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Information theory, but before we come to that, I would like to motivate why we need to

study  the  information  theory  to  understand  better  the  basic  principles  of  the  digital

communication. To do that let me first summarize what we have done so far in a nutshell, in

terms  of  a  digital  communication  over  a  noisy  channel,  right?  Suppose  if  we  were  to

summarize our knowledge in a nutshell, then what you have learnt is something like this. 

First you have learnt that communication can never be error-free, 
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right? As, when we are talking about digital communication, transmission of symbols or bits,

in the 0:01:50.6 due to noise and other distortions and at the moment we are only concerning

ourselves with noise, there is going to be, there are going to be errors. So that is the first

lesson from our 
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discussion so far, Ok. There is always 
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a  certain  error  probability  associated  with  whatever  modulation  demodulation  scheme or

whatever coding scheme you might employ, right? 

We can  reduce  this  error  probability  that  is  the  second  thing  we  have  learnt,  that  error

probability can be reduced but cannot be made zero. It can be made zero only asymptotically.

e can be reduced 
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but if you want to really reduce it to zero, that is make the communication really error-free,

then you can, you will have to take recourse to one of the two things. That is, increase your

signal to noise ratio and you will 
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require this increase to go to infinity if you want the error probability to go to zero, 
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right? 

Because if you look at any expression for the error probability that we have derived, whether

it is for binary or M-ary system, whether it is for coherent or a non-coherent systems, you

will see that asymptotically each of these expressions become zero as E b by N zero is made

to go to infinity. Because asymptotically all of them are of this kind. 
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Asymptotically if you look at any of these expressions, whether it is in terms of Q function or

any other kind of function, asymptotically you will see that you can approximate it as, e to

the power some constant, minus constant, some constant times e b by N zero, right? 

Now this implies that you have to either increase the signal power, this E b by, to increase E b

by N zero, again there are 2 ways, right? You can increase your signal power, transmitted

signal power. 
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Or  alternatively  by  increasing  your  interval  of  1  bit  or  one  symbol,  increasing  the  bit

duration, or in other words decreasing the data rate, transmission of rate of data, or decreasing

rate, rate of transmission. 
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Is that obvious from this expression?

Because E b is what? It is the energy per symbol or energy per bit actually, right? If you want

to increase this to infinity, there are two ways. Either you increase the signal power to infinity

because energy per bit is proportional to power times the duration of each bit, right? So either

you  increase  the  average  power,  pump  in  more  and  more  of  power  as  you  can  do,  or

alternatively you reduce your data rate. In fact if you wanted to be infinity with the finite

amount of signal power, the data rate has to be reduced to trivial value of zero, right? 

So therefore it seems that there is no hope of reducing error rate to a level of zero errors

eventually in the technical sense of the world 0:05:57.0,  right? Either you go for infinite

power or go for trivially low data rates. Now this was the classical view of communication

theories  till,  let  us  say, a  0:06:12.6  particular  gentleman  came into  picture  and that  was

before, I think in the year 1948. When Claude E. Shannon came to the picture and he changed

the view of communication theories 
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regarding this perception that you cannot achieve error-free communication in a non-trivial

way that is either without increasing signal power to infinity or reducing the data rate to zero

in the presence of noise. 

What he said, of course we will have occasion to learn about his theory a little more in detail

as  we  go  now,  but  essentially  the  revolutionary  thinking  that  he  brought  about  was

concerning the fact that in the presence of noise, the noise is not the ultimate limiting factor.

The noise is a limiting factor but it is not an ultimate limiting factor for reducing the data rate

or it is not a factor which affects, which requires you to put infinite power to get zero error

probability, right. What in fact he said was if there is really a fundamental limit on the error,

on  the  data  rate,  suppose  I  do  not  want  rate  of  transmission  of  data  by  f  zero,  so  his

contention was 
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that there is a fundamental limit on f sub zero, 
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the data  rate  at  which one can carry out transmission over a noisy channel,  let  us say a

channel with a white Gaussian noise. 

