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Professor: We have talked about one method of converting analog information into digital

form and that is Delta modulation. It is a very simple technique by which one can represent

analog messages in the form of a sequence of positive and negative pulses which is what is

eventually  transmitted  onto  a  channel.  And  let  us  say  you  can  carry  out  digital

communication in this way. Another method of doing this which is also in fact, which is

perhaps  somewhat  more  popular  is  the  pulse  code  modulation  by  which  you  are  partly

familiar in the context of Analog to Digital conversions in other courses. 
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And that is what we will discuss today in the context of digital communication. Like Delta

modulation, this is also a digital pulse modulation scheme. But the approach is quite different

as I will show in this block diagram. You start with sampling the signal at a suitable rate, so

that is a sampler, the message signal mt is passed through the sampler. Of course when you

do sampling of any signal, it is assumed that to do it at a sufficient rate so that you do not lose

any information. And you know what that rate is, the nyquist rate. That is if the signal mt has

a bandwidth W, then you must use a sampling rate at least equal to 2W samples per second. 



In fact also it is desirable that if you are are sampling and to W samples per seconds, you

make sure that mt does not have any component about W, other way round also holds. If you

do not do that, you are going to have some kind of distortion with which you are familiar,

aliasing distortion, right. Take for example the case of your voice signal, voice signal does

contain components even beyond 4 kilos hertz. But for most purposes the quality of voice

signal hardly suffers, if you were to band limit the within 3.3 kilos it or so, right, therefore we

can say that, we can sample at twice the maximum component which is fitted into 4 kilos

hertz and therefore you sample at 8 kilos hertz. 

But then you must make sure the voice signal before being sample the lowpass filtered by

filter whose bandwidth is about 4 gigahertz or less, right, about 3.3, between 3.3 and 4 kilos

hertz, because it may contain components of higher frequencies which may not be of interest

to us but which allows, if allowed to represent will cause aliasing distortion which we do not

want. 

Student: (())(4:28). 

Professor:  Aliasing  distortion.  Maybe  I  should  just  remind  you,  these  are  the  spellings,

aliasing. After sampling the signal the most important step that you carry out in a pulse code

modulation system is that of quantisation. There is a quantiser, will soon see what a quantiser

does and immediately following that there is an encoder. These 3 basic building blocks are

the key components of a pulse code modulation system. Excuse me. The main function of the

quantiser is to take each sample and represent it in one of prefixed number of levels. 
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That is unlike the sample value which can take any value over an infinite range, the quantiser

converts  this  into  or  transforms  this  continuous  valued  variable  into  a  discrete  valued

variable. I think it is best illustrated by means of a picture which I have here. It is the same

picture that you have when we talked about the sampler, the quantiser and the encoder. Let us

say this is your continuous time continuous valued signal, right. So it is continuous both in

time as well as in amplitude. The 1st thing that you do is sample it, so we are talking about

sampling  at  nyquist  rate  and  let  say  these  are  the  samples  that  you  have  obtained  after

sampling, right, these are values that you have. 

Now these values lie on a continuous axis, amplitude axis. What you now do is assign each of

these sample values to one of these discrete levels which I have indicated by horizontal lines.

And the manner of assignment is you assign each sample value to the level, to the value

which lies closest to it, okay. So for example this sample will be given the level number 4,

assigned to level number 4, this one to 6, this one to 8, this one to 9, next one also to 9

because it is close to 9, next one to 7, next one to 6 and so on. And therefore now we will be

transmitting not the actual sample values but the levels to which these sample values are

close and these levels are discrete in nature. 

Further these levels which are levelled out, which are coming out of the quantiser are not

transmitted is such. One could do that, if you do that, then instead of PCM is what you get is

quantised PAM. If you were to transmit the quantiser output directly, you could do that, it

would be, see the sample output is normal analog pulse amplitude modulation scheme. After

the quantiser it becomes some kind of a quantised pulse amplitude modulation scheme. And

even that could be regarded as some kind of a digital pulse modulation scheme because of the

process of quantisation. 

