
Embedded Systems 

Dr. Santanu Chaudhury 

Department of Electrical Engineering 

Indian Institute of Technology, Delhi 

 

Lecture - 07 

ARM: Interrupt Processing 

In the last class, we had discussed ARM instruction set. In a way we have developed and 

understanding of ARM instruction set architecture. Today, we shall look at other features 

of the ARM architecture. In particular exception processing and the other components 

how they go into the core and also, the internal organizational details of the processor 

core. 

(Refer Slide Time: 01:51) 

 

So, before going into the exception processing let us of a quick review. Actually we have 

discussed this modes earlier. So, what I am showing here is the exceptions and the 

modes, in which the ARM processor is expected to be in when such an exception occur. 

The interesting feature is what you find and we have discuss with earlier as well, that 

corresponding to exception there is a mode switch. That the mode in which processor 

works changes, when an exception occurs. 



(Refer Slide Time: 02:31) 

 

So, along with mode change what will happens? The core saves CPSR, that is Current 

Status Register to the SPSR of the exception mode that is saved a registers. There is save 

PC to the link register of the exception mode. Sets the CPSR of the exception mode and 

then, set PC to the address of the exception handler. In fact, all of this exceptions are 

associate with the vector. That is a memory address at which the exception handler is 

expected to be located. 

(Refer Slide Time: 03:18) 

 



But, it is strictly not always that way. Because, the vector table which is the table of 

addresses, where ARM code branches when exception occurs. May not have space and 

really it does not have space to put in the complete service routine in that table itself. So, 

in the table you will actually have a branch instruction. It can be explicitly of branch 

instruction or it can be any other instruction which modifies PC. 

So, on execution of this instruction actually the control gets switch to the interrupt 

handler. So, what we have shown here is example of a branch address, another is LDR 

which is loading the PC. Now, in this case and offset is add it to the PC. So, it can be 

signed offset as well add it to the PC. And that value is loaded on to the PC. 

What does that mean? It means the instruction located at that address will be executed as 

part of the interrupt handler. Obviously, this would involve a memory access to get the 

address. And this will therefore, increase the interrupt latency. Now, in this case MOV 

PC immediate, this is also an immediate address which can be loaded onto the PC. This 

gives you an ability to get or locate the interrupt handler anywhere in the memory. 

Because, the immediate operand can be appropriately changed and loaded on to the PC 

to provide the address. In this case it is always a relative address. 

(Refer Slide Time: 05:11) 

 

Now, this exception have associated with them priorities. So, I have listed here the 

exceptions and their priorities. And will find the reset exception has got the maximum 



priority. And what does these two columns indicate, the indicate the value of I bit and 

that of F bit, which are bits in the status register, when such an exception occurs. 

What is the meaning of this? Say, in reset exception when it occurs, this I bit is set F bit 

is set, which in effect means that first interrupt request as well as interrupt request both 

are getting disabled. Similarly, when we see the data about interrupt occurs. In fact, in 

this case the I bit is set to 1, but F bit is not set. So, interrupt that is normal interrupt 

request that is disabled. But, first interrupt request is not disabled. 

When, FIQ occurs you will find that your both I and F bit is disabled. That means, if I 

am servicing FIQ and if I do not explicitly enable F bit or I bit, another FIQ cannot be 

serviced. Now, we will find for all this interrupts, you will find that I bit is getting 

disabled. So, normal interrupts are getting disabled. 

So, inside this service routine of this interrupts, if we are not explicitly enabling this 

interrupt. That is, generally interrupt cannot be serviced. But, FIQ can be serviced, so; 

obviously, FIQ can realize has got much greater weight age associated. Now, here also 

another interesting thing you should note, the basic difference between exceptions and 

interrupt with reference to the architecture. 

Now, if you look at FIQ, IRQ this two interrupts typically occur because of external 

devices. External devices means, devices outside the CPU core. But, maybe residence on 

the same silicon area itself. Software interrupt instruction is an explicit instruction as part 

of your code. But, if you look at others say data abort pre-fetch about or undefined 

instructions, they can happen because of a some kind of an exceptional condition during 

execution of your code. 

So, therefore, not really interrupts. Interrupts being explicitly generate to interrupt your 

current flow of execution. So, when you refer to interrupt explicitly, we shall be referring 

to FIQ, IRQ and software interrupts, others are exceptions. And everything put together 

is actually exceptions interrupt are also exceptions. 



(Refer Slide Time: 08:38) 

 

So, how do you designed exception handlers. Typically reset handler initialize the 

system, it is sets up stack pointers, memory, external interrupts sources, if you needs to 

initialize the peripherals before it enables IRQ or FIQ. Because, you would not like to 

have ((Refer Time: 09:05)) interrupts before the external devices have been initialized. 

