so many occurrences of m sub n, 
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alright. This is independent of the actual sequence being emitted by the source in a particular

situation.

So if I call this typical sequence S sub N, right, this is just a notation for the typical sequence

that you are just considering. 
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Then we can say that the probability of the typical sequence S sub N, 
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what is this going to be equal to? 

(Professor – student conversation starts)

Student: Probability of the...

Professor: Probability of occurrence of this specific typical sequence we are considering? 

Student: an independent 

Professor: Let us say, what is the probability that this specific sequence 
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would have occurred? 

Student: Sir, order of the...

Student: Order of 

Student: Multiplication of these
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Professor: Well, will order matter? Order will not really matter. What is going to really matter

is
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Student: Number of message sequences possible, 1 by N

Professor: Yeah best thing is to look at the total 

(Refer Slide Time 10:13)

number of sequences possible and then 1 by N of that is, that is one way of looking at it.

Alternatively  we  could,  we  could  just  appreciate  that  each  of  these  symbols  is  being

independently  be  emitted,  alright.  So  the  specific  sequence  that  this  has  been,  will  be

obtained will be simply 
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the product of the probability that m 2 occurs here, m 5 occurs here and so on and so forth,

right, because of independent emission of sequences. So probability of a specific sequence S

sub n is going to be p 1 to the power 

Student: N p 1

Professor:  N p 1 because m 1 will  occur  somewhere  along the line  N p 1 times,  right?

Similarly p 2 to the power N p 2 and p sub n, small n to the power N p sub n. 
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Do you all agree with this? Amitabh, some questions there? Tarun? 
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Student: Shouldn't p be equal to 1 by N because...

Professor: 1 by N? No 

Student: N 

Student: Equally probable, this p 1, p 2 

Student: Otherwise how can this whole sequence be possible? 1, equal to probabilities are

only 1 by N, isn't it?

Professor: N sequences are possible, what does that mean? 

Student: k sequences are possible.

Professor: Right, one could take that approach and one will get to the same result, right? This

is easier to appreciate, right? That is your sequence consists of a number of independently

emitted symbols, 
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right? Therefore the probability of this specific sequence will be the product of these events,

the product or probabilities of these events which is what you are writing. This is the simplest

thing to mathematically write. 

(Professor – student conversation ends)

And the next important thing to appreciate is that this probability of a typical sequence that

we have considered will  be the same for  all  typical  sequences,  will  be the same for  all

sequences for that matter because all sequences have the same precise structure in terms of m

1, m 2, m sub n, right, provided N is sufficiently large. So it is same for all typical S ns. 
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What does it mean? That this sequence of this n, n long sequences, that message sequences

that  we have  constructed  provided N is  sufficiently  long,  sufficiently  large  are  all  equi-

probable, 
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Ok. So this is the trick that I am playing. I have constructed from the original message source

which was not equi-probable, 
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a new message source which is equi-probable, right where the new message source emits not

a single symbol but a sequence of N symbols where N is very large, Ok. Is it clear? And I

have got an equi-probable source. 

(Professor – student conversation starts)



Student: And in each sequence the number of, the number of times which the m i 
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repeats is fixed.

Professor: Yes, it is fixed in terms of these probabilities, right? So I have got a new source

which is equi-probable, right? 

Student: Sir is that 0:13:58.4 fixed value, number of times...

Professor: Well if N is sufficiently large it is fixed. N p 1 times will be fixed number, right as

N tends to infinity. It will be some constant value. 

Student: That means you can still differentiate between 2 sequences.

Professor: Yes, of course. The sequences are all different, right?

Student: Probability is the same.

Professor: But they all have the same probability. And the probabilities are each equal to p,

this probability. 
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Student: The sequences are same. 
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Professor: No, the sequences have the same structure, structure in the sense that m 1 occurs

so many times 
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but where do they occur? 

Student: The permutation is not the same.
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Professor: The permutations are different. Where do the precise locations of m 1, where are

the precise locations of m 1? They will be different from sequence to sequence, right. But

they all have the same number of occurrences of m 1, same number of occurrences of m 2,

and so on and so forth. So the sequences are really different. But their probabilities are the

same.  And that  is  finally  reflected  in  the  fact  that  they  all  have the same probability  of

occurrence, Ok. 

