
Embedded Systems

Dr.Santanu Chaudhury

Department of Electrical Engineering

IIT Delhi

Lecture 6

More ARM Instructions

In the last class we have discussed some of the ARM instructions. We shall continue with

this instruction set of ARM processors and look at the different modes in which ARM

Architecture can be enhanced and corresponding to that how the instructions set changes.

We shall first look at load store instructions.

(Refer Slide Time 01:48 min)

Now, ARM is an example of RISC architecture. So, basically memory access is through

load and store. And this load store instructions and therefore for data transfer between

memory and processor registers. There are 3 basic types of load store instructions single

register transfer, multiple register transfer and swap. In fact multiple register transfer in

case of ARM is a significant departure from classical RISC model or RISC instructions

sets. The single register transfer supports signed and unsigned 32 bit transfer half-words

transfer as well as byte transfer. Let us look at single transfer instructions.

(Refer Slide Time 02:53 min)

These load and stored instructions are particularly for transferring data at a boundary

alignment. What do we mean by boundary alignment? It means that the data is expected

to be aligned at the correct memory address. So, when we load or store a word, the

address should be at the 32 bit boundary; when we load or store or half-word it should be

at the 16 bit boundary. In fact these load store instructions support a variety of addressing

modes. The simplest addressing mode is register indirect. Here the memory address is

specified in a register. Variation of this will be found in this case where I have specified

an immediate mode offset. This offset is added to the base register to get the memory

address.

We can even have register operation specified in this case I have specified a second

register and I have given a minus sign here. It means that there would be an arithmetic

operation performed between the content of r1 and r2 for obtaining the memory address.

This is true for store instructions as well. There are more addressing modes one of them

is scaled addressing mode. Now, I hope you remember that there is a barrel shifter in the

data path of ARM. In scaled addressing mode the barrel shifter is used for calculation of

address. So, address is calculated using the base address register and a barrel shift

operation. The same set of operations that we had discussed in the context of data

processing instructions are applicable here also. Then we have pre and post indexing this

is also a very interesting scheme of addressing memory locations.

(Refer Slide Time 04:43 min)

The two distinct modes are pre indexed with write pack and post indexed. The normal

mode that we have seen so far is typical pre index addressing mode. When we have pre

index with write back the interesting is that when we calculate this address of the

memory location what we have done. We have added the offset immediate mode offset

with the content of r1 and then what we do,

We update the address base register with the new address. Now, why it is a pre index

because when we fetch the data we use the address of r1 plus 4, okay r1 plus four in this

case four is an immediate value and then this r1 plus 4 value is loaded on to r1. In

contrast to this we can look at post index. In the post index you will find that syntax of

the instruction is slightly different. Here, what happens is that we update the address

register after address it used. What does that mean that means we use r1 for referring to

the memory and after we have accessed the memory. We modify r1 and load the

modified value of r1 back to r1. So, this is post indexing. So, the pre index means that

this offset is added to the base for accessing memory. In post index the base value is used

for accessing memory and then base value is added with the offset and this new value is

stored back to r1. See, if I again use this instruction in a loop then in that case the

modified r1 value would be used for accessing next memory location. Let us take an

example to understand it better. Here I am illustrating a case of pre indexing with write

back. So, we have got r0 as the target register and if you look here what we are telling is

that we have got this memory location. Let us say this memory location is has got some

value and then this memory location has got some other value. Now this register r1 which

is my base is initially loaded with 9000, okay. Now, after I execute the instruction what

happens? My r0 is loaded with content of this memory location because I have added 4 to

r1 to access the memory location.

(Refer Slide Time 07:52 min)

So, my r0 is now loaded with this memory location and then r1 content is also changed,

r1 is content is change to 9004. This is the basic operation that means what you can find

out that incase of pre indexing the content of two registers in this case. Since I am using a

load instruction gets modified the base register as well as that of the target register. Next,

we have got multiple register transfers. In this case we transfer contents of multiple

registers to the memory or content of multiple memory locations to multiple registers

using a single instruction. Obviously this provides and efficient way of moving blocks of

data between memory and the set of registers.