And the other interesting thing is that, you have to initialize stack pointers. Because, until 

and analyze you set up the stack, you cannot really do processing of the interrupts. 

Because, you might need to save the registers into the stack. And the reset handler code 

should be designed in such a way, that no other exceptions are really occur in or gets 

triggered while execution of this code. 

Because, if that occurs that may not be correctly service. Because, you have not set up 

the vector tables, you have not set up the stack pointers correctly. So, all these things are 

to be done by the reset handler. The data abort interrupt occurs when memory controller 

indicates that an invalid memory address has been accessed. 

That means, may not be and physical memory located at that address. And so when such 

a location is being accessed, there has to be an exception. Because, that an error 

condition and exception has to be handled differently. So, this data abort interrupt I 

should not say that an interrupt at data about exception is an error condition. And so I 

need to have an exception handler as part of my operating system to take care of that. 



But, during this period itself and FIQ exception can occur. Because, it is not really 

disabling FIQ. Because, FIQ is an external device. So, it might require an immediate FIQ 

maybe generated from an external device and it might require an immediate service. 

 (Refer Slide Time: 10:59) 

 

So, FIQ occurs when an external peripheral generates what I call FIQ input signal. And 

now, code disables both FIQ and IRQ interrupts. That is, when FIQ is being serviced I 

cannot have another FIQ coming or another IRQ which is of a lower priority occur in an 

interrupting my service routine. IRQ occurs when as external device generate a IRQ 

input signal. 

So, in that sense the modality wise FIQ and IRQ are identical. But, FIQ has got a higher 

priority and more weight age. And also you will you I hope you remember, that there are 

a large number of register copies, which become available in FIQ mode. So, the interrupt 

latency the software latency would be much less compare to that of IRQ. 

So, IRQ handler would be entered if neither an FIQ exception or data abort exception 

occurs. Because, the FIQ and data abort are of higher priority. And reset is not normally 

expected to occur, other than when the system is booting up that is the initial conditions. 

On entry IRQ exception is disabled and should remain disabled for the handler, if not 

enabled by the handler. 



That means, if I am not entertaining nested interrupt processing I shall not do what 

enable IRQ, inside IRQ handler. If I am not enabling nested interrupt handling there may 

be increased interrupt latency. 

(Refer Slide Time: 12:47) 

 

The pre-fetch abort occurs when an attempt to fetch an instruction results in the memory 

fault. In fact, it is very similar to data abort, data abort occurs when your executing an 

instruction trying to get the data or write the data pre-fetch about occurs, when you are 

trying to get the instruction the op-code. 

And in the same case FIQ exception can be service, even when the pre-fetch about 

occurs. Undefined instructions occurs when an instruction, that is being that is the op-

code which has been fetched and it is been attempted at decoding. And it is found, that is 

not in the ARM or thumb instructions. 

In fact, when it is not even instruction of any of the coprocessor, which may exist on the 

core. And the interesting feature is the software interrupt, as well as undefined 

instruction they have the same priority level attach to them. In this obvious, because both 

this exceptions cannot occur simultaneously. And what happens and how we process 

software interrupt instruction, we have discussed in the last class itself. 



(Refer Slide Time: 14:08) 

 

So, how do you return from exception handler, it can be using any instruction for that 

matter, which will restore your PC to the corrected value of the link register. And what is 

important is that, the exception handler must prevent corruption of the link register value, 

which gets loaded when more switch takes place. This is very, very important. 

And the other important thing is that, the CPSR the current CPSR will be restored from 

saved program status register. So, that rest CPSR gets restore from the saved program 

status register. And what there is a certain interesting point here. What I have written is? 

That I am moving the correct value of link register r14 into PC. 

It is not that I am loading exactly what is loaded in l r into PC. Why it is required we 

shall understand, when we study the pipeline architecture. It implies that before I actually 

return from the exception handler I need to correct the value stored in l r. So, that I come 

back to the correct instruction, which is to be executed. 

And I have told you, that all this exceptions have associated with them a vector, that is a 

memory location. That location is accessed forgetting the instruction for the handler. We 

go into the handler and when I have completed servicing of the interrupt I come back 

from the handler. Before coming back from the handler I should adjust the l r value. 



It may also so happen that I might like to store the l r value as well as other registers into 

the stack. Because, I would like to retain the values, then I need to do what, before I 

come back from the handler, restore the register values and then return from the handler. 

(Refer Slide Time: 16:42) 

 

Next question is interrupt assignment. And this interrupt assignment this is particularly 

important, when you are looking at the hardware devices. And we are assigning 

interrupts to the hardware devices. In many times why should I say many times in almost 

in all universal implementations, you have the interrupt controller with the core CPU. 

