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We  will  continue  with  our  discussion  on  the  performance  analysis  of  M-ary  digital

modulations based on constellations in two dimensions, right? Examples of which being Q A

M, Q P S K, in general M-ary phase shift keying and many others, a variety of constellations.

And you might remember 
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till now we have discussed the fact that in this kind of situation, the receiver uses a single

matched filter whose output at the sampling instant, assuming that your outputs are really

Nyquist  pulse  shapes,  at  the  sampling  instance  these  are  essentially  Gaussian  random

variables, this us u is are Gaussian random variables whose mean depends on the specific

point that was transmitted as and whose variance depends on the, basically the characteristics

of the noise output of the matched filter basically, it is a complex variable, so is this. In the

two dimensions, both these points are in a complex plane and this is a random variable whose

components are uncorrelated and since they are Gaussian, they are also independent, right?

Each component having a variance of N zero by 2.

So this is the model with which we will work and this model corresponds to this kind of a

picture 
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for the conditional density functions of the x and y components are the real and imaginary

parts of the matched filter output given the particular symbol was transmitted. Even then the

particular symbol c sub i was transmitted, Ok. 

So suppose c sub i corresponding to this point, then the mean of u sub l 
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is this point 
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A sub l, alright and the density function that is described as this mean is essentially a normal

density function in two dimensions, along x and y, real and imaginary right and therefore this

kind of a density function, two dimensional Gaussian density function, right? Similarly for

any other point in the constellation. 

This is the picture depicting the case for 8-ary p s k, 8-phase phase shift keying, right? This is

where we stopped yesterday. Do you have any questions about this model which is relevant

here? Is it clear it is a relevant model to work with for analysis of 8-ary p s k or in general,

two dimensional constellations, analysis of two dimensional constellations? Ok. So basically



what do we have to look at? We have to define of course the error event in this case also and

as you can well see, essentially how do you, how does the receiver decide which point is the

most  likely  transmitted  point  by  looking  at  whether  there  received  u  sub  l  lies  in  the

corresponding decision or not.

Suppose you transmitted this  and the corresponding decision,  let  say is  this.  Then if  you

received, u sub l lies within this sector, you are considering the case of 8-phase p s k here,

then we will of course make the correct decision or else if it lies in some other sector that

describes the error event for this; we have actually transmitted this but we have received u

sub l, this value because of the noise 
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here, gets modified 
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vectorally and takes this vector a sub l and modifies it to some other vector u sub l in some

other sector, right? 

So this is your, let us say the true vector, the noise, take it here, bring it here and now you

wrongly 
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decide that this is a point that was transmitted, right and so on. It could, depending on how

the  noise  two  components  behaved;  you  could  have  gone  into  any  sector  with  different

probabilities. So if a picture is clear, then the analysis is fairly simple and straight-forward to

carry out. So how do we define our p sub e?



Let me, before writing the expression, I have plotted in more detail here the 
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density function around a specific point. Let us say this was a point that was transmitted,

right? This is the same 8-ary p s k situation; density function is shown over here. It is a two

dimensional density function and therefore it is a three dimensional picture here. And these

two shaded lines define the decision region around this point, right for the 8-ary p s k case.

And as you can see the density function has space over outside the sector, right and it is the

spilling over outside the sector which gives a finite probability to the error events, right?

This tent-like shape does not span or its base 
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is not restricted only to its sector. It extends outside the sector, right and the volume under

this density function which lies outside the correct decision region sector contributes to the

error probability. This is what you must really appreciate in this picture, right. And therefore

you must really evaluate what is the volume under the tails of this distribution function such

that it lies; I have shown two planes here, either above this plane or to the left of this plane. I

have shown 2 planes. Let me call this plane B, 
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this plane A, sorry this line B divides the plane into two half parts to the left of this line.

That is why I have shown this shaded region to the right of this line, right? This is the top

half, and that is the bottom half. So the volume of the, volume of the density function which

lies outside this sector can be thought of, as consisting of two sets of such tails, one integrate

out, integrate the density function to the right of this plane, right and the other to the left of

this plane A and then if you add these 2 results you will get the total volume except the fact

that the volume under this sector, this wedge like sector will be computed twice and added.

We should have only done it once. 