Fundamental limit in the sense that if you restrict your transmission of information at a rate

less than this, less than a specific value which he called C, 
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or which he called the channel capacity. So for a given channel he defined an attribute of the

channel which he called the channel capacity and the result that he propagated was, as long as

you keep your rate of information transmission to be less than this number which he called

the channel capacity, it  was possible  to achieve error-free communication of information,

right?

And this was a very 
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revolutionary  result  and it  sounded to  be something  against  common sense.  Because  for

whatever  we have developed so far and the theories  I  have told you are well-understood

theories.  They  are  even  modern  theories,  right?  And  there  is  nothing  wrong  with  these



theories  that  we  are  talking  so  far.  But  their  error  probability  becomes  zero  only

exponentially, asymptotically as signal to noise ratio is increased and therefore signal power

is increased, or data rate is decreased. 

So on the one hand there is nothing wrong with those theories. On the other hand, there is this

result.  There  seems  to  be  something  wrong somewhere,  right.  There  is  actually  nothing

wrong, because the emphasis is on this word, transmission of information, Ok. What he said,

and this is what is to be understood really, this result is not for transmission per se, error free

transmission  per  se  but  error  free  transmission  of  information  in  whatever  you  are

transmitting. So the information content of the message can be made to reach the other side

without any error provided our information rate, mind you, this is also a limit on, not the data

rate but the information rate is less than the so-called channel capacity. 

So basically every channel now has an additional attribute by which you can characterize it,

that is the rate at which it can support transmission of information. So we have brought in an

extra dimension here, a dimension that we have not talked about so far. Intuitively we all

know  that  when  we  are  talking  about  communication,  basically  we  are  talking  about

communication of information. And that aspect is deservedly being emphasized here. That

our interest is not in communication per se but in communication of information

(Professor – student conversation starts)

Student: F naught is information rate 

Professor: That is right. 

Student: What do you exactly mean by data rate? 

Professor: I am coming to these discussions. 

(Professor – student conversation ends) 
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Ok, so basically to take up kind of questions that some of you have immediately put forward

as to what is the difference between information rate and data rate and things like that, before

we can even take up the answers to these questions, even more important is to be able to

define what we really mean by this so-called abstract notion of information, right? How can

we make it more precise?

So  Shannon's  contribution  lay  in  giving  a  very  precise  mathematical  formulation  of

information and then based on that mathematical formulism, coming up to result of this kind,

right. This was his major contribution. So let us try to understand what we really precisely

meant by information. How we can define it or model it so that we can work with it in a more

precise way. And that is what information theory is all about. Starting with an understanding

of what is meant by information in a given message, how much information a message is

conveying and then working with this notion to derive the characterization of communication

channels, Ok.

So this is what we will take up for discussion. So let us come to this question of how to

define precisely what is meant by information. 



(Refer Slide Time: 12:51)

Now there are two ways of looking at this question. One is what I call an intuitive way and

the other what we can call an engineering viewpoint, 
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an intuitive viewpoint and an engineering viewpoint. Let us take the intuitive viewpoint first. 

As far as intuitive viewpoint is concerned the information content of the message can be

linked  to  the  element  of  surprise  associated  with  the  message,  right?  Element  of  new

information that you are getting out of it, right? Basically element of surprise. For example

let us say if you make statements of the following kind, that every day we have this class at

10 o'clock or every whatever, Monday, Tuesday and Friday. You already know about it, there

is nothing surprising about it. It does not convey you any new information except perhaps on

the first day of the timetable when you did not know when the class is going to be. 



Or if I tell you that let us say, Bangladesh has invaded India, let us say, right? That will be

some element of surprise because you don't expect such an event. Or even for that matter,

India  has  invaded  Bangladesh  or  whatever  Pakistan  or  whatever.  Although  that  is  more

surprising and therefore there is some information content in it, it is not as much as the other

way around. 