The interrupt controller connects multiple external interrupts to either FIQ or IRQ. In 

fact, IRQ are normally assigned to general purpose interrupts. In fact, periodic timer 

interrupt to force the context switch, when you have a multiprocessing. When, we have 

concurrent process running and the CPU has to switch from one process to another 

process. That switch takes place, because of an interrupt from the timer. 

Because, timer is programmed to allocate a fixed time slot to the process. Now, these 

kind of general purpose interrupts, which is for the purpose of maintaining OS are 

associated with IRQ. The critical devices which are to be service with very less latency, 

they are associated with FIQ. 

So, what we say that FIQ is always reserved for an interrupt source, which requires fast 

response time. Because, it is having minimum interrupt latency. And in fact, the issue is 



that for an application in an embedded system. The environment, the external signal 

property decides, how much latency you can actually allow for. 

In case of this periodic time and this latency is the more of an OS consideration. And not 

of the property of the external signal. But, when we have to handle a very first external 

signal with less interrupt latency, then becomes a signal coming from some kind of a 

dedicated peripherals or a dedicated application. So, that interrupt is associated with FIQ. 

(Refer Slide Time: 19:00) 

 

So obviously, now the question is interrupt latency. So, I had already discussed this point 

earlier and I am again coming back to this point. Because, interrupt latency is the very 

key issue in designing and embedded system. It has got both components, hardware as 

well as software components. Now, there are software methods to reduce latency. 

Hardware is as you have been provided by the architecture. And you have found that 

FIQ, the example of ARM that provision of a copy registers becoming available is a 

hardware solution for reducing interrupt latency. Even in the software we can take 

certain steps, one of the step is what is called nested interrupts. 

So, nested interrupt handler allows further interrupts to occur, even when servicing an 

existing interrupt by re-enabling the interrupts inside the service routine. And obviously, 

in this case what will happen? The interrupt which is now raising or request did not way 

till servicing of the previous interrupt is completed. 



And when we are using an interrupt controller, we can associate different priorities with 

the devices. So, what can happen is that higher priority interrupt can actually interrupt or 

service provider of a lower priority interrupt. Although the, so what happens, if I have an 

IRQ handler, inside IRQ handler I enable IRQ bit. And interrupt controller is associate 

with priorities of the external devices. 

Now, if an external device raises and interrupt. And these device has got a higher 

priority, than of the device whose interrupt is being serviced my interrupt controller will 

do what? We generate another IRQ interrupt request. Since, I am using a nested handler 

IRQ bit is now clear. So, that interrupt will occur and I shall now service interrupt of 

higher priority device. 

What is the effect? The average latency of a higher priority device is less compare to that 

of a low priority device. 

(Refer Slide Time: 22:39) 

 

Now obviously, for doing all these exception handling, you have understood always the 

stack organization becomes critical. Because, for each processor mode I have got a stack 

pointer and each processor mode has got a different stack therefore. So, I need to set up 

this stack in the beginning itself. So, every time this stack this is not a single stack. So, 

what I shall have? I shall have a stack in the memory. 



So, stack is what a memory area. And that memory area will be different, for different 

modes. The stack that I am using in user mode is definitely not same as that of the stack 

area, which I might be using in FIQ mode. So, I have to appropriately said the stack 

pointer values. And that is typically done during the reset mode. 

So, change to each mode. So, during the reset mode, you change to each mode by 

adjusting the CPSR bit and adjust then writing the correct value on to SP. The other 

decision is and this is the design decision of the software developer. That, where in 

memory the stack to be located and what is the mode to be adopted. Because, I can have 

all possible modes of stack. 

Typically, descending stack is the most common mode and the location is define in such 

a way, that you really do not have a chance to overrun the vector table. And that is very, 

very important. If you overrun your vector table by stack overrun and the error condition. 

So, you will have corrupt in the system as a whole. 

So, you should associate a location with the stack. So, that you minimize your chance of 

overrunning the vector table. And in many cases, you can actually use a check to find out 

whether your overrunning the stack. And the size varies from implementation to 

implementation application to application, depending on how your designing your 

software. 

Because, if you are really supporting nested interrupts, you will require a larger stack. 

Say for example, IRQ incase of nested interrupts I need to save the registers. So, that I 

can come back to the correct point of execution, where of servicing the lower priority 

interrupt. So, I shall need the space to save all this registers. 

So, the stack size requirement for nested interrupt handling is always more, then when 

we are not having nested interrupt handlers. Now, you can realize since it is an 

embedded system is not a general purpose. I can have an assessment of the kind of 

external devices and the signals, that we generate the interrupts. And what are their 

latency constraints. And accordingly we can design the interrupt handling scheme and 

decide on the size of the stack. 