(Professor – student conversation starts)

 Student: Can you repeat it?

Professor: What we are interested in doing is in computing the volume of the tail of this

density function which lies to the right of this line B on this part of the plane, right, because

that is outside your decision region. Similarly to the left of this plane which also lies outside



the domain of your decision region, right. You could have directly added this two results and

obtained your total error probability except for the fact that the volume of the same density

function under this sector will be added, will be computed twice because it will be computed

as part of this plane, this half plane as well as part of this half plane, right? Where as you

should have really computed it only once. 

(Professor – student conversation ends)

So strictly speaking you could compute the volume on this right half plane, on this half plane,

the volume on this half plane and subtract out the volume under this once. That would give

you the exact result,  right? However if again, we will assume that signal to noise ratio is

sufficiently high so that the error that is encountered by counting this, this probability twice is

negligible. As you can see, from typical density function that I have plotted here, the volume,

you know the tail is really going to 0:10:11.8 out quite, quite a small value by the time it

reaches this kind of a sector which is quite away from the basic point, right?

So the are/area, volume under this sector is going to be anyway negligibly small. So whether

you count it once or you count it twice is not going to make a terrible amount of difference to

your result. And therefore we will take recourse again to the union bound argument and say

we can think of the error event as the, as the event corresponding to the received point lying

to the right of this  line or to the left  of this  line without worrying about this  area being

counted twice. Ok

So this is a basic approach for performance analysis for this kind of situation. Is it clear? Now

we will proceed with the analysis? So your p sub b is the integral of the 2 D density function

over the portion of a complex plane which does not include the decision region. That is the

basic definition, 
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right? This is how we define error probability in this case. That is completely integral of that

two dimensional  p  d f.  On that  portion  of  the  complex plane  which  does  not  lie  in  the

decision region. And one can evaluate this either numerically in the way that I just suggested

or we can use that union bound argument that we just went through. 

So obtain a union bound. Fortunately this, in this particular case, this bound is quite tight,

right? 
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It is reasonably a very good approximation to the actual value because we expect the volume

over  that  wedge to  be very, very small.  So counting  it  once or  twice  hardly  makes any

difference. But strictly speaking, p sub e will be equal to the integral over the half plane B, 
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remember this is the half plane 
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B that is to the right of this line B. That is the half plane B of the x y plane. 

The x y plane has been divided into 2 halves by this line B, right. So this is equal to the

integral over the half plane B plus the integral to the left of half plane A, 
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Ok minus integral over the wedge which is 
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the region of intersection of these two planes on the other side, right. It is this which we are

going to ignore in the region of union bound, right? So this is the true value 
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of p sub e and the union bound basically will ignore the third term because it is rather small.

Is it Ok? 

I have just re-explained what I had explained earlier purely in words. Ok, so the important

thing then is to try to evaluate the volume of, 
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under this, volume under this density function in one of the half planes because in the other

half plane it would be similar, right? We must find out how to evaluate this volume in one of

these two half planes that we have been talking about. Is there any doubt there? Speak out if

there is some problem there? We can discuss it. Ok?



So the question is how do you compute this volume under this half plane, any of these two

half planes? And for that I have a following result. Suppose we have a density function, what

is the density function we are concerned with? It is a density function in two variables x and

y, Gaussian density function. Both the variables x and y have a variance sigma square so it

will be simply, oh there will be no square root, right? Because the product of the, so please

remove this square root, it is 1 by 2 pi sigma square exponential, now where is this density

function  located,  what  is  its  mean  value?  Let  us  say  some  mean  value  x  bar  y  bar

corresponding to a sub l, right? 

Let us call this some mean value x bar y bar. So x minus x bar whole square plus, both of

them have identical variance, plus y minus y bar whole square, this whole thing divided by 2

sigma square. Mind you this is not 
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the most general form of the Gaussian density function. I hope you are familiar with the most

general form. What is the most general form? There is also a cross correlation term between x

and y, right?

In general if x and y are not independent, then the joint Gaussian density function of two

random variables involves the third term which requires you to use the correlation 
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coefficient rho 1 2 between x and y which in our case happens to be 

(Professor – student conversation starts)

 Student: Zero

Professor: Zero. 