Student: But Sir

Professor: Yes



Student:  This  is  not  going around;  first  we are finding the  number of  times  a  particular

symbol occurs from assuming the size. Then we go back to the probability, I mean. 

Professor: What is wrong with that? I do not understand your...

Student: Find the number from the entire sequence and then find the probability of indirect

sequence...

Professor: Yeah, one could do that and that would be a slightly more lengthy procedure but

what is wrong with this argument? I want; you said that there is something wrong. I would

like to understand what is wrong here? Because my argument is that you have a specific

sequence, 
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right  in  which  these  various  message  symbols  are  emitted  independently,  each  with  the

probability  as given over here.  Now if  I  want to find out the probability  of this  specific

sequence well I have to find out that m 1 occurs here and that occurs with a probability p 1, it

will also occur somewhere else with the same probability, somewhere else with the same

probability, total of N p 1 times. What is the probability of these happening? p 1 to the power

N p 1, right?

Student: Sir, p 1 is independent no, how will it form sequence? 

Professor: Sorry? 

Student: These are independent.

Professor: Yes

Student: How can they form sequence? 



Professor: Ok, I think may be something is wrong in my presentation.  Let us quickly go

through what we are doing. 

(Professor – student conversation ends)

We have to start with a message source whose dictionary is this n message symbols. Now we

are thinking of this message source emitting a sequence of symbols from its dictionary one

after another. And we are looking at N such emissions, right? That is we are not trying to

encode each emission as it is emitted but we are letting them accumulate over a length of N

symbols and then we are thinking of coding them, right? That is, the reason why I am doing

that is because I want to construct an equi-probable message source out of this non equi-

probable message source. 

This new source that I have constructed, its dictionary is all possible sequences of length N of

this kind, all possible sequences, right? What will be the value of such sequences? What will

be the number of such sequences? 

(Professor – student conversation starts)

Student: n raised to N

Professor: n to the power N, small n to the power capital N, 
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right?



Student: Then Sir, the probability of getting the sequence will be equal to 1 divided by n

raised to N. 

Professor: This is precisely it will turn out to be, right.

Student: We have considered the case of number of, the number of times each m i appears is

fixed. So in this case, this won't be valid. 

R discussing 

Student: So in each S of any random n, the number of times which m 1 appears is fixed. In

that case the probability cannot be equal to 0:18:05.8

R discussing 

Student: This is like...

Professor: Yeah, let me just... maybe this statement is not correct then. Yeah, that statement

will be true 
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if each of these were already equi-probable. I think you are right. I should not make that

statement, yeah.

Student: What sir?

Professor: That is, if each of these were equi-probable, then perhaps I could have made that

statement.

Student: Which statement? 

Professor: That is, the total number of possible kinds of sequences we can have here is small

n to the power capital N. 

Student: No, no
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Student: Capital N to the power capital N. 

Professor: How can it be capital N to the power capital N? 

Student: The N.... will be only N then...

Professor: Because, because we cannot have, we cannot have an arbitrary number of m 1 or

m 2 or m 3 in this sequence. 

Student: Sir, this small n to the power capital N would be valid when each of the symbol is

uncorrelated with the previous one.

Professor: That it is. 

Student:  But  even  otherwise  assuming  that  although  they  are  uncorrelated,  if  we take  a

0:19:16.3 the number of...

Professor: We are not assuming that.  That comes from the definition of probability. That

comes from what the relative frequency implication of probability. This is not an assumption.

Student: Sir if we are assuming that...

Professor: No, we are not assuming that, Ok. If we have N very large, Varun, please let there

not be so many parallel discussions. If there is a confusion let us try to resolve it here. If we

have  N  trials,  iIn  each  trial  we  have,  these  are  the  options  available  to  us  with  these

probabilities. This is the experiment we are conducting.

Student: Sir, the point is this. When we talk of probability we talk about some correlation,

don't we? 

Professor: That correlation is zero. The correlation from one emission to the next emission is

precisely zero. We are saying they are independent. Now this occurs with a probability p 1.



This  also  occurs  independently  what  has  occurred  here.  This  is  the  correlation  you  are

referring to? Ok

Student: Sir, especially one thing will lead to another. 