Therefore the intuitive viewpoint looks upon information as something connected with an

element  of  surprise  with  the  message,  right?  If  there  is  surprise  value  in  the  message  it

conveys  more  information.  If  there  is  no  surprise  value  in  the  message  it  conveys  less

information, right? That is intuitive way of looking at it.

In other words, it is linked with the probability of the occurrence of the message, right? If it is

something  that  is  not  surprising  means  it  is  highly  probable  and  therefore  conveys  less

information. On the other hand, something that is, has a very small probability of occurrence,

if it occurs, when it occurs, it conveys a much larger amount of information. If someone tells

you that this is happening then you feel that you are getting a lot more information than

otherwise. 

Like for example in stock exchanges, you can talk in the same way. A particular share is

known to do well and it does well, no problem. But if on the other hand, suddenly some

unknown shares go up without the scam, then of course it is a different matter, and then you

could take a clue that something is happening in the market which one should look into, Ok.

So this is the clue here, linked with element of surprise. 
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Now let us make it more precise. What we would like to see f o is that if you want to develop

a  mathematical  model  of  information,  call  it  I,  it  should  be  such  that,  it  should,  the

information  content  is  practically  zero  if  it  is,  if  you  are  talking  of  an  event  which  is

associated with the large probability, right as p goes to 1. 
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Similarly information content should be very large, let us say going up to infinity as p goes to

zero.
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So first we have appreciated that there is perhaps a link between information and probability

of occurrence of event and the kind of relation you are looking for is associated with these

properties. So if you are thinking of mapping of probability to information which has these

properties that would be a suitable candidate for, a model for defining information. And one

such model that emerges from these properties is that I is proportional to log of 1 by p, right?

That is, as p tends to 1, this becomes, this tends to zero and p tends to zero, this also tends to

infinity, 
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Ok. Now this...

(Professor – student conversation starts)



Student: Log of p 0:17:34.7

Professor: Then you can make it minus log of p, which is of course this, 
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right. Think about it, why it should be minus and not plus. So this is, from the intuitive point

of view, if you proceed this is what we get, this kind of relationship. If on the other hand, you

take  the engineering  viewpoint,  an engineer's  viewpoint,  suppose you are an Information

engineer whose job was to help people pass messages containing information from one place

to another. How would you like to look at information? 

(Professor – student conversation ends)

You would probably link it up with how much time is required to convey a particular piece of

information so that if a guy takes too much time to convey his information you could charge

him  more  or  if  somebody  can  do  it  quickly  you  could  charge  him  less.  Somehow  the

engineering  viewpoint  could be based on the amount  of  time it  takes  to convey a given

amount of information, right, makes sense? Because then I can directly, from engineer's point

of view I have a way of calculating how much to charge him, right. And the services that I am

providing to him for letting him convey this information, right? 

If he uses the channel for more time, it must be that he is trying to convey more information.

If he is using the channel for less time, it should imply that he is conveying less amount of

information, right?



So let us see, if you base the thing on this, this is very satisfying from even some of the

earlier examples that you might think of. For example you are all familiar with Morse code,

right? 
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I am sure some of you are probably radio amateurs and even otherwise you are familiar with

Morse code. What kind of code it is? It is full of dots and dashes and if you look at the

mapping from the English alphabet to this code, you will see some definite features in this

mapping. 

(Professor – student conversation starts)

Student: Greater the alphabets the lesser 

Professor: That is right. Alphabets which are associated with, let us say, very large probability

of occurrence like e, that means they are going to occur very frequently in a given text, so

you do not want to spend too much time on conveying that, right? You will convey it with a

smaller amount of coded message so that it takes less amount of time. The overall text takes

less amount of time to transmit. Similarly a message which occurs rather infrequently, we do

not mind if it is coded with larger length of the code, right? Because it is going to happen so

infrequently that it is not going to affect your average message length very much, right?

(Professor – student conversation ends)

So in Morse code, more frequent alphabets associated with smaller code representations or

smaller code lengths and vice versa, right? So this is intuitively appealing to an engineer.