(Professor – student conversation ends)

So that term does not come into the picture. This is from your basic knowledge of Gaussian

density functions which I have not done in this course but which I am presuming you all

know, Ok. But in any case we do not need it here, right? All we need is this form of the

density function, joint density function of two independent Gaussian random variables which

is simply obtained by the product of the corresponding individual Gaussian density functions,

right, which is very simple.

Whereas if they are not independent, they are not in product. We cannot factor them like this.

These can be factored out, the p x and the p y can be factored out here, right? But when they

are not independent, they cannot be factored out. You know that from your basic knowledge

of probability theory. Anyway that was a digression. 

So this is a kind of density function we have to work with and we are interested in computing

an expression which is going to be a double integration over x and y, right of this density

function where 
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the region of integration, I have not specified the limits here at the moment, the region of

integration is going to be one of the half planes that we discussed, either A or B, 
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Ok?

Now, then this will be of course twice, right? 

(Professor – student conversation starts)

 Student: We are having symmetry here 0:18:17.0

Professor:  Yeah, we are taking a  symmetric  situation here and the result  is,  suppose this

distance, 
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distance of this  mean value, mean point to this  half  plane is d by 2, Ok. So if I draw a

perpendicular from here to this, suppose this mean value is, as a distance of d by 2 from the

corresponding half plane outside which you want to compute, on which the, you know, the

particular half plane on which you want to compute the volume, then value of this P sub e is

2,  2  considering  the  fact  that  you  are  doing  2  such  computations,  Q  function  with  an

argument of d by 
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2 sigma squared, Ok. That is your result.

This factor 2 comes because you have to compute over 

 Student: Twice



Professor: two different half planes, identical situations but on any one half plane, the value

of any of these integrals is this one. 

Let us see how. 

(Professor – student conversation ends)

Have you understood the result? 
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We are going to see how to obtain this but have you understood the statement of the result?

Because that is the starting point. To understand how this comes, let us look at this picture

here. 
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This is the same picture as this, this is really the same picture, there is not much difference

except  that  I  have not  plotted  it,  three dimensional  probability  density  function  here  but

shown the density function in the form of contours, contours of constant value, right? So I

have just shown it like that.

So that,  these  are  the  contours  or  the  density  functions  p  x  y, this  is  your  mean  points

corresponding to x bar y bar. And therefore your d by 2 corresponds to this. Actually this

picture is not very nicely drawn; this y should have been drawn parallel to this up here, Ok.

Suppose I want to evaluate the volume on the density function which lies in this half plane,

Ok? This is the half plane we are considering. 
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Actually,  strictly  speaking,  this  entire  this,  entire  half  plane.  This  circle  was  just  a

convenience to indicate the points of transmission, right?

The  signal  points  were  lying  on  this  circle;  right  but  actually  speaking  as  far  as  error

probability calculation is concerned you have to calculate the volume under this function over

this  entire  half  plane,  right?  What  I  have  done  is  change  the  coordinate  system  for

representation of the e x y. The earlier x y was some arbitrary x y 



(Refer Slide Time: 21:32)

here. I am going to first of all shift it here. I am taking the coordinate system to this point so

that the mean becomes zero  zero both along x as well as along, so x bar and y bar both

become 
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zero each.

So first I am doing is just the translation of the 
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coordinate system to this point that makes the mean value zero, the second thing is to rotate

the coordinate system so that, 
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let us say the y axis becomes parallel to the half plane over which you want to compute the

integral, Ok. So obviously the x axis will be perpendicular to this and then this value will be

simply 
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d by 2. 

(Professor – student conversation starts)

 Student: Rotation is such that

Professor: Rotation is such that the y axis becomes parallel to the line which defines the half

plane over which you want to compute the integral, alright? So the line B here is the line

which defines this half plane. y axis is made parallel to this. Actually I should have called

them y prime and x prime to avoid any confusion with the previous x and y. But I hope it

does not cause any confusion. Then I will continue to work with x and y, right?

(Professor – student conversation ends)

Because these contours are circular, it is obvious that if I rewrite the density functions in

terms of these new coordinates, they will continue to be of the same form, Ok. Now this was

pictorially quite obvious. Whether I write these circles along this coordinate system or along

this coordinate system, equations of these circles are going to remain the same, x squared

plus y square is equal to some constant, right? And therefore the form of this density function

does not change as a result of this coordinate transformation because it is only a rotation. 