Student: No, it is Ok, sir. Two states are independent, no. 

Student: Sir these are independent and number of m 1 and m 2 are fixed. Then there will be

only one sequence. 

Professor: No

Student: Sir, how will you arrange this...?

Professor: It is clear to me that your basic fundamentals of probability are not very clear. 

Student: Sir how do we arrive at the 0:20:48.4 

Student: Sir, let us leave it Sir...Let us proceed further, Sir. 

Professor: Ok

R discussing 

Professor: Let us, I think we are going into circles without really achieving anything. So we

will skip this discussion any further. 

(Professor – student conversation ends)

In a nutshell, please think about it, and it is very easy to appreciate this fact that if your basic

fundamentals  of  probability  are  understood  that  this  fact  comes  from  the  definition  of

probability assuming that these n pickings from this source are independent of each other.

That is all. And once this structure is there, I think it is quite obvious that specific sequence, a

typical sequence will have this probability and this probability will be independent of what

typical sequence you pick up, right? These are the broad points to understand. 

Don't try to confuse yourself by looking into, in a manner which just unnecessarily confuses

you. These are the essential  facts. The facts are the emissions are independent with these

probabilities. We are considering N emissions, independent emissions. Therefore this leads to

this structure of, this frequency of occurrences of m 1 to m sub n, right? Because of that

frequency of occurrence of individual m sub is, a typical sequence will have this probability

of occurrence. This was a broad fact.

(Professor – student conversation starts)

Student: Therefore the number of sequences would be equal to 1 by p S n. 



Professor: The number of sequences would be equal to 1 by p S n, quite right. 
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Student: How?

Professor: Because they are equi-probable. You are quite right. I am going to use that fact

now.

Student: All are equally probable and exclusive.

Professor: Ok? Alright. If you still  have some doubts, let us discuss them separately later

because I have spent too much time on this, much more than I had planned to. 

(Professor – student conversation ends)

Now how many bits, what kind of, how many binary digits are required to encode this equi-

probable message source, this I know now, right? What is the value? What is the, let me

denote  by L sub n as  the number of  binary  digits  required  to  encode this  equi-probable

source. It is equal to log to the base 2 of 1 by, of this probability, right, which is P S n, 
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right? That basically comes from this interpretation that you are just mentioning that we can

have total  of  this  many sequences  of  this  length,  right,  of  this  structure  because  we are

specifying the structure, Ok.

So let us try to simplify that. Substitute for p of S n 
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as this product of these probabilities, what will I get? This is 1 by p 1 to the power N p 1, 1

by p 2 to the power N p 2 and so on. So if I take the log of that what will I get? Substitute

from this expression into this and use the properties of the logarithmic function and that will

give you n times p i log to the base 2 of 1 by p i, i going from 



(Professor – student conversation starts)

Student: 1 to n

Professor: 1 to n. 
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Is it clear?

(Professor – student conversation ends)

But what is the summation? That, by definition, is entropy of the source, Ok. So what do I

find? 
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That  to encode a sequence or symbol coming from this new equi-probable source which

consists of N original symbols, right, this new equi-probable source emits N symbols at a

time of the original source; you require so many binary digits on an average, right? Therefore

in terms of the original binary source, in terms of the original source what is the average

number, what is the average length of the code? This divided by, because this represents N

symbols of the original source, is equal to H which proves, what I wanted to show 
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that one can, even for non equi-probable message sources have procedure by which I can

represent on an average, each single emission by so many binary digits, so many bits because

this is I am writing in terms of length. 

(Professor – student conversation starts)

Student: Could you please show to the previous....
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Professor: Sure,  what is your question? L is  the length required to encode the individual

symbol of the original source. Because this, this representation is representing N symbols, a

sequence of N symbols. 

Student: N is equal to for all the symbols, is it?

Professor: What is equal for all the symbols, L or? This is an average value so then average

value is  of course not  an equal  value,  right? Average has a very specific  meaning.  I  am

assuming that you all understand what is average. 

Student: Sir?

Professor: Yes
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Student: Sir, from this, 0:26:55.0 is it sort of data compression? Is this an...



Professor: This...

Student: Are you encoding sequence into 0:27:03.4? 