(Refer Slide Time: 25:00) 

 

In fact, I/O system, that I/O devices they are primarily interface through this kind of 

interrupts. So, I have first interrupt in normal interrupt that we are already discussed. 

And there used for interrupt driven I/O processing and all I/O devices at typically located 

in the memory map of ARM. 

So, you have got memory mapped I/O, there is no separate I/O address bits. There is also 

a support for DMA. So in fact, this interrupts that we had actually discussed you can 

understand and you can realize. The basic job of this interrupts to handle this kind of 

various I/O which are external environment dependant. Next, we see shell look at these 

processors and processor codes in more detail. 



(Refer Slide Time: 25:59) 

 

In fact, what we say that ARM CPU core, typically consist of the processor core, cache 

memory and memory management unit. Now, this memory management unit and cache, 

we shall discuss separately. When, we discuss the memory organization in an embedded 

system. Today our concentration could be on the processor core. 

(Refer Slide Time: 26:24) 

 

We have look at the data path of ARM 7. But, not only the data path there are other; 

obviously, the hardware components, inside the ARM 7 processor. In fact, ARM 7 is the 



low-end ARM core, which are targeted for applications like mobile phones. Although 

today things of changed, you get ARM 9 and more sophisticated processor being used. 

But, when ARM 7 came in one of the target applications are digital mobile phone. You 

have got these variance of the ARM core and which are indicated by this let us TDMI. T 

is basically thumb mode. That means, you have got an embedded 16 bit processor inside 

32 bit. So, you can switch from ARM to thumb and back. 

D means, you have got a one ship debug support, enabling the processor to halt in 

response to a debug request. M is an enhanced multiplier, which yields full 64 bit result 

you may not require it. So, if you do not require it. So, you do not have M, that is you 

have TDI and not TDMI, I is embedded ICE hardware. 

The architecturally ARM 7 is the Von Neumann architecture has got an Von Neumann 

architecture with 3 stage pipelines. And the CPI the cycle instruction typically about 1.9. 

(Refer Slide Time: 28:12) 

 

So, let us look at this organization. So, this is a more abstract level or cross level 

organization. But, we are looked at earlier, we had looked at the data path which is 

sitting inside here. So, what we are looking at other than the processor core, there are 

other components, which are there in the CPU core. 

The fundamentally these are the two blocks, the JTAG TAP controller and embedded 

ICE. In fact, this JTAG TAP controller is actually a kind of a port, which enables a direct 



communication with the processor core, for the purpose of debugging and running the 

software. Consider a very simplified situation, you are trying to execute and instruction 

on this processor core. 

Now, you know instruction set. So, you will be using an assembler or software 

development environment. The software development environment will typically run on 

a PC. And form that PC, I have generated the code and I would like to run the code on 

your ARM. So, one option is you load it on to a memory and connect that memory area 

to the processor core. 

So, when it boots up that memory area, the initial memory area will contain the 

instruction and it will start execution from that. The other option is a using this JTAG 

port using a JTAG connector. So, if you using a JTAG connector, what happens is by 

using the JTAG connector, you can actually inject the instruction on to the processor 

core. 

So, this can change this is the set of registers and you can actually inject your 

instructions into the processor core. And you are and what your embedded ICE, this is 

in-circuit emulator what it this hardware block provides for, the support to examine the 

processor state, while this instruction execution takes place. 

So, what I am trying to say is that, these two enables say just consider this that some of 

this JTAG TAP controller enables what? Enables injection of instruction, instruction is 

what nothing but a binary bit pattern. Injection of that instruction on to the processor 

core and the processor core executes that instruction. 

And this embedded ICE gives your provision for checking the processor state, as 

instruction execution takes place. Checking the processor state can mean what? Maybe 

checking the value of the registers, it also enables you to introduce break points. So, I 

have enable therefore, by adding to this two blocks in the basic core communication 

facility. And the ability to see and observed, what happens inside when instruction 

execution takes place. 

This is the basic bus structure. So, what you have got here? You have got bidirectional 

data bus, here this is the bidirectional data bus and this is your input data bus. This is 



your output data bus, these are the two both the options are available. This is actually 

your external address bus, this is essentially the control bus. 

So, this is a very simplified picture of ARM 7 TDMI organization. In fact, the D and I 

actually indicated of the fact that I have got this JTAG, as well its embedded ICE sitting 

in the hardware. 

(Refer Slide Time: 32:32) 

 

It is supports some 7 supports 3 stage pipeline. So, effectively what we are seeing is that 

an instruction execution takes place 3 cycles. But, since I have a pipeline effectively 

what happens, once the pipeline is loaded for cycle, I can have one instruction executed. 