But usually it is preferred that instead of transmitting in the quantised PAM form, we carry

out some encoding of each of these levels and transmit finally in a binary form. So the job of

the encoder is simply to give or introduce a binary representation to each of these levels and

typically the binary representation will use a certain number of bits in a word. And those bits

of the word are transmitted in the form of a sequence of binary pulses. So the PCM output

that we have got here is really a binary files representation of each of these numbers. I have

shown this here. 
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I have taken a few of these samples, the 1st few sample 4, 6, 8, 9 and represented each of them

buy a 4 bit word, assuming that my total number of levels is only 16. The number of bits that

you will require for representation will depend on how many levels of quantisation I have,

right. Assume that we have only 16 levels of quantisation, then each sample would require 4

bits  for  representation  and  we  may  have  sequence  of  binary  digits  like  this  which  you

eventually have to transmit. This is the representation for 4, for 6, for 8, for 9 and finally what

you make transmit is a pulse sequence like that.  So these are the binary coded pulses that

form the output of the PCM system and which are finally transmitted onto the channel. 

Student: Excuse me sir. 

Professor: Yes please?

Student: (())(11:05). 

Professor: Well, it depends on how you represent each one, how you represent 1 or 0, there

are many ways of doing it. I could represent a 1 like, like this and a 0 like this, right. In which

case what you are saying is right, I could also represent a 1 by a pulse like that, of half a

duration and a 0 like that. Right. Anyway we will discuss various possible representations of

digits onto pulses and that is what we will discuss when we talk about line coding, the various

representations  possible.  And depending on which representation you use will  decide the

actual nature of your pulse train that you finally have to transmit. Any other question? Okay. 



Now, so this is a very, conceptually a very simple process, the process of converting analog

signal  into  a  binary  representations  by  the  PCM  process.  It  is  a  very  very  simple,

conceptually simple process, so implementation why that is much more complex than let us

say Delta modulator because you have to really build an analog to digital  converter. The

implementation of quantiser is a nontrivial operation and I am sure you are all familiar with

that fact. However at the moment we are interested in looking at not the implementation of A

to D converter with which we are already quite familiar but about that communication aspect

of PCM. 
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And the 1st thing that we like to look at is the bandwidth requirement of a PCM system. You

have a, to start with you have an analog signal, let me talk about bandwidth requirement. As I

said to start with I have an analog signal, let us say of bandwidth W. The question is do I

continue to use a bandwidth which is of the order of W or do I eventually end up using a

bandwidth  which  is  much larger?  So that  is  the  question  we would  like  to  address  and

workout quantitatively how much it is. To do that let us introduce a few parameters of the

quantiser. 

Let us assume that the quantiser of the, associated with the PCM system is interests has q

number of quantisation levels. And for convenience let us assume that q is chosen to be a

power of 2.  It  will  be convenient  to  do so because we have to  eventually give a binary

representation to each level. So efficiently to do that in choosing q to be power of 2, 2 to the

power n , where n is an appropriately chosen integer, which implies that n will be the number



of bits in a word that will be kind to represent each level, right. The encoder will have to use

a word length of n bits, that is implication. And n is obviously equal to log of q to the base 2. 

And these many pulses are needed so represent each samples. Let us say that your signal has

bandwidth W, your message mt has a bandwidth W, so this is the bandwidth of mt. And what

will be the minimum sampling rate that you will have to use?

Student: 2W. 

Professor: So sampling rate is 2W. Now what determines the bandwidth of a pulse train? Or

roughly we will say, well, ideally we all appreciate that we are talking about an ideal pulse

train, the bandwidth is going to be infinite, right. So we are talking about some more practical

measure of bandwidth here than the theoretical, a Fourier transform extends the span of the

Fourier transformed signal, that will be of course infinite. We have perhaps talking about the

bandwidth in which most of the signal energy lies, right. And suppose we have a pulse of a

certain kind, let  us say an ideal pulse of width Tao, roughly what can you say about the

bandwidth of this? Any idea? I am sure you can say something. 

Student: Sir the Sinc function. 