Professor: It is not really, it is not like that. Yes, data compression is related to what I am

discussing,  right.  But  that  is  secondary  because  at  the  moment,  there  is  no  concept  of

compression coming into the picture. At the moment, I am asking the question, if I have a

particular  source with a particular  entropy what is  the minimum number of binary digits

required  to  represent  this  source  efficiently, right?  And the answer  is  it  is  related  to  the

entropy of the source. 

(Professor – student conversation ends)

So when you are doing a data compression or when you are doing the data representation,

you must bear this in mind, right? You will, your method of representing the source, how

good it is, will be measured by this fact. 

(Professor – student conversation starts)

Student: Sir the last...

Professor: Let me come to this point. In fact I am coming to; elaborate this point a little more.

This is the average number of bits per symbol of the original source, right? Is it obvious? 
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Average number of bits, let us say average length of the code, per symbol. 

Student: Capital L was the length of 
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the total 
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permutation or...

Professor: I had considered a group of N symbols which were being represented by so many

final encoded sequence of this length, right? So per symbol basis on an average, you require

simply H N bits per, of the original source, alright.

(Professor – student conversation ends)

Now it can be indeed shown, see what I have shown so far is that the average number of, the

average code length required to encode this message is H m, the entropy of the symbol, the

average over the symbols, the set of symbols that you are working with, right? It can further



be shown; I am not going to do that, the proof of that is rather tricky. In fact this is the

minimum value that one can hope to get. The argument we have given is only for the average

value,  right? The minimum average value that we can hope to get is indeed the value of

entropy of this source, right? And that is precisely what the source coding theorem states.

Let me just

(Professor – student conversation starts)

Student: Sir is it not obvious?

Professor: It is not obvious. Because what the...

Student: It is just the minimum...
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Professor: How do we know that it is minimum? You have to prove that there is no coding

procedure that exists which will require finally a code length less than the entropy, right, you

have to prove that. I have not proved any such thing. All I have proved is from intuitive

reasoning, that this is, I can device procedures by which I can achieve this average length,

right? But maybe there is a coding procedure which exists, which can take us below this,

right?  One has  to  explicitly  prove  or  disprove that  fact.  That  is  precisely  source  coding

theorem, or what source coding theorem does for us but we are not going into those elaborate

mathematical proofs.

(Professor – student conversation ends)



So the source coding theorem states that, to encode a source with entropy H m we need on an

average, a minimum of H m bits per symbol or per message, Ok 
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and you cannot do better than that. So in other words, we can expect your optimum source

coder to produce an average word length equal to entropy, 
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Ok. 

(Professor – student conversation starts)

Student: Sir, what makes this on an average?



Professor: On an average, because your different symbols have different probabilities. Your

different symbols therefore may be requiring different lengths for representation, right? 

Student: Average length

Professor: But the average length 

(Refer Slide Time 32:02)

is entropy, right? Average over the symbols. 

Student: The minimum average

Professor: This is minimum value of the average that you can expect.

Student: It is coming out because you are actually taking the average of number of, total

number of sequences possible and dividing by number of size.

Professor:  You see that  average is  implicit  because I  consider  equi-probable sources.  For

equi-probable the average is equal to the length of each symbol. 

Student: Average is taken; it is not arithmetic but a probabilistic average.

Professor: It is a probabilistic average over the symbols because each symbol has a different

probability,  right?  Is  it  clear?  There  also  the  average  is  being  taken,  when  I  wrote  this

expression, right, this was the average value. In fact I should write here average. 
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It so turns out that in the equi-probable case, the average and the actual length are the same,

right? So everywhere we are really dealing with average values.

(Professor – student conversation ends)

Ok, what is the implication of this? The implication is that, in order to efficiently utilize the

channel on which you are doing your transmission, you know, one of the first things you

should think of is, making sure that, you see ultimately we are going to have limits on how

fast I can put data on the channel, right? And how fast I need to put data on the channel will

depend on the kind of source emissions I  have.  How fast  the source is emitting data for

transmission on to the channel, right? 