And because, to start with this contour is not circular. If any of these conditions is not there,

then we would have had trouble, right? Actually this is equivalent to saying, just to, for those

who have some better idea of probability theory or who can appreciate this kind of statement



better; see to start with we have x and y, right? By coordinate transformation, what are you

doing? You are generating some x prime y prime 

(Professor – student conversation starts)

 Student: Through shifting

Professor: Through a matrix transformation, right. 

What we are doing is this matrix is such that it only rotates 
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the  axis.  So  what  kind  of  matrices  you  are  familiar  with?  Are  you  familiar  with  some

matrix...?

 Student: 0:24:19.2

Professor: The unitary matrices, the so-called unitary matrices are the ones which yes, cos

theta sin theta is an example of that kind of unitary matrix. 

(Professor – student conversation ends)
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Any unitary matrix such that U U conjugate, suppose this is U, I assume U U transpose is

equal to identity matrix, 

(Refer Slide Time: 24:35)

is unitary matrix. That carries out a rotation of the coordinates. Now it can be shown, it is

very easy for you to verify that if x and y are independent to start with, and if you transform it

by means of a unitary operation like that then x prime y prime will  also be independent,

right? So that is what you want to know. They will be described by the same Gaussian density

function.

If the, unitary matrix has two, unitary transformation has two properties. The independence of

these random variables will be maintained. And their norms will be maintained. The norm of



the vector x y will be maintained. That is the length of the vector will not change. Because it

will only do the coordinate transformation. 

(Professor – student conversation starts)

 Student: Sir, 0:25:21.4 the length of the vector

Professor: Ok, don't go into it. I did not, this was just a, you know, to give you an alternative

argument to basically say that, to imply the fact that x prime y prime will be continued to be

governed by the same density function that we started with. x prime y prime will continue to

be  independent  Gaussian  random variables  with each having a  variance  of  sigma square

because we have only done a coordinate rotation. 

 Student: That is obvious from the symmetry of the whole thing.

Professor: That is obvious from the symmetry of the circular contours that we have. Because

whether you take, whether you take sigma along this direction or along this 
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direction or along this direction, its value is same because these are circular contours. If they

are elliptical, for example, that will be a situation when rho 1 2 is not zero or when both of

them have different variances, right, then, then there will be problem. 

But in this case, they are circular; no matter how you rotate them the variances along each

axis will continue to be the same. And they will continue to be independent. 

 Student: We have shifted also...

Professor: Oh, the shifting only makes the mean zero. After shifting I am doing a coordinate

rotation, right. So I have really gone into 2 coordinate transformations. Number 1, shifting,



translation, after translation I am doing, translation does not do anything except making the

mean zero. The second coordinate transformation we are doing is rotation. The rotation does

not alter the variances along either axis, the new axis or the fact that they are independent,

because it is a pure rotation, Ok.

(Professor – student conversation ends)

This is something if you are not very comfortable with, I will just suggest you pick up any

elementary text on probability theory or even the text that you have with you, Lathi's book.

These  things  are  dealt  with  in  the  review  chapter  in  that  book.  So  just  make  yourself

comfortable. Or you come to me, I will explain to you in more detail because I do not want to

spend too much time on this, alright. So if you have understood this, it is very easy to write

down 
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now the expression we are looking for. Your p sub b is twice, 
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 I want to write the integral 
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over p x y to the right of this plane where y axis is like that and x axis is like that. Is it

obvious? What the integral will be?

The x limits will be from d by 2 to infinity and the y limits will be from minus infinity to

infinity, right? The entire y axis span is being taken but the x axis span is going from d by 2

to infinity. That is all. That is all you need to appreciate. So you have this value, right? x goes

from d by 2 to infinity, y goes from 
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minus infinity to plus infinity, Ok? Now the rest is all very easy. As far as y is concerned, I

can factor out the y portion of the density function, 1 by root 2 pi sigma e to the power minus

y square by two sigma, two sigma square and integrate it separately and the value will be 1.

So I totally ignore that. 