These the simplex three stage fetch decode execute. 



(Refer Slide Time: 33:03) 

 

At any time slice therefore, 3 different instruction may occupy each of this stages. And 

when the processor is executing data processing instruction, the latency is 3 cycles and 

throughput is one instruction per cycle. I hope you understood why latency is 3. And 

when accessing r15. R15 is address of current instruction plus 8, this is the key point. 

Why? Because, since you are doing pre-fetching, your PC when you are currently 

executing an instruction. Your PC gets pointed to the instruction, which is currently to be 

fetched. So, it is PC plus 8 and when interrupt occurs what happens? The current 

execution is completed and the interrupt is serviced. 

If not is case of an exceptions, like data abort or pre-fetch abort, where actually the 

exception occurs, while execution of this instruction. But, in case of FIQ or IRQ the 

interrupt service only on completion of the current instruction. And in this case PC points 

to what? PC plus 8 and these value will get loaded onto l r. 

But, when you coming back from the service routine. If you start execution from PC plus 

8 you are not doing the right thing. You are skipping and instruction. So, l r value has to 

be correctly adjusted, inside the interrupts service handling routine. So, that you come 

back to the correct point for execution. 



(Refer Slide Time: 35:07) 

 

So, there are, but one thing with ARM instruction set is that, all instructions are not 

necessarily single cycle instructions. The typical example is load multiple byte or load 

multiple or stored multiple instructions. So, these the multiple load. So, it has got 2 

registers to load and so the instruction has to be in execution for two cycles. 

And hence, execution of pre-fetch instruction will be now delete. So, other instruction 

like branch, subroutine call, exceptions, effect pipeline efficiency. And you have already 

seen, that we would like to use conditional instructions rather than branch. When, you 

have small set of instruction to execute to have the pipeline working in an efficient 

fashion. 



(Refer Slide Time: 36:04) 

 

Let us see what happens when an interrupt occurs, in the pipelining case. So, I am 

executing an instructions. So, I have shown here at this point that FIQ occurs. So, if FIQ 

occurs at this point, then this instruction will be executed. But, next instruction will not 

be executed, this is already been fetched. And these are the different processing states, 

which would takes place. 

So, now let us say from here where shall I go, if you look in to it, this move instruction I 

am just giving a typical examples. So, this move instruction, this is still this is what has 

been fetched. Because, it is a 3 stage pipeline and the next is X, because there nothing 

occurs. Because, now you are actually decoding IRQ, that is when IRQ or FIQ occurs. 

And then, you are trying to see what is to be done? See, FIQ occurs you actually go to 0 

0 1 C which is actually the vector. Now, at this vector you have got a branch instruction, 

you are branching to AF00. So, when you are branching to AF00, then this pipeline is 

again has to be flashed. So, I am you are going to this location. And at this location you 

are starting execution of the first instruction of the interrupt handler. 

So, effectively what we have seen here is the, minimum FIQ latency has to be here 7 

cycles. These are typical situation I may do something else as well. But, here at this 

vector, what I have got at this vector I have got a branch instruction. So, these branch has 

to be executed to actually move into the interrupt handler. And so there is a delay of 

about 7 cycles. 



And this is how the pipeline would be ((Refer Time: 38:13)). So, once at this point the 

interrupt occurs, I have to do this is taking place for the adjustments, corresponding to 

the interrupt. So, this has been fetched. So, I go to at this point, when I go to this point I 

am actually executing here, this is the branch instruction which gets executed. 

So, this fetch has already done and this has to be fleshed. And then, real execution starts 

from this points onwards. So, this is actually the first instruction of the interrupt handler. 

So, this is the scenario where you have got a 7 cycle in FIQ latency. 

(Refer Slide Time: 39:00) 

 

So, this we had already discussed now we are looking at this core. Because, next what 

we shall look at? We shall look at the signals, which are coming out and going in 

corresponding to this organization. 



(Refer Slide Time: 39:13) 

 

So, these are the different set of signals, we did not bother about each one of them right 

now. What is important is to know the groups, you can see that there is the set of signals 

which are enabling the debug operations. There are set of signals for external 

coprocessor interface. 

These are the power signals, this are for the JTAG controls, JTAG I told you is the port 

through which I can actually inject instructions onto the core. So, I need to have a JTAG 

control signals. Then, you have got the memory management unit interface, you have got 

this memory interface. That is how exactly the memory is to be connected, external 

memory is to be connected. 

These are your interrupts signals, out of each you can recognize that FIQ and IRQ, which 

are basic interrupt signals. This is the configuration signal, which indicate whether it is 

being configure in a big-endian or a small-Indian form. And these are your width control 

your clock control signals. 