Professor: Fourier transform of this is a Sinc function. One rule of the thumb is most of the

energy life in the main lobe of the sinc function whose width happens to be the reciprocal of

the pulse width, right. Makes reasonable sense? So we say roughly we can say that if we are

using a  pulse train with each pulse having a bit  of approximately Tao seconds,  than the

bandwidth associated with that person will be of the order of 1 by Tao hertz. That is most of

the energy of the pulse train will lie in this bandwidth. It is essentially a convener method of

bandwidth rather than precise method of bandwidth. 

Alright if your sampling rate is 2W and I am going to represent each sample by how many

pulses, n pulses. So number of pulses or pulse rate at which you have to transmit pulses is

going to be 2nw. If I am using a pulse train of this rate, what is the maximum pulse width I

can have? Obviously of the same duration, maximum pulse width I can have is 2nw, 1 by

2nw. So maximum pulse duration Tao is of the order of 2nw or 1 by 2nw, sorry. Is that okay?
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And therefore what is the bandwidth of the this will be the minimum bandwidth because you

are talking of the maximum pulse width that we can have. So this is some kind of a lower

bound on bandwidth that we are talking about, it is of the order of…?

Student: 2nw. 

Professor: 2nw. In general if you want to be more precise, it will be some constant times this

2 nw, where K is the appropriate constant of bandwidth depending on what definition of

bandwidth they precisely use. Whether we decide on the main lobe bandwidth or some other

measure of bandwidth. So it may vary between a factor of 0.35 to 1.2 or something like that.

Depending on the precise definition that we use to say, to decide,  you know what is  the

definition of bandwidth you are going to use. Yes please, question?

Student: (())(19:19) the rate of pulses that are to be sent but the bandwidth required for one

individual pulse might itself be larger than… So the bandwidth requirements can be more. 

Professor: This is, this is if I would have said this is the lower bound, right, if your pulse

width happens to be less than 1 by 2nw which you can use if you wish, you will end up using

more bandwidth. But you cannot use a bandwidth less than this, right. So this is some kind of

a  lower  bound  on  bandwidth  that  the  PCM  system  must  be  associated  with.  You  have

precisely got it right, it is a lower bound or in other words I can say this is 2KW log q to the

base 2. So therefore you are increasing the bandwidth from W to this factor which is in the

order of magnitude increase and depends on how many quantisation levels you have, right. 



The larger the quantisations, number of quantisation levels you have the final the quantisation

you carryout, of course that will lead to a more accurate representation of your signal, right.

But it will also introduce a larger bandwidth sacrifice, it will also require larger bandwidth for

transmitting the signal. 

Student: What is K?

Professor: K is a suitable constant which will  descend, which will depend on the precise

nature  of  definition  that  you  use  to,  use  for  understanding  what  bandwidth  is.  Like  for

example the argument that I gave that a pulse may be considered to have bandwidth equal to

the width of the main lobe of the Sinc function associated within the frequency domain is one

possible  destination,  you  could  use  some other  definition,  right.  For  example  you could

decide to use 99 percent energy bandwidth, right. That is bandwidth, in which that portion of

bandwidth and 99 percent of the total signal energy lies, power lies. So in which case your

value of K will turn out to be different. 

But nevertheless the order of magnitude will not change, right. This is one aspect of PCM

when we talk about using it for communication, digital communication. Now the other aspect

is that the process of quantisation introduces errors, introduces noise, right at the transmitter

itself.  This  is  unlike  other  communication  processes,  you  do  not  introduce  noise  at  the

transmitter and deliberately, right. Here it seems you are not sending the precise value of the

sample  but  only  an  approximation  of  it  in  terms  of  the  quantisation,  you  are  actually

introducing or interpreting certain error of representation directly at the transmitter itself in

the process of encoding , which may sound to be an undesirable thing to do. Right. 