Because he wants to minimize the amount of time that he takes to convey a given amount of

information, right. And he thinks this is a good way of doing things. So somehow information

is now linked with the time it takes to transmit a message. 
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Now to motivate the definition of information from this point of view, let  us take a very

simple example. Let us say we have, I have to convey a binary message. Morse code is a

much more complicated example. I will take a very simple example where one is conveying

what is called a binary message, 
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as a kind of you are dealing with in digital communication, where in every, let us say interval,

some unit interval, you are conveying one of two possible messages, say m 1 or m sub 2. 

I would have said both are equally likely. They have each a probability of 
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half of occurrence, right? Of course in real life we could represent the message 
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1 with, m sub 1 as 0 and m sub 2 as 1, right? That is 0:22:27.7 representation. You can call

them m 1, m 2 or 0 and 1, it does not really matter, alright. So intuitively now, you know how

many symbols in one unit of time, in whatever the unit of time I have selected, I require to

transmit  this  information one bit  because depending on what occurs,  m 1 or m 2,  I  will

transmit this or that but basically one bit of information or one, if a unit of information is bit

in the usual sense the amount of time required will be one unit time in which we will be

convey one bit of information, 
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right?

Suppose I now make into a four level message just for the sake of argument. Let us say now

my messages are m sub 1, m sub 2, m sub 3, m sub 4, right, four valid message that is, in any,

in any unit of time, one of these four possible messages are to occur, right? So then what is

the number of bits required to represent it? Two bits, right. So if the time, amount of time

required 
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to transmit 1 bit is fixed, then amount of time required to transfer information contained in

this message will be twice as much, right? So if I say 2 bits, essentially I am also implying

that 2 units of time are required.  



Of course, this is again based on the assumption that each of the four messages are equi-

probable, 
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and so on. We can increase these arguments so forth, but in any case, suppose I would like to

generalize this to n messages and let us say n is the power of 2 for simplicity, like we took 2,

4 and 8, what can we say about the amount of time that will be required, log 2 n bits, right? 
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Log n to the base 2. Or since it requires so many bits and time to transmit every bit is fixed, it

requires so many units of time. 
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So now we have seen what kind of relationship comes out. And what is the value of n in

terms of, let us say, probability? If you take 4-level message what will be, what is p in that

case, probability of occurrence of each message, 1 by 4 or 1 by n, right? In general it is 1 by

n. 
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So I can substitute n by 1 by p. 
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So once again what I see is the amount of time that would be needed will somehow depend

on 
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log 2, or 1og of 1 by p to the base 2. Is it Ok? 

So no matter what view you take, whether you take the intuitive viewpoint or the engineering

viewpoint you find that it seems a reasonable thing to associate a measure of information as

some kind of a relation between this and basic probability of occurrence of an event and one

could choose an arbitrary constant of proportionality here and one usually chooses that to be

unity and defines this as information as measured in terms of bits per message symbol, or per

unit, right? 
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That is the unit that you use based on this example we have just taken. 

For example for a message which has four symbols associated with it,  right m 1 to m 4,

occurrence of any one of this symbols conveys 2 bits of information in the sense that we will

require 2 units of time to transmit it, right? So that is a unit that we will associate with it, bits

per message symbol, sometimes it is briefly written as bits per symbol, right or sometimes

even per symbol is omitted and we just write bits. I think the per symbol is a very important

thing which you should not forget. Even if you do not write it, it should be there in your

mind, right. 

It is the amount of information as a result of occurrence of a specific event. That event is

occurrence of a particular symbol from a dictionary or s m s. So is the motivation for this

definition  understood by everybody? Is  there some question on which you would like to

discuss? 