From what I have left is 1 by root 2 pi sigma e to the power and that is precisely 
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what you define the Q function, right? Your Q function is defined precisely in terms of this

integral except that this is d by 2. So it is d by 2, by definition this is... 
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this is how this result comes, very easy to appreciate it.  Just study it a little more for the

special case that we are really discussing, namely the 8-ary p s k, 8 phase p s k, phase shift

keying, Ok.

For the 8 phase p s k, any questions before I proceed further? Is this clear how we obtained

the result? Mind you this is slightly less than the most correct result. 

(Professor – student conversation starts)

 Student: Greater

Professor: less than, why, Ok it is greater. What I meant was it is not really the exact result,

right. It is the union bound, yes. The actual probability will be less than this quantity. So this

value is slightly greater than the actual probability. But it is for, for reasonable signal to noise

ratio, it is very, very accurate. 
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It is good enough to; you might as well take it as exact result, Ok. So the bound is quite tight

for large values of e b by N zero. So let us now specialize this result for the case of 

(Refer Slide Time: 30:51)

8 phase p s k.

It is obvious that the overall symbol error probability will be the same as, that is average error

probability will be the same as the error probability associated with any particular symbol

because we are assuming all symbols to be equally like, right, equally likely. What matters

here is the equal prob/probability, a priori probability of all the symbols.

 Student: Also the energy is equal.

Professor: Energy is obviously equal, right. 



(Professor – student conversation ends)

But even if energies are equal, if various symbols occur with different probabilities then we

cannot say this, right. The average error probability is the same as error probability associated

with  any specific  symbol  given that  any specific  signal,  symbol  was transmitted,  at  any

specific signal point. That is if I compute the error probability 
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given at a specific signal point was transmitted and if all the specific signal points have the

same a priori probability, then the overall average probability will be, probability of error will

also be the same as this. Because it will be really 1 by 8 times this plus1 by 8 times this again

and so on, if all these are same. So final results is the same. 

Ok, now your p s k is described by a constellation in which the points are distributed on a

circle. Let us say the circle is of radius A. So let A be the radius of the constellation which

essentially says that your 
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received signal has an amplitude A right? What will be d by 2 in this case? Because d by 2 is

a crucial parameter here as you see. 

(Professor – student conversation starts)

 Student: A sin pi by 8, Sir.

Professor: That is right. It is quite obvious so I don't have to explain this at all. 

(Professor – student conversation ends)

It is A sin pi 
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by 8, right? Because your sector around each point is described by an angle of pi by 8 in

either direction. Total angle is pi by 4, 2 pi by 8 is pi by 4, and pi by 8 is the half angle which

turns out to be point 3 8 2 7 A. 
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Also from your matched filter theory that we have already discussed the output A by sigma

square is given in terms of the pulse energy and the noise pass spectral density function, 2 E p

by N zero, 
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right? So you are union bound, then if you substitute these results, so from there you can get

d by 2 sigma as point 3 8 2 7 A by sigma, right and A by sigma you substitute from here, and

you will get this result.



2 Q right, it is d by 2 sigma, now A by sigma is square root of this, so I will put this also into

the square root sign and write, I will ignore this 2 7, just point 3 8 square 2 E sub b by N sub

zero, 
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Ok. And this is going to be really, nearly equal. One does not even have to write less than

equal to provided this is sufficiently large. The last point to consider is, this is what? What

kind  of  probability  is  this?  Symbol  error  probability,  right?  In  practice  like  we  did  it

yesterday, we will be interested also in bit error probability. So how do we go from symbol

error probability to bit error probability in this case?

(Professor – student conversation starts)

 Student: 1 by 0:35:10.7

Professor:  No,  in  this  case  one  has  to  keep  in  mind  that  in  the  two dimensional  signal

constellation one will 
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usually do a Gray coding so that a single symbol error causes at most a single bit error in the,

at least in the most common situation where a symbol is mistaken for its adjacent symbol. Of

course if it is mistaken for some other symbol then we cannot guarantee. 

 Student: The probability of 0:35:40.3, is not for just adjacent symbols. 

Professor: That is true, you are quite right. The probability you have calculated corresponds

to the particular symbol mistaken for any other symbol, right? 

(Professor – student conversation ends)

But the major component of this probability comes from contribution of that event, right?