Now if I can encode by source representation properly, if I make sure that the representation

is  as  efficient  as  theoretically  possible,  then  I  will  be  putting  on  the  minimum possible

demand  on  the  channel  in  terms  of  data  rate  requirements,  right?  That  is  the  basic

significance of source coding and in this sense, you know the kind of source coders that we

discussed, we have already discussed some source coders for information without perhaps

your knowing that they are source coders. 

No, source coders are basically devices which essentially give you digital representation of

your sources. And that is the very first thing that we started discussing in this course, namely

your p c m, your delta modulator and adaptive delta modulation and those kind of devices,



right? They are all source coders. They are doing digital representation of your signals, right?

Now you should go back and see whether those are efficient source coders or not. 
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We already discussed n fact to some extent how to make them efficient. For example we said

for analog to digital  conversion,  we could use compenders  to  make them more efficient,

right? Making use of the probabilistic structure of the, you know, values that you are going to

get out of the source. 

But even with all those modifications you will find that your conventional source coders, for

typical sources for which you will be using them will be very, very inefficient. For example if

you put that 8-ary converter to represent speech signals then you will find that you are ending

up using an average codelength out of the 8-ary converter which is much larger, much, much

larger than the entropy of the speech source, Ok

(Professor – student conversation starts)

Student: Are they being replaced?

Professor: Of course. That is a very major important thing for communication systems in

communication theories, right? 

Student: How are these implemented?

Professor: We cannot answer everything in this question in this small little hour but we will

certainly have occasion to discuss that. We have methods by which we can represent, you see

now; therefore it depends on what kind of source you are representing. 



(Professor – student conversation ends)

When you just put 8-ary converter, we do not really try to see what is the kind of signal that is

coming into the 8-ary converter. 
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Now we have to start seeing what is the kind of signal that is coming to the 8-ary converter. It

is because what we are really trying to do now is represent efficiently that source, right, rather

than just you will get straight-forward crude analog to digital conversion. 

For example if it  is a speech source, you have to understand the nature of speech signal,

understand what is its entropy and then from these two understandings device method as to

represent source, speech source by a rate as close to its entropy as possible, right? There are

all kinds of techniques for doing that and they are being used in practical systems, Ok.

For example for speech we have formant vocoders, we have L P C vocoders, and there are all

kinds of other source coders. Similarly for image, for images. The kind of compression, data

compression  techniques  that  are,  these  are  called  data  compression  techniques,  right?

Because basically we are trying to compress data over what you would do by 8-ary converter,

straight forward you can't. Ok. So we will come back to this if we have time.

Now coming back to this discussion here, we have the method by which we can achieve the

efficient source coding for discrete sources. Do you think it is a good method or a bad method



that we discussed just now? It is the best possible method? But yes in terms of achieving

efficiency it is very good. But do we have some problems with this method? That is the

question. 

(Professor – student conversation starts)

Student: Provided we know the sequence, the...

Professor: No

Student: We have to know the probabilities

Professor: Yes, the probabilities you will have to know because the source has been modeled

as the probabilistic source. So it has to be known, there is nothing, no disadvantage in that.

One can study the probabilistic structure of you source. 

Student: 0:37:49.9

Professor: No, a particular source, let us assume that a particular source has a structure. Now

is there anything wrong? Let us put it this way. Let me make the question more specific.

Suppose I have a probabilistic source in which I have N message symbols, each emitted with

those probabilities p1 to p n. 

Student: Sir, average, size of symbol is varying because....

Professor: That also is not a disadvantage. 

Student: How do you, like...

Professor: In fact we expect, like in Morse code you know, we use different symbols for

different, different codelengths for different symbols. It is in fact required. If you want to

achieve entropy, that will be required. You cannot do anything about it.

Student: But actual, during transmission...

Professor: The real problem is you are not catching on to that, the value of N that we need is

very large in this procedure, right? What does it mean? The coding delay is infinite. I have to

wait for the source to emit infinite number of symbols before I can start encoding it. It is not

practical, number 1. Number 2, it may be very annoying in real life situations. You may not,

for example if you are trying to encoder for speech, and if your encoder itself requires you to

wait for such a long time, the other guy will keep on waiting for your response after you have

spoken, right? So it is not a practical way of doing things if N turns out to be very, very large.