Also you could associate  another  interpretation  to  this  but  I  will  come back to  that  in  a

minute. So I is equal to log 2 1 by p and 
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we could say that, this we can also interpret as the minimum number of binary digits required

to encode the message. This interpretation is based on the same example 
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that we had just discussed. I have 2 message code, I have 2 message source, a source which

emits one of two possible messages. How many bits are required, how many, how many

information bits are required to encode it? 
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(Professor – student conversation starts)

Student: 1 

Professor: 1 bit.  For a 4 message source, all messages equi-probable we require 2 bits; 8

message source, 3 bits and so on. 

(Professor – student conversation ends)

So in that sense, it seems to be also having this interpretation. Minimum number of binary

digits required to encode the message, right? Encode in the sense, represent it by several

number of bits, appropriate number of bits. 

Now the next  related concept  is  that  of entropy. Not the entropy that  you learnt  in  your

thermodynamics, but entropy as we define in information theory. Now this is attribute of a

source of information, right? It is an attribution of an information source. 



(Refer Slide Time: 30:08)

And precisely it is defined as average information associated with any message from that

source, average,  on an average.  So it  is really speaking, very briefly average information

emitted by the source per message, or per message symbol to be more precise. 
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I am deliberately taking our source here to be of the discrete kind, right, because it is very

convenient to do the discussion for that situation, a source of information to be of a discrete

kind, or the kind which we deal with in digital communication, right? But of course a real

source of information could also be a continuous valued source of information. Like all of us

have continued value source of information because our speech signal which we emit is a

continuous signal. 



One can also develop a corresponding theory for continuous time and if we have time, we

will spend some time on that. But even working purely with discrete sources, one does not

lose  that  much  of  generality  because  we  can  always  go  from a  continuous  source  to  a

corresponding discrete source representation through let us say analog to digital conversion

or whatever, right? So, in other words, our discussion will be with respect to discrete sources.

So well, so entropy is an attribute of an information source and is really defined as average

information per message symbol associated with that source. More precisely, let me make a

notion very precise. Let me define, or let me consider what we call a memoryless source. 
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Memoryless source is characterized by first, a set of symbols; 
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let us say n symbols which I am designating as m sub 1, m sub 2, m sub n.  So it comprises of

n symbols which it may emit in any given unit of time. And it is called memoryless provided

that successive symbols that are emitted by it,  in successive units of time are statistically

independent, right?  They do not depend on what was emitted in the previous interval or will

be emitted in the next interval, right?

So memoryless implies statistical independence of, that is, 
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they do not remember at all what was emitted before or what will be emitted later. Let us

associate  with each of these,  I  am going to generalize things a little  bit  now. So far our

discussion has been based on the fact that all of them are equi-probable message symbols.

That is the source can emit any of these messages or any of these symbols with the same

probability. 

But now let me associate any arbitrary probability 
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p 1, p sub 2, p sub n with each of these symbols. So these are the symbols, these are the

probabilities. 
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Now what will be the information associated with emission of the message m sub 1? 

(Professor – student conversation starts)

Student: 1 by 

Professor: Log of 1 by p 1. Similarly information associated with the occurrence of m 2 will

be log of 1 by p 2 and so on, right. 

(Professor – student conversation ends)



So you can compute the information as each symbol is emitted. Now if I ask the question

what is the average amount of information associated with this source or which this source

emits on an average, then obviously it would be the weighted sum of all these information

values  we individually  compute and the weight  should be nothing but  the  corresponding

probabilities, right.

So information content of m sub i, let us call this I sub i and that is equal to log 1 by p sub i,
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and therefore average information per message symbol is simply p sub i log of 1 by p 
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sub i. Or summed over i minus p sub i log 2 p i, 
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Ok. The units will be bits because, or bits per symbol, any questions?

So the average information that is associated with the source again therefore depends on the

probabilities tend to distribution of the various messages in the symbol, and this is called the

entropy of the source, right? This is precisely what you call  the entropy of the source or

source entropy, 

(Refer Slide Time: 36:08)

Ok.  So  entropy  is  an  attribute  not  of  a  communication  channel  but  of  the  source  of

information, remember that, right. It tells us how much information a source is emitting every

time it emits a symbol, right? Basically that is what it tells us. 