Because the values, the contribution by other events, probabilities of other events would be

very, very small. It is obvious because, you know, for a Gaussian density function that area

under the density function keeps going smaller and smaller as you keep going away from the

mean value. So the major portion comes from there. So one does not really worry too much

about that second order of error that is taken, that is effected by this computation. 

So if you keep that in mind, if you are doing the Gray coding, let us consider the 8-ary case.

Suppose you mistake a particular symbol for its adjacent symbol, how many bits will go in

error? 

(Professor – student conversation starts)

 Student: 1



Professor:  1  out  of  3.  So  for  every  3  bits,  you  will  encounter  only  single  bit  error  so

essentially it implies that your bit error probability will be this probability divided by 3, right?

Also what will be your E sub p then?

 Student: 0:37:12.4

 Student: Sir, I will 0:37:13.1only one...

Professor: Because we have gone from one symbol to its adjacent symbol, right,the Gray

coding ensures 
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that only one of the bits will go in error, right

 Student: Ok

Professor: That means, out of every 3 bits, we are making one bit wrong on an average, right?

So every time an error  occurs,  such error  occurs,  we are assuming that  only single,  this

implies only single bit error will occur. Of course assumption involved is that errors of the

kind in which you go to a non-adjacent symbol have very, very small probability. Therefore

this error probability is largely comprised of errors of going from a symbol to its adjacent

symbol. That is the assumption implied here. So there is a further approximation implied here

to be sure, right but that approximation is also

 Student: Upper bound

Professor: Yeah

 Student: It does not remain upper bound.

 Student: It is still upper bound. It is still...
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Professor: It is difficult to say that but since it is a second order effect, one does not worry

about it too much. It is really a second order effect. In fact a very, very accurate. 

 Student: Probability is more than the accurate.

Professor: You are quite right. It does not remain the upper bound because you are neglecting

certain probabilities.

 Student: Sir but we are including all that in this. 
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Professor: The two will be compensating for each other but we do not know how. So we will

not enter into that. You are quite right.

(Professor – student conversation ends)



Ok, I also, before I wrote this expression I also wanted to substitute for E sub p in terms of E

sub b. E sub p will be 3 times E sub b because 
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bit energy is defined as the pulse energy divided by log 2 m, which in this case is 3. So if you

do all that substitution, you will get this as point 8 8 E sub b upon N zero. 
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What was the result for binary p s k? Do you remember? That is a very standard result, you

should remember it almost. There is no factor of 2 by 3; it is Q of 2 E b by N zero, right? 

This factor of 2 by 3 is not very significant. More important is what is inside the argument Q,

right? Because this will not affect orders of magnitude where as that will affect the order of

magnitude of the probability. Because this is inside that Q function. So roughly if you ignore



this factor of 2 by 3 in one case and 1 in the other case, which one is better, binary p s k or 8-

phase p s k? 

(Professor – student conversation starts)

 Student: 8-phase p s k. 

Professor: No, for a given bit energy this argument is smaller. That means the area under the

tail will be larger, right? This is monotonically decreasing function of its argument. The larger

the argument, the smaller the value of this probability, right? Because you are testing the area

under the tail of the density function, Gaussian density function. The further you go away

from the mean, the smaller the value of the area under the tail, Ok? In fact, roughly it is about

3 point 6 d B poorer than binary p s k. That is to get the same error probability, 8-phase p s k

will require 3 point 6 d B more signal to noise ratio as compared to the corresponding value

required for the binary phase shift keying. 

(Professor – student conversation ends)

And this  is  quite  understandable,  isn't  it?  Because  the  noise  now has  an  easy  access  to

adjacent symbols as compared with binary p s k for the same bit energy, right? As you can

quite see from this picture, which picture? Any of the one which we discussed. For example

this one, right? 
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Because for the same, Ok, this is pulse M-ary, your pulse are becoming closer and closer

together, and for the same noise variance, there is a larger probability that one symbol will be



mistaken for another symbol. This is therefore quite unlike the M-ary orthogonal signals that

we discussed yesterday. 

For the M-ary orthogonal signals, as we increase the value 
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of m, and if your signal to noise ratio is above certain basic threshold value which is very

low, you are guaranteed to  get better  and better  performance with increasing  value of m

where as in the case of two dimensional signal constellations, as you increase the value of m,

your performance is going to degrade further and further, right? 