(Professor – student conversation ends)



Therefore we would like to think of other coding procedures, source coding procedures which

do not have to wait for such a large time but which will achieve practically the same thing in

terms  of  efficiency,  in  terms  of  representation,  efficiency  of  representation,  right.  Now

certainly we will not be able to do as well as we are able to do with this ideal procedure. The

number of bits that we end up using may be much more than the entropy of the source, the

average number of bits that you end up using. 

So the question is, what are these procedures. There are number of such procedures. These

are called compact coding procedures. We will discuss one of them which is very popular, is

called Huffman coding, 
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Ok. Are you familiar with Huffman coding?

(Professor – student conversation starts)

Student: Heard about it.

Professor: Ok, now you can find out what they are and in fact this can be shown to be an

optimum procedure for memoryless sources, 
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Ok. 

(Professor – student conversation ends)

The basic idea is we would like to encode not with N equal to infinity but with N equal to 1 
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that  is  as  each symbol is  emitted,  we are directly  encoding it  rather  than waiting  for  N

symbols to be emitted and then encoding it afterwards, right? 

And what does encoding mean? Encoding here means assigning to each symbol a specific

digital representation, a binary representation. 



(Professor – student conversation starts)

Student: Probability is a priori...
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Student: Sir otherwise how...

Professor: Yes, yes we will have to know that. We will have to know the probabilities. Even

in that model we had to know the probabilities, right? Because unless we know the source,

unless we know the statistical probabilities of source, we cannot possibly...

Student: For large number of N symbols, we can find the probability. In that case we can find

out probability, 

(Refer Slide Time 41:17)

we do not need to...



Professor: No, but that procedure is not about finding the probabilities. That procedure is,

given the probabilities are unequal, how to reduce..., right? 

Student: There was confusion like, he was saying in...

Student: In this case we can find out probabilities. If we connect N number of symbols...

Professor: Probability you will have to find. You can study that, after all you are going to look

at your source very seriously if you want to use these optimal procedures. You would have

offline, independently studied your source very thoroughly and have a model for that source,

right?  Once you have  a  model  for  that  source,  the  question is  how do I  use that  model

efficiently. That is the limited question we are looking at. 

We are not looking at the first question of how to model that source. 

Student: We have modeled that source already.

Professor: Assume that you have modeled the source and we have this model available to us.

Any other question?

Student: Sir, when the model is available, why do we have to wait for N, means that thing...

Professor:  We have to wait  for N because of the fact  we wanted to convert  a non equi-

probable message source to an equi-probable message source so that we could get efficient

coding, Oh, oh I think I have probably made a mess of this lecture, then. I do not know. 

(Professor – student conversation ends)

You see. I do not know of any coding procedure 
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based on, so far when I was discussing this, I had not told you any coding procedure by

which one could actually hope to achieve a symbol representation for each of these symbols

which requires on an average, a length equal to H m, right? So I said I will tell you one

procedure  by which I  could do so.  How? By converting  this  non equi-probable  message

source to an equi-probable message source in which I will consider a message sequence of

length N, Ok for which I already know that this can be done. 

(Professor – student conversation starts)

Student: 0:43:14.5

Professor: I repeated that many times. This is the point I wanted to emphasis at that time.

Student: That was just to calculate the...

Professor: That was to demonstrate that it is possible to 

Student: Convert into equi-probable

Professor: To achieve this value of representation, that is average number of symbols, average

binary digits per symbol equal to entropy. To get to that result I went through that argument.

Student: Sir could you repeat what you did you said?
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Professor: The argument was that I want to represent this non equi-probable source by an

equi-probable source such that all the probabilities are same, right, for which the result is

known to me and I wanted to use that known result to evolve a coding procedure of this

source, Ok. That is the objective of what we did earlier. I hope it is clear now. Ok

(Professor – student conversation ends)



Alright,  it  does  not  matter. And now I  am discussing another  procedure  which  does  not

require you to wait up to infinity, fine, which requires you to, which can do the coding for

you  as  each  symbol  is  being  emitted.  But  we  cannot  hope  to  get  the  same  kind  of

performance as  that  procedure gives  us.  Performance in  terms of representation  vis-a-vis

entropy, right, average length being equal to entropy. We will expect the average length here

to be

(Professor – student conversation starts)

Student: More than

Professor: More than the entropy, right. Let us see how much more it is with such coding

procedures, Ok. 