(Refer Slide Time: 40:17) 

 

So, this is a kind of a description of the interface signals. What is important and 

interesting to note the memory interface. It provides 32 bit address, it has got 

bidirectional data bus and separate data out and data in. So, you have got in fact, these 3 

buses. So, to you can have a faster data transfer. And there are various signals, which 

indicates the kind of processor cycle, which is going on. 

Now, here we have given set. So, what you tells you is that, in request indicates a 

processor cycle, which request a memory access. It is not that all processor cycle request 

memory access. So, external devices has to be told that, whether access is required or 

not. And also it indicates, whether it is a sequential or non-sequential. 

That means, you are accessing a memory location, which will be sequential to that use in 

previous cycle or not. So, that enables design of the hardware appropriate design of the 

hardware. And the cycle’s which are defined you will find non-sequential memory 

access, sequential memory access, internal cycle. 

So, bus and memory in active. So, this bus now can be used by some other bus 

controller. Then, this is coprocessor register transfer. So, now the data transfer is to the 

coprocessor register and not to the memory locations. So, these are kind of bus status 

signals which are provided by the ARM 7. 



(Refer Slide Time: 42:04) 

 

Then, you have got lock. Lock indicate the process should keep the bus to ensure the 

atomicity of read and write phase of swap instruction. Swap means, a read as well as 

write. So, I require bus and bus should not be released in between. Because, otherwise 

the data integrity maybe at state. So, that is the ensure by the lock signal. 

This read and write, this is the standard read and write indicator. And this signals 

indicate, whether what is the memory access size? Are you accessing the byte, half-word 

or word . And this MMU interface, this is the Memory Management Unit, this memory 

management unit actually manages the memory. 

And it takes here of the fact, that if it is an a privileged mode your, if you are in user 

mode you are not accessing the memory area, which is allocated to a software, which is 

expected to be executed in a privileged modes. So, this memory pack partitions, virtual 

memory. All this things are managed by the MMU and these are the interface signals. 

Because, MMU you needs to know, the mode. Because, whether it is a privileged or non-

privileged mode, it also needs to know how to do the address translation. Because, if it is 

a virtual memory, appropriate address translation has to be done. Also it has to the abort 

signal, that whether this location is disallowed access or not. Then, where is this state 

which is indicated by the T bit, whether your processor is in thumb state or not. And 

configuration I already told you. 



(Refer Slide Time: 43:51) 

 

These are all interrupts and this initialization is the reset signal, which forces the 

processor to start from an known state and executing from this location. 

(Refer Slide Time: 44:06) 

 

The ARM memory interface has got I have already shown you the cycles. And this is 

exactly the definition of the details of the cycles. So, it says the ARM code now request 

the transfer to or from an address, which is at the same or one word or one half word 

greater than the preceding address. 



This is exactly the meaning of sequential access. This is non-sequential access, where it 

is not related to the previous address. And this is corresponding to coprocessor register 

transfer. 

(Refer Slide Time: 44:46) 

 

Next, we look at ARM 9 which is an enhancement over ARM 7. Now, ARM 7 was a 

Von Neumann architecture, this is Harvard architecture. Obviously, the Harvard 

architecture ensures increased data transferring. Because, you have got a separate 

instruction memory interface and a separate data memory interface. So obviously, the 

memory bandwidth is more. 



(Refer Slide Time: 45:35) 

 

It implements not a 3 stage, but 5 stage pipeline and this changes what implemented to 

achieve a kind of a CPI of the order 1.5. And to improve the maximum clock frequency. 

This 5 stage pipeline has got the following stages, fetch, decode, execute, buffer data, 

write back. In fact, these are the two modes, which are last to other two modes which are 

not their originally. 

Here, you can buffer the data or access data memory, which is different from instruction 

memory. And in the organization we are showing basically the different stages. When, 

you fetch the instruction, this instruction goes into what is call instruction cache, I-cache. 

So, this is where your fetch pipeline stages is executed,. Then, you do an instruction 

decode. 

Here, you do the decode as well as you select the registers. So, that you can actually get 

the data enable, the operands to come out of the registers. Next is actually your execute 

stage, where you actually have got your ALU. This is the same Barrel register that shift 

operation that I talked about, there would be a multiplier block. And these are all 

operations to do with address manipulations. 

So, pre indexing and other things if it is to be done, then this multiplexer comes into the 

play, this operation takes place and it is goes back. After the execution takes place, the 

results go to data cache. And this is what we call the buffering or the data memory access 



stage. After following this, you go to register I state and from here it is actually return 

back to the register bank. 