But the advantage is, in spite of this is being introduced, this is a controlled amount of error

which you can control by looking at our requirement and deciding on how many conservation

levels I must use. The advantage that I get is that of digital communication that is I am able to

eliminate noise that is introduced later in the channel, right, very very significant thing. But

nevertheless we must be aware of this fact that the process of quantisation is a noisy one and

we must also be able to figure out how much noise is being introduced, how much energy is

being introduced. 
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So the next thing that is of interest to us is to be able to calculate how much quantisation error

or quantisation noise as we call it is being introduced. Let us try to calculate that. In doing

this  I  will  be  using  this  simple  set  of  definitions.  The  solid  lines  are  denoting  here  the

boundaries of various quantisation levels. So x0 is some lower boundary and x3 is some

upper boundary. Well I have got only 4 levels your let us say 4 regions here but you will have

more, right. And M sublet I is, M1, M2, M3, they represent the middle point is shown by the

dotted lines of the radius, the Ith interval. So M sub I is the midpoint of the Ith interval. 

Let  us  assume that  your  signal  sample  values  which  I  am going to  denote  by  x  has  an

excursion between the lower limit of A and upper limit of B, all right. Each sample coming

out of the sample which I am going to represent by x can take the maximum value of B and a

minimum value of A, all right. So this is the maximum value of x and therefore that will be

represented by x3 or whatever, whatever is the largest, highest level you have and A is the,

this  should  be  minimum value  of  x.  And let  us  say  there  are  q  number  of  quantisation

intervals and therefore each interval, each quantisation interval is obviously equal to B - A

upon q. 

So we are going to use this framework for our calculation of quantisation error. If the signal

value happens to be here, the level that will be assigned to it will be the middle point, right.

And  therefore  this  much  error  will  be  introduced  in  the  process  of  representation.  If  it

happens to be here, this much either will be introduced, right. So we can see that the error



that is going to be introduced is going to be random in nature depending on what the value of

x turns out to be, as going to be both positive, equally likely to be positive or negative, right. 

So we will model this error to be some kind of a random variable and then calculate what is

its mean square value, okay. And that will give us some idea of the quantisation noise that is

being introduced, that is the procedure we are going to follow. Any questions? So now just

start this computation. 
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So let us say that the sample value is x, okay and then this is quantised and the quantised

value is represented by x of q, quantised value of x. It is obviously going to be equal to M sub

I which is the midpoint of the interval in which x lies. Or I could say that it is equal to M sub

I is x lies in the interval x sub I -1 and x sub I, right. Because the middle point of, the interval

whose boundaries are x sub I -1 on the lower side and x sub I on the higher side is precisely

equal to M sub I and that will be the quantised value of x which I am going to represent by

xq. 

What is the quantisation error? It is going to be x - xq or x - M sub I. Is that okay? Any

questions?  Nothing.  Very  complicated,  we solve  very  straightforward.  Right,  what  is  the

quantisation noise power or mean square value of this error?
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So quantisation noise power I am going to define it is expected value of x - x sub q square,

right. You are familiar with these kinds of operations which will be, take x - xq, X is being

used to denote the random variables, the actual values that they will take will be denoted by

small letters, so small x - xq whole square fx x dx integral of this. Where what is fx x, take

the probability density function of the random variable  x and x is  a sample value at  the

sampling instance. Now we have to evaluate this integral. 

Student: Sir the limits from a to b?

Professor: I have deliberately left the limits to be open at the moment. I am now going to

rewrite this integral is the sum of 2 integrals. Because the total integration range of course is

going to be from a to b which I can divide into various sub integrals, the ith of which going

from, goes from x I, x sub I -1 to x sub I. X - M sub I also is fx x dx. Fine. Actually we will

be interested in computing the signal to noise ratio that comes out of the PCM quantiser. 

So let us also do a similar exercise for the signal itself, that is let us look at the signal power

available to you at the quantiser output. That will be obviously equal to expected value of x q

square because the signal power, signal sample that is coming out is x q, which again I can

write in this form, xq equal to M sub I, so M sub I square and that is a constant. I just skipped

one step of this kind here and directly in the 2nd step here, Right. We call this n sub q, call this

S sub q and therefore the signal-to-noise ratio is, and we need to compute this so that we get

some kind of a measure of fidelity of this representation. 



This is a useful measure of fidelity, how good the representation coming out of the quantiser,

yes, the signal. The larger the value of the signal-to-noise ratio, the better your fidelity, the

more accurate your representation or less amount of noise that is being added due to the

quantisation process. Any questions?