And I will illustrate this procedure as well as how good it is by taking a specific example, Ok.

I think it is best to illustrate this coding procedure by an example. So I will take an illustrative

example and that example is like this. I think I will start 
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with an independent sheet. 

Student: But Sir, this is the optimum 0:45:13.5 we saw already then this will...

Professor: For equi-probable sources, there is hardly any problem. Because 
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any mapping is  going to come, Ok. For equi-probable sources we do not have to  worry

anything, we do not have to do anything special, Ok.

(Professor – student conversation ends)

Let us say I have a source. Just I am taking this as an arbitrary example, in which the source

has 6 possible symbols, dictionary of 6 symbols, 
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Ok. And let us say these symbols are associated with corresponding probabilities which I am

going to list, I am already listing them in the decreasing order of their probabilities. Let us

say this has the probability of point 3, this has a probability of point 2 5, point 1 5, point 1 2,

point 1 0 and point 0 8, 
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alright.

I have a message source with 6 possible symbols with these corresponding probabilities. I

have arranged these various symbols, message outputs in the order of decreasing probability

of appearance, Ok. So this is my original source. This is the model for my source. These are

the messages 
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which it emits, which it can emit in any unit interval with these probabilities, right? Now

what I do is the coding procedure proceeds like this. 



I construct a new equivalent source S 1 with only 5 messages by doing the following, by

clubbing two of the lower, lowest most messages into a single message, single equivalent

message. So I am constructing a new message source in which the dictionary is comprised of

these 4 and the fifth one is the union of these two messages that is either m 5 or m 6. I am

counting that as a single message, right? 

Alright  and  then  I  look  at  this  5  message  source  and again  put  the  probabilities  in  the

decreasing  order.  This  new  message,  since  they  are  independently  emitted,  what  is  the

probability of this new message value?

(Professor – student conversation starts)

Student: point 1 8

Professor:  Point  1  8  because  it  is  the  union  of  these  two  events  and  each  of  them  is

independent, not really independent I should use mutually exclusive. 

Student: Mutually exclusive

Professor: Right. 

(Professor – student conversation ends)

So this will be point 3 0. Then point 2 5 and here we will write point 1 8, point 1 5 and point

1 2. So these two together have been clubbed into a single message and that message has

appeared here in this. And I repeat this procedure. 
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Again I take the lowest two symbols, club them into a single symbol and construct a new

message source which will become point 2 7, so it will come here, point 2 5, point 1 8, is that

right? Fine? 
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And I keep on doing this. 

Now I will get point 4 3 which will be the largest, then point 2 7 and then point 2 5, correct? 

(Professor – student conversation starts)

Student: Point 3, point 2 7. 

Professor: Oh, point 3, point 2 7, 
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fine and this where I 
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stop. I stop when I am left with only 2 possible emissions, right? What do you think I have

hoped, what did I hope to achieve by doing this? 

(Professor – student conversation ends)

I, basically the objective was to finally obtain a source of only 2 messages with as equal

probabilities as possible, Ok. That was the basic idea, and this procedure helps me to achieve

that objective, Ok. And if these are as equal as possible, it will be reasonable now to do a

coding procedure as if you are doing, you are dealing with equi-probable sources, right? I

assign arbitrarily a code zero to this, and a code 1 to this, or other way round, it does not

really matter, right? 

And now I proceed backwards. I trace the path backwards. I have to now distinguish between

the two 
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messages that comprise this message. This message is actually comprised of the union of

these 2 messages which eventually I have to distinguish between, right? So I represent this

with 

(Professor – student conversation starts)

Student: Zero

Professor: A zero zero and this with a zero 1, and this of course remains 1. 

(Refer Slide Time 51:04)

Because I do not have to do any distinction here.

(Professor – student conversation ends)



But when I go one step backwards, I have to now distinguish between these 2 symbols. So I

write here a 1 zero, and a 1 1. And this becomes 
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zero zero and this is zero 1, 
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Ok. Keep on doing that. This will be zero zero, this will be 1 zero right, point 2 5, 
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point 1 8 is 1 1, 
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and this has got to be again distinguished between these 2 symbols, so I write here zero 1

zero and zero 1 1, 
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Ok. Fine, go to the last step. You get zero zero here, 1 zero here, this was zero 1 zero, this was

zero 1 1, and this will become, yes 1 1 zero and 1 1 1. 
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And this is your final mapping by Huffman coding. 

m 1 will be represented by a sequence, a binary representation of zero zero, m 2 with 1 zero,

m 3 with zero 1 zero, m 4 with zero 1 1 and so on, right? 