Now suppose I ask a very simple question, since this entropy depends on the probability

distribution  of various messages in the,  in the dictionary of the source,  for what kind of

message source, discrete message source of this kind, or what distribution will this entropy be

maximum? Answer should be obvious. Entropy will be maximized if all the probabilities are

equal, right. One can prove this formally. I think I will leave that as an exercise for you to

yourself, alright? So the message, I will just write down the result here, I would like you to

read the proof yourself or perhaps try to prove it yourself. 

Message probability distribution that yields largest or maximum entropy is the equi-probable

distribution, that is 

(Refer Slide Time: 37:45)

p sub i, they all, for all values of i should be equal to 1 by n because the total number of

symbols or messages in that source, associated with that source is assumed to be n for all i. If

I substitute that in the expression 
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for entropy incidentally entropy is usually denoted by this notation H and sometimes you

write an argument m saying that it is associated with that particular message source m, right?

This is just a notation.

So this expression will then become minus 1 by m, right, i going from 1 to n. 
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Since this is independent of i this will become simply, right, n times this value 
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or simply log 2 n, 
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Ok which is interesting because you are familiar with this log 2 n. In the context of equi-

probable  message  source  you could  interpret  log  2  n  as  the  number  of  bits  that  will  be

required to encode that kind of source, right? 

Therefore in general, entropy has, sorry, earlier we discussed in terms of a single symbol,

now  we  are  discussing  in  terms  of  source  on  an  average  irrespective  of  its  probability

distribution. We could interpret entropy as some kind of a measure of minimum number of

digits required to encode the messages or the symbols of the source. 



(Professor – student conversation starts)

Student: Sir why 0:39:57.7 minimum average number? 

Professor: Minimum average number.

Student: Minimum average

Professor: Minimum average to encode the source. 
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But I will come, return to that, that does not, this minimum aspect of this is something that I

am just telling you from an intuitive discussion here. There is a proper 0:40:25.0 information

theory really emphasizes the minimum part of it. We will talk about that later. Any questions

so far? So what have we, so let us stop for a minute and take stock of what we have discussed

so far. 

(Professor – student conversation ends)

We have discussed the following interpretations of information and entropy. We have looked

at 
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engineering point of view of information, engineering definition of information that is the

information content of the message is the minimum number of digits required to encode the

source, to encode the message sorry, not the source. And H m is the minimum number of bits,

average number of bits required to encode the source for each of these messages, right? 

So we looked at the engineering point of view which is this. It is linked with the number of

bits that are 
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required  to  represent  a  message,  right?  Then  the  intuitive  picture  that  we  have  seen  is

associated with the surprise element, right? 
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In which case H m can be interpreted  as  the average amount  of surprise or the average

amount  of  uncertainty  associated  with  the  messages  per  message  of  the  source,  right?

Average uncertainty. So these are terms you will come across when you are reading about

these things. Average uncertainty associated with the message for a source. 

(Professor – student conversation starts)

Student: What do we mean by 
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0:42:24.1, why do we say this is average message?

Professor: This is just reinterpretation of our earlier  discussion of measure of information

where we associated information content with element of surprise, element of uncertainty,



right?  The  more  uncertain  the  event,  the  more  message  it  conveys,  right,  the  more

information it conveys, right? 

Student: According to the definitions?

Professor: That is all. We had earlier associated information with uncertainty. Now we are

just extending the definition to entropy. That was based on event based interpretation. Now it,

or single message bit based interpretation, now we are talking about an average over a source

for every message that is associated with a source. That is why it is average uncertainty per

message for a source. 

(Professor – student conversation ends)

And thirdly we had a precise, we can re-affirm, we can reinterpret it just as a mathematical

relationship between the probability distribution of the source and like this. So these are 3

different ways of looking at entropy. Here we look upon at it as 
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the minimum number of bits required, minimum number of binary digits required to encode

messages of the source, on an average. Here we will call it as average uncertainty associated

with each message of the source.  Here we just regard it  as a pure mathematical  relation,

right? These are 3 different ways of looking at it. Ok.