Student: (())(32:46) it does not have to be the…

Professor: Yes, that is, that is why we must look at this, is not it. We must look at the signal

power…

Student: (())(33:02) is it due to the transmitted signal power or this will be actual baseband

power…

Professor: It is only slightly different from it, in the sense that it represents the power in the

quantised signal. 

Student: Which might be far from the original signal?

Professor: Not far, it will be close to it but in many case, this is the one which is of interest to

us because it is this power switch is going to the receiver. Right and not the unquantised

power. 

Student: Sir it is of interest to us only when we know that the original signal to this noise that

we are introducing ratio is high. Why do we have S - M divided by M?

Professor: In any case since usually S and S sub q are going to be so close to each other that it

does not matter very much because the number of quantisation levels typically is going to be

reasonably  large,  this  question  is  only  of  academic  interest.  But  nevertheless  what  I  am

holding still is that it is this power which the receiver is going to look at and therefore the

signal-to-noise ratio that is of interest to us is this, should involve this power, the quantised

signal power and not the unquantised signal power, right. And in any case there is not going

to be much difference between the quantised between the quantised signal power because we

are assuming that the approximation is going to be reasonably good, right, of x with xq. 

So we are assuming that noise power is still  going to be typically much smaller than the

signal power, all right. Now to proceed further we have to make some assumptions regarding

the nature of the signal itself, right. The values of these powers will turn out to be different

for different kinds of signals, we must appreciate that, right. In fact strictly speaking even the



nature of quantiser that I use should be dependent on what kind of signal I have. The kind of

quantiser that they are looking at right now is called a uniform quantiser. Why is it called a

uniform quantiser? 

Because the intervals, quantisation intervals is same as across the whole interval, right. That

is Delta is constant across I, it does not depend on I, the Ith interval, each of the interval has

values, step size of Delta, independent of I. Now this kind of uniform quantiser is actually

designed on the assumption that your density function of the signal is actually uniform over

the range of its values. So therefore let us consider a case, simple case, when we assume that

fx x corresponds to a uniform distribution function. Okay. 

(Refer Slide Time: 36:04)

 

So we will  take the case of a uniform distribution and complete the computation.  Let us

assume that your lower value, let us assume that your interval A, B is actually, I am going to

simplify it and say it goes between some - a to + a. So your lower limit is - a and upper limit

is + a, assuming it to be asymmetrical. And therefore your as from the uniform distribution

assumption, your fx x is going to be 1 by 2a when x lies in this interval, x equal to 0 if it lies

outside this interval, right. Based on this let us assume, let us compute n sub q. 

Now I am going to replace fx x by 1 by 2A, this becomes , all right what will be x I -1? You

have to replace now for x I -1, x I and x sub I and as you can see x I -1 in general that we

write down the expression for x I, obviously it will be the lowermost value + I Delta, right.

So this will go from - a + -1 Delta to - a + I Delta. Also what would be, what about x, M sub



I? M sub I will be x sub I -1 + x I divided by 2, right because it is the midpoint of the interval.

If you do this computation and substitute here, this is what you get. 
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X + a - I Delta + Delta by 2 whole square 1 by 2A dex, implying that your M sub I is equal to

- a + I Delta - Delta by 2, this is something which you can easily check by direct computation

or direct substitution. Now this is a bit of algebra which I will skip and I am sure you can go

through the necessary explanation and simplify finally to get… If you compute, it turns out,

each of these integrals turns out to be equal to Delta q by 12, right. And the q times this

summation, this is a constant inside the submission, it simply becomes q times Delta q upon 2

into 12. 

Using the fact that q times Delta, what is q times Delta? It is the total length of the interval,

which  in  this  case  is  2a,  we get  the  quantisation  noise  n  sub q.  So  q  into  Delta  is  2a,

substituting that here,  we get n sub q equal to Delta square by 12. Very simple and neat

expression for the quantisation error, okay. This is the only step that you need to just confirm,

the previous entry about, that I talked about here, this one, with change of limit, with change

of limited turns out to be very simple integral, by substitution for x when you get a very nice

close form expression like this. 