(Professor – student conversation starts)

Student: Sir this is the problem I was saying, in a signal, 
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let us say, signal of N symbols. How will we decide that it is in fact...?

Student: All three bits 

Student: Encoded...

Professor: No, there we are not. We are not; we are not doing encoding on a single symbol

basis. 
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We are encoding on N symbol basis. 

(Professor – student conversation ends)

We have to distinguish  between one sequence of N symbols  and another  sequence of  N

symbols, and other sequences of N symbols, so each unique sequence of N symbols will have



a  unique  representation,  binary  representation.  That  is  all.  So  I  will  know  the  specific

sequence that will be represented by it.

(Professor – student conversation starts)

Student: How do we know that zero 1 zero, is a zero followed by 1 zero...

Professor: Ok, that is a separate question but has this question been answered? Tarun? 

Student: Yes

Professor: Have you understood what I am saying, trying to say? In that procedure, I am

mapping this whole sequence by a corresponding binary sequence and I will also have to

decode also in the same way. I have to wait for the whole sequence to be received and then

decode the whole sequence. It cannot be decoded on a symbol-by-symbol basis. One has to

wait for the infinite sequence to be encoded, this infinite sequence to be transmitted, received

and then you have to decode that as a whole sequence together, not on a symbol-by-symbol

basis. 

But in this case, I can do on a symbol-by-symbol basis. I can look at, you know, 2 bits and

say that this is m 1 or say this is m 5. 

Student: Sir that is what my question is. How do you decide whether to look at 0:54:20.7?

Professor: Oh, was that your question?

Student: Yes Sir

Professor: I thought you were referring to the previous procedure. 

Student: Here like when we talk...

Professor: Ok. Then yours and Varun's question was the same, Ok. 

Student: I am saying that if it is zero 1 zero, how do we know that it is zero...

Professor: Ok, fine, fine. That question has a different answer. The answer to that question is

it can be shown that that the Huffman coding procedure is, is what is called a comma free

code. Right 
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that is one does not require a marker between code symbols. See to do that, one way would

be to send a marker in between that, right? So a specific symbol which says that Ok, one

codeword is over and next codeword is starting. But that will be inefficient because you are

again using a marker space. It can be shown that given a particular received sequence, if there

is no error, Huffman code can be uniquely decoded, Ok.

(Professor – student conversation ends)

That is, there is no other way of allocating sequence of bits to the original message sequence

other than a unique way, fine. That is, Ok, I think the best thing is to construct a simple

example and see that you cannot indeed cause any other allocation except the right allocation,

right? I would like you to do that as an exercise. It is a very simple exercise. In any case our

time is up now. But before I finish, let me make a simple comment on the efficiency of this

code,  how  good  this  coding  procedure  is.  For  this  specific  situation,  suppose  I  was  to

compare it with entropy, entropy you can calculate easily, given the probabilities? If you do

that, I will just give you the value. You can verify it. It is 2 point 4 1 8 or something, bits per

symbol 
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(Professor – student conversation starts)

Student: This is the entropy? 

Professor: This is the entropy corresponding to these probabilities. You can also compute the

average length. How? 

Student: 0:56:22.3 

Professor: This will be 2 into point 3, 2 into, plus 2 into point 2 5 plus 3 into point 1 5 plus 3

into point 1 2 plus 3 into point 1 plus 3 into point 0 8. This is the average length for the final

code that we have achieved. And that turns out to be 2 point 4 5, right.

Student: Greater than...

Professor: Obviously it has to be greater.

Student: But it is very close

Professor: But it is very close, right. In fact one can define what is called as code efficiency

as H m by average length. That is very, very good, that is nearly point 9 7 6 or something. I

will start from this point next time, right? I hoped to do this plus much more but thanks to our

confusion in between we could not do that.

(Professor – student conversation ends)