So, these are the 5 stages of pipeline, which is implemented in ARM 9. And you can 

realize that we are talking about I-cache and D-cache. In fact, this is the reflection of the 

flag, that we are talking about the separate instruction memory and separate data 

memory. 

(Refer Slide Time: 47:47) 

 

And this is a kind of a comparison between ARM 7 and ARM 9 pipelines. ARM 7 had a 

3 stage ARM 9 has got a 5 stage. In fact, what we are showing here is that, thumb 

decompress and ARM decode is actually everything put together to a decode. Because 

,this is TDMI; that means, I have got a thumb mode as well takes place here. 

And in this case of a decode, you have got the complete decode here coming into this 

block. As well as register read is also enabled here. I had already shown that in the block 

diagram. Because, I can enable the registers once I have decode then instructions. Next, I 

do that ALU operations shift and ALU, which is basically execute. And in fact, in the 

execute stage I had the register write as well in ARM 7. 

Now, that has been split, I have put in and intermediate data memory access of the 

buffering stage and register write stage. Because, in many cases I shall be writing the 

data on to the data memory, which is again distinct from my instruction mode. 



(Refer Slide Time: 48:56) 

 

Now, 9 E is a DSP enhancement. In fact, we had already discussed instruction sets. And 

architecturally you will find that, what is pin change is your ISA, the Instruction Set 

Architecture. It effectively means that, there enhancement in the ALU of the processor. 

So, you have got a saturation arithmetic, you have got this multiplication and accumulate 

operations. 

(Refer Slide Time: 49:31) 

 

So, let us see other things is interestingly there is a CLZ count leading zero instruction. 

So, if this is required for first normalization and division. Because, if I have a floating 



point number if I need to normalize, I need to find out how many leading zeros are there. 

There is a special hardware block to implement this. Because, this cannot be done using 

a sting standard ALU. And it has got a single cycle multiplier array, which is splits up all 

ARM 9E multiply instructions. 

(Refer Slide Time: 50:01) 

 

We shall just look at this enhancement, this is just a part of the data path again of ARM 

9E. In fact, 9E was; obviously, when we are talking about multiply an accumulate. And 

this is an instruction required for primarily convolution operation, hence an enhancement 

for DSP application. So, what you find is, this is a basic data path enhancement. So, you 

have got this multiplication taking place here, you get 48 bit or 32 bit product, which is 

added with a 64 bit register or a 64 bit register p r accumulation shows. 

So, these data can be added with the result of this multiplication and stored here. So, this 

is how the data path get enhanced incase of any. And this is basically your multiplier 

block. Because, this is between the multiplication operation, which is built in the 

hardware itself. So, these are the other combination of this operand which are possible. 



(Refer Slide Time: 50:59) 

 

This ARM920T is basically using this as a processor core, this is as a CPU core. This is 

what you get the complete processor core. So, you have got an instruction cache A, 

instruction MMU this is the memory management unit for your instruction memory. This 

is than the memory management unit for your data memory. So, you got to a two 

MMU’s. 

In ARM 7 there was only one MMU, because I was having Von Neumann architecture. 

And this is your external coprocessor interface and this is AMBA interface. AMBA is an 

interface protocol, but definition of a bus. 



(Refer Slide Time: 51:43) 

 

In fact, AMBA is advanced micro-controller bus architecture, which is ARM’s one chip 

bus specification. In fact, just like on your PC if you have got a PCI bus definition. So, 

this is AMBA is a 1 chip bus definition. In fact, this is basically your bus structure and 

this is your bus interface with the ARM. And these are the other one chip peripherals, 

which can be connected. 

So, on the main bus itself you have got a 1 chip RAM. Because, at will be first enough, 

the external bus interface block is also connected to the same bus. And there is a breach, 

breach through breach it can be connected to a peripheral bus. Because, peripheral bus 

can be possibly of slow bus compare to that of a system bus. 

So, it is kind of a hierarchical bus organization. So, on a peripheral bus you have got 

your timer, you have got your interrupt controller. Because, interrupt controller will be 

again interface to the devices. And this is your arbiter if there are multiple bus controllers 

and they are trying to access the bus I have to do an arbitration. So, I need a arbiter 

block. So, this is very broad overview of AMBA bus. 



(Refer Slide Time: 52:59) 

 

So, a simple AMBA system what should be there. On-chip, there will be an ARM core 

with a number of system dependant peripherals. Also required will be some form of 

interrupt controller, which receives interrupts from the peripherals. And raised IRQ or 

FIQ input to the ARM as appropriate. So, an interrupt controller may also provide the 

hardware assistance for prioritizing the interrupts. 