Next thing we would like to look at is the more precise relationship between what we call,

source coding and entropy. We have seen now that entropy is a very important attribute of a



source, information source right and therefore it brings us to subject of source encoding. So

in 
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information theories therefore, representation of a source is just about as important as finding

a good means for communicating it over the channel. Particularly with regard to the new

result that we just discussed which was given by Shannon. 

Because what Shannon said was for it to be possible for us to convey information without

errors, what is really important is we keep the information rate below some number for a

given channel, right? Therefore it is now important that we make sure that we do not use

information rate far in excess of what is permitted. It should be in fact less than that. And

therefore  it  is  very  important  that  for  any  information  source  that  you might  have,  you

represent the information coming out of that source efficiently. 

It has a particular amount of information coming in but what engineer has to do is, find out

what that amount of information is and to represent it, and code it by binary digits, by using

an average number of binary digits no more than the average amount of information coming

out  of  the  source.  If  you  do  not  do  that,  you  might  be  doing  a  very  inefficient  job  of

information  representation,  right?  Efficient  information  representation  therefore  is  a  very

important concern of an information theorist, or therefore a communication theorist and that

is precisely what we study under the title of source coding, or source encoding, Ok? 



That is representing information coming out of a source with as few bits of encoder, encoding

as possible. And we know what is the minimum number that is required. We have intuitively

discussed a few times that somehow it is linked with the entropy of the source. Now we have

shown that for equi-probable sources we would like to discuss that for other sources, that

entropy is the minimum number of bits required to encode a source on an average. 
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What I like to show is that if I take an arbitrary message source, let us say m 1, m 2 to m sub

n, that is your m, message source m 
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is a vector comprised of an arbitrary set of symbols with corresponding arbitrary probabilities

associated with them. 
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What I would like to do is show whether it is possible to encode such a message with a

number of, using binary digits such that average number of binary digits required is H m. Is it

obvious  to  you  that  it  can  be  done,  a  scheme  of  some  kind  coming  out  in  your  mind

immediately? 

(Professor – student conversation starts)

Student: 0:48:35.7

Professor: Suppose I ask, this is the interpretation you are giving to entropy. That is it is the

minimum  number  of  bits  required  to  encode  the  message  on  the  average,  for  various

messages and source.  In other words somehow implied by this  is the fact that  there is  a

particular procedure of mapping m 1 to some encoded sequence of binary bits, m 2 to a

corresponding coded sequence and so on such that the average length of that set of sequences

associated  with  various  messages  is  no  more  than  H  m,  right?  Does  such  a  practical

procedure occur to you? 

(Professor – student conversation ends)

In fact the first question that bothers us is 0:49:30.1, does such representation exist at all?

Because  this  is  what  is  meant  by  efficient  representation  of  information.  Efficient

representation means if this is our feeling that no more than this number of bits are required

in the average, then I must have at least 1 possible procedure by which I can carry out a

mapping from these message symbols to binary digits such that average length is no more

than H m. For equi-probable sources it is very easy to do that, isn't it? 



(Professor – student conversation starts)

Student: 0:50:04.1

Professor: No, the procedure. Because I can associate, suppose I have a 4 symbol source, I

have 4 messages. So I choose, I put any arbitrary set of 2 bits with any of these messages. So

the coding procedure is  simple. But for an arbitrary source, it is not obvious how we could

do that, right? 

So first I would like to discuss that and then come to a very important result called the source

coding theorem.

Student: Can we assume there be equal probability for all the symbols? 

Professor: Yeah we want to remove that assumption now. We want to be able to say that kind

of result. I will give a procedure which is general enough for any probability distribution, for

any kind of message source in which the probabilities may not be equal, right? We will take

that up next time, thank you.

(Professor – student conversation ends)