Similarly coming down to S sub q, that is equal to M sub I square and inside was the integral

of 1 by 2A from x I -1 to xi, right. That is simply Delta by 2A, right, that is obvious, because

value of density function is 1 by 2A, we are talking about this, we are talking about this one,

this expression here. This is 1 by 2A, value of this integral is simply Delta by 2A where Delta



is the width of this integration interval. Again substituting for M sub I, the way we did just

now and simplifying, I am skipping again those simplification of steps, that will involve a

series summation, please check on your own. 

We will get a very simple equation also for S sub q, that is equal to q square -1 upon 12 into

Delta square. And we now get a very nice simple expression for quantisation signal-to-noise

ratio which is q square -1, it should divide this by this, Delta square by 12 will cancel out and

you are left with q square -1. And I am assuming that q is a sufficiently large number, which

it is going to be in typical applications, it is really of the order of q square, is q is taken to be

much larger than unity. In dbs, normally we talk about single to noise ratio in decibels, this is

power, so we take 10 log on both the sides, we get 20 log to the base 10 q, right. 

So these are the 2 main results, one is the result for signal to quantisation noise ratio and the

other is this which equivalently sometimes is just given in the form of the fact that RMS error

that you may expect is Delta upon square root of 12. These are the 2 results or important

results to remember or quantiser characteristics, uniform quantiser characteristics, yes. Please

speak out if you have any questions. 

Student: DB is 20 log (())(43:47). 

Professor: It is 20 log if you are talking of voltage ratios or current ratios, it is 10 log if you

are talking of power, power ratios, right. Any questions? This result can also be made slightly

more interesting into a rule of thumb kind of result. If you remember the q is power of 2,

right, so if you take q to be equal to 2 to the power n, then this will become 20 log 2 to the

power n which you can write as 20 n log 2, or 6n, you right, 20 log 2 is says 6, so that is n,

right. So that is a very interesting result and that gives you a very simple rule of thumb for

calculating how much signal-to-noise ratio again in dbs depending on the number of levels

you use, right. 

If you use for example number of levels corresponding to 7 bits, right, you are going to get a

42 degree signal-to-noise ratio which is very good, right. Usually for what is communication

we use the signal-to-noise ratio between 40 and 50 degrees. So 7 to 8 bits are adequate for

representing voice signals in PCM. But the number of levels that were talking about 10 is 128

to 256, right. So very useful relation to keep in mind. 
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So for speech if you use 8 to 16 levels, which will correspond to 3 to 4 bits, right, the quality

is very poor but the intelligibility is very good, right. You get quite intelligible speech but

poor quality. That is you will hear also a lot of distortion along with the information. 128 to

256 levels is quite good quality, what we call telephone quality speech. 

Student: (())(46:42). 

Professor: Very rarely use it, very rarely 8 to 16 levels. It is just to give you some information

as to how many levels are necessary, right. If you use these many levels, you lose a lot of

quality because both are important, not only intelligibility but also quality. So usually in most

PCM, commercial  PCM systems that  you use,  you have actually  an 8-bit  representation,

right. Any questions? I can stop for a minute just to answer all kinds of questions you may

have so far. 

Student: You have not performed the analysis in the delta modulation. 

Professor: I will talk about it, I have planned to do it after doing this for the PCM, right, we

will  be  doing  that  for  Delta  modulation  also.  And  we  are  not  yet  finished  with  Delta

modulation, will be coming back to it. Any other questions? Because what we like to do is

compare on the whole how delta modulation and compare with each other and compare both

of them, from the point of view of bandwidth requirement, from the point of view of signal-

to-noise ratio that you can get and then get a feel for which is better if at all. 



Now  this  discussion  that  we  have  done  was  for  the  case  of  uniform  quantisation  as  I

mentioned just  now a few minutes ago. And it  makes sense to use uniform quantisation,

provided that you have reasonable basis to say that your signal is of the kind where its values

are uniformly distributed over certain interval, right. If for example you know that most of

your signal values are going to lie in a smaller range and the larger values are going to be

much less frequent to occur, the probability of occurring, having larger values of the signal is

small, let us say just for the sake of assumption. 