(Refer Slide Time: 53:29) 

 

So, it is becomes the part of the hardware as for as memory is concerned there is likely to 

be some narrow off-chip ROM or flash, which will be used to boot the system from. 



Because, during develop in face, you will be using the code from the core system maybe 

to test on the chip using your JTAG port. But, actually your code has to going to the 

flash or a EPROM in and for an embedded system. 

There is also likely to be some 16 bit wide RAM used to store most of the run time data 

and part of some code copied out of the flash. Then, on-chip there may will be some 32 

bit memory used to store the interrupt handlers. Interrupt handlers are basically the 

servicing for the interrupt, as well as the vectors tables and also the stacks. So, typically 

the picture would be something like this. 

(Refer Slide Time: 54:22) 

 

So, you have a interrupt this is what goes into the complete thing, you have got a ARM 

core. You have got the interrupt controller to which the peripherals are connected. Via 

this peripherals, you actually connect the I/O devices. And this peripherals generates this 

signals for the ARM core. This is the one chip 32 bit RAM, which may have the device 

handlers. That is the your device service routines, as well as your stack, as well as your 

vector. And these are the external memory. 

So, external memory you can use of different kinds. These are 8 bit ROM is a 16 bit 

RAM. But, they have to be organize such that they provide the 32 bit address reference. 

So, this the very simple AMBA system. In fact, this is a generic architecture are of all 

ARM based embedded applications, including many of your mobile phones. In fact, 

Nokia actually use ARM based a source is in that implementations. 



(Refer Slide Time: 55:17) 

 

The another enhancement of this ARM 5 architecture. Since, I am talking about mobile 

phones. And we talk about java enable mobile phone today in the market. So, you have 

got an extension which is call J TEJ. J to support java virtual machine for execution of 

the java byte code. Because, you know java one compilation generates a byte code, 

which is to be interpreted by the processor. 

So, that byte code interpretation request some hardware features, enabling accelerator 

execution. And that is put in the architecture in the J mode. 

(Refer Slide Time: 56:00) 

 



The other enhancement, which has coming with ARM version 6, which is again an 

enhancement for DSP target DSP application. Because, if it is going for mobile another 

application, you will find that your speech, your camera, your video. These are all 

signals which are to be processed. 

So, one of the interesting feature is ARM 6 is assigned instruction set. This provides high 

code density and low power, what is assigned instruction is single instruction multiple 

data. That, it usage of single instruction to execute on multiple data. And so it exploit 

what we call data parallelism. A simple example is this is QADD8 now what does; that 

means, it is registers these are operands and they will contain the 32 bit registers. 32 bit 

registers means, they will have 4 8 bit data value. 

So, when I am talking about QADD8, it means I am not talking about the 32 bit addition 

I am talking about 4 8 bit addition. And that is why, this is an example of signed 

instruction. So, corresponding bytes gets added and I use saturation arithmetic. 

 (Refer Slide Time: 57:15) 

 

There are other features are some of obsolete different instruction. This again an example 

of an UASAD here I have got 32 bits. So, what I shall be doing? I shall be subtracting 

individual bytes, the corresponding bytes of the registers. And the absolute different 

would be some down. And you can consider, that if I am trying to do a compute different 

between two small image areas consisting of pixels. 



What I shall do? I shall subtract the value of the pixels and add it up. And that would 

give me the different over a region. So, in this case I can use one instruction to compute 

different over as set of 4 pixels in the image. If I using 8 bits for pixel. It also support for 

Cryptography multiplication. A large multiplication, because many of the coding request 

large multiplications, it also has most sophisticated interface from multiprocessing. 

(Refer Slide Time: 58:23) 

 

So, what we have got is variety of features in the ARM core, which enables it is use for 

an number of application. In fact, ARM core or ARM processor architecture has been 

licensed to a number of users. And they have used Atmel, Cirrus logic, Intel, Samsung 

there are may products out of each. And ARM is mostly used as a processor core in SOC 

and ASICs as well. 

And there are example communication chips build by Philips, which is got a GSM add-

on to the basic processor. So, you will find all switch such variants coming from a 

number of manufactures. 



(Refer Slide Time: 58:57) 

 

And Intel has made one such enhancement, which is called X scale architecture, which is 

built around ARM 5TE extension. And this architecture is different, Intel develop its 

own micro architecture and coprocessor extensions. 

(Refer Slide Time: 59:15) 

 

So therefore, what we have done by now is your understand, you have understood the 

instruction set architecture completely. We have understood the basic organization of 

processor and the CPU. And we have also understood how the complete exception 

processing gets handled. So, this finishes our discussion on ARM. In the next class we 



shall discuss more about other DSP processors, which are used in many cases with ARM 

are as a SOC. 