So there is a trade-off involved. To choose between orthogonal signals or two dimensional

signals. The behavior is, the reason for the behavior is quite understandable because in the, in

one case you are allowing the dimensionality to explode for the orthogonal case, there is no

lim/limit,  as  more  and  more  signals  are  being  added,  your  signal  space  dimension  is

increasing, right, more and more? In the other case signal space dimension remains fixed at 2

and it is within that dimension that you have to distribute the various signals, right? 

So in one case, we are working with strictly the bandwidth itself namely the two dimensional

set. Whereas in the other case we have no bandwidth limitation, right? Because as we are

increasing the value of m, we are expanding bandwidth, right which is...we have discussed

the  situations,  power  limited  situation  and bandwidth  situation,  the  orthogonal  signal  set

corresponds to 



(Professor – student conversation starts)

 Student: Power

Professor:  power limited  situation  not  bandwidth  limited  situation;  we are  assuming  that

bandwidth  is  infinite,  right?  So  therefore  they  have  the  potential  of  improving  your

performance as you increase the value of m. whereas s in this case the application domain is

different. Your bandwidth is a major constraint and this is what you can, you can trade off let

us say, signaling rate with performance. 

(Professor – student conversation ends)

As you go for higher value of m, you can improve on your signaling rate, right? Because

every symbol can contain multiple bits depending on what is the number of points in the

constellation  but  the  price  you  are  going  to  pay  for  is  in  terms  of  performance,  error

probability,  bit  error  probability.  It  is  going  to  become  poorer  and  poorer  in  bit  error

probability, right?

So this was major thing coming out of this which was intuitively quite obvious. How much

time is there? Ok, there is very little time. 
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There is a further, one little result which I would just like to mention here, and the rest of it, a

few  paragraphs  or  so  I  would  like  you  to  read  yourself,  I  will  give  you  the  handouts

tomorrow. 



This is a result for more general constellation, because this result that we derived for really

pertained to 
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8-ary  p s  k.  It  was  derived in  the  context  of  8-ary p s  k.  But  we could  have a  general

constellation, not in the form of points distributed in a circle. It could be Q A M, on a grid or

concentric circles or any such arbitrary shape.

Now the general result is motivated from this special result 
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very easily. Let me first quote the general result. The general result is p sub e is given by N

sub m into Q evaluated at d min upon 2 sigma, 
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Ok where N sub m is the average number of nearest neighbors 
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in the constellation.

(Professor – student conversation starts)

 Student: d min this and 

Professor: d min of course, you already know, it is the minimum distance between any two

points on the constellation, right? d min is the minimum distance between any two points on

the signal constellation. Alright let us see how this, this result can be motivated directly from

what we have obtained here. 

(Professor – student conversation ends)



So in this case, in the 8-ary p s k case, 
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what was the number of nearest neighbors? 2, one on either side. That defined 2 half planes

for which you had to evaluate the volume under the density function, volume under the tail of

the density function, right? Now if you have more than two nearest neighbors, we will have

to, your decision region will get modified accordingly and your tails definition will also get

modified accordingly, right?

Suppose you have a grid there will be 4 planes which will be bounding the, which will be

defining the decision region, so the area which will contribute to the error probability will

have to be calculated on 4 different kind of half planes, right? Each of them will give you the

similar kind of result because of the symmetry of the situation, right and therefore the result

does make a lot of intuitive sense. We are not really going to the exact derivation of this but

intuitively it is reasonable to expect this kind of a behavior.

(Professor – student conversation starts)

 Student: Sir

Professor: Yes

 Student: In a more general case the 0:47:40.0 of signal would be the same.

Professor: Therefore this is 

 Student: Generalized



Professor:  More 0:47:46.7,  kind of result  than an exact  result.  The result  which you can

almost apply independent of what constellation you are working with. Otherwise for each

constellation you have to derive an exact result of same thing, right? So therefore this is a

nice designed result  to work with,  which does not specifically  depend on which specific

constellation you are working, right? So it is a rule of thumb kind of thing. 

(Professor – student conversation ends)

I think the rest of it I will leave you to study yourself and as I promised I could not start

information theory today. We will start that tomorrow.