Then intuitively you may feel that uniform quantisation noise, uniform quantisation process

may not be a good idea to carry out, right. Because you are going to use or waste a large

number of levels in  the region where the signal  has  a  very low probability  of occurring

anyway, right, and you are wasting your number of quantisation levels. Given a number of

quantisation levels, it makes sense to make them more finely distributed in that region where

the signal is likely to take values with larger probability, than in those regions where the

values are going to occur with smaller probabilities. Right. 

So therefore this is not a good idea to work with if your signal is known not to have uniform

distribution, right. And then you go for what is called nonuniform quantisation. Yes please? 

Student: The derivation only applies to the uniform derivative, uniform quantisation? 

Professor: The derivation that we have done applies only to uniform quantisation and also

assuming that distribution function associated with the signal is uniform one, right. But still

even if it is not so, this is still a good rule of thumb to work with, okay. Now let us come back

to the concept of nonuniform quantisation. So basically what we are going to now do is, will

not use a uniform step size across the whole interval of quantisation but use a variable step

size, right. And it can yield a significantly higher SNR if you do this higher signal-to-noise

ratio when your PDF or the probability density function is nonuniform, which is the usual

case in practice, it is very rarely uniform interest this. 

Another way of looking at why this may give better results is, one which I have already given

you is by putting less number of levels and let us say larger amplitudes, you are going to

incur larger errors when the corresponding signal values are also large, right. So that also

masks away the error quite a lot. You have large error associated with large sample values

and small errors associated with small sample values, there is another way of looking at it.

But I still think the better way of looking at it is that large values occur less frequently in



practice  and we can  therefore  occasionally tolerate  larger  errors  and they  will  contribute

much less to the mean squared value than the small values which occur more frequently. And

if they are associated with large errors, then your overall mean square is going to go up. 

Student: Can we do some adaptive quantisation?

Professor: Yes we can, that is if your signal, it is a very good suggestion and in fact it is

practically  use in many applications.  That  is  you can make your quantiser characteristics

dependent on the input signal that is coming along and it can be made adaptive to the extent

that  you may not  know what  you are  a  Priory density  function is,  it  can  adapt  to  those

characteristics. But usually this kind of thing is complex, more complex and outside the scope

of our discussion here,  but that can be done. Let us take the case of the signal having a

Gaussian distribution. 
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I have a couple of minutes more, so we will just talk about it today, little bit, we will take it

up in detail next time. Let us say we have signal with Gaussian distribution, so as you can see

this is a PDF, this is the value of x, this is the density function, I have plotted in the density

function. As you can see that small values of x have much larger probability associated with

them than larger values of x which lie in the tail of the distribution, right. So it does not make

sense to crowd the quantisation levels equally across the whole interval. And usually what

you will do is you will have closely spaced levels in these intervals. 

Of course I have drawn a very good pictures help with a very small number of levels, in

practice number of levels will be much larger. But you can see that these intervals are smaller



than these intervals and this is a good thing to do, right. In practice we will like to space them

out as you go farther and farther away from the mean value of the signal, if you have a

Gaussian distribution, right. So the boundary is now x1, x2, x3, x4, x5 and so on are not

uniformly spaced. Not only that, it may not be the best thing to do to choose the quantisation

level to be the middle point of the interval, right. 

It may be proper, it may be alright perhaps to use a slightly different value than the midpoint

because you do not have a uniform distribution even within, even within the interval, right.

So when you have nonuniform distribution, the proper way of designing the quantiser would

be to ask the question how to choose the values x sub I’s and the values of M sub I’s so as to,

so  choose  these  set  of  values  so  as  to  maximise  the  SNR,  right.  That  is  what  a  proper

quantiser  should  worry about,  right.  And that  is  how nonuniform quantisers  are  actually

designed. 

By looking at actual distribution and then asking this question as to for this distribution how

to choose this xi’s and Mi’s for a given number of total quantisation number of intervals so as

to maximise signal-to-noise ratio, okay. We will take up this discussion next time in detail. 