(Refer Slide Time 09:26 min)

And since I am using this multiple byte transfer or word transfer in a single instruction,

what happens is that this instruction cannot be interrupted under normal circumstances.

So, this instruction may increase interrupt latency. That means if there is an interrupt

pending that interrupt can only be serviced if and only if I have completed transfer of all

this, all this transfers completed all this transfers from memory or register bank. So, how,

what is the mnemonic used for this multiple byte load store. In this case I use LDM or

SDM.

(Refer Slide Time 11:01 min)

And the base register Rn determines the source or destination address depending on the

instruction whether it is a load instruction or whether it is a store instruction. Now, there

are also number of addressing modes which are supported here .So, I have listed this

addressing modes. We can have increment after, we can have before, we can have

decrement after, we can have decrement before. Now, what happens in this case? If you

look it, look at the other columns we have illustrated these operations.

(Refer Slide Time 11:32 min)

The start address when I am using addressing mode IA; so what I shall have, I shall have

the one instruction LDMIA Rn and I have got the set of registers. This Rn is the base

address is stored in this Rn register. And what I am trying to transfer? I am trying to

transfer the content of registers r1 r2 r3. So, the start address is Rn, the end address is

this. Why I am having this value because I am transferring what- the content of this

registers to memory. Since I am transferring content of registers to the memory, so what I

shall have? This address has to be incremented and they have to be incremented by 4. If

there are N N registers content is to be transferred. Then it has to be multiplied by 4

because ARM has got byte addressing because each byte has got a unique address and I

am subtracting minus 4 because it is a increment after.

So, final value of Rn is this. Similarly when I have got an increment before, the start

address is Rn the last 4. So, base address is added with the offset 4 and then what we get

the first register value is transferred. Here the end address would become Rn plus 4 into

N, okay and my Rn here also that is the final value of Rn will be Rn plus 4 into N.

Similarly, I can have decrement after and the decrement before modes. In this case

instead of increment I have got decrement as the basic operation. So, what we have

therefore seen is that using a single instruction by specifying the base register and by

specifying in this case the set of registers here I can load; here what is happening. This is

a load instruction, so what I shall be doing, this memory location pointed to by the base

will be loaded on to this registers. If instead of that if I got store I shall be storing the

content of the registers on to the corresponding memory locations. And the addresses of

the memory locations will be given by the content of Rn. Now, this multiple register

instructions in various ways facilitate stack processing.

(Refer Slide Time 14:57 min)

Now, what is the stack? Stack is implemented as a linear data structure which grows up

or down. So, I can have growing up stack or I can have a growing down or a descending

stack and stack pointer register hold the address of the current top of the stack. Now, how

shall I use these different addressing modes that I have discussed in the contest of stack?

Do you really need special push and pop instructions? Strictly speaking I do not need

why because I have got a symmetric organization with any of the register as space

registers I can use these addressing modes. If I am using these addressing modes then

using my stack pointer register I can implement either ascending or descending stack.

Hence we shall have in ARM all this possible modes of stack operations. We have full

ascending, empty ascending, full descending, empty descending. In case of full

descending, the stack grows up but the stack pointer points to the highest address

containing a valid item.

(Refer Slide Time 16:33 min)

In case of empty ascending the stack grows up but SP points to the first empty location

above stack. So, that is why it is empty ascending .Similarly I can have a full descending

whether the stack grows down and SP points to the lowest address containing a valid

data. In case of empty descending the stack grows down and SP points to the first

location below the stack. Now, you can realize that if I used stack pointer as my base

registers with addressing modes for multiple byte transfer that I have discussed that is

increment after increment before decrement after and decrement before. If I use these

addressing modes, using these addressing modes I can implement stack in any of these

modes that I have listed, okay. And this is a flexibility that this ARM architecture

provides.

If I compare this with a typical processor like your 8085 or 8086 depending on the

operations defined for push or pop instructions, the nature or mode of the stack gets

defined. And that is defined by the architecture itself, but here the mode of the stack

operation is programmer defined. So, we can now talk about stack instructions which can

implement full ascending or empty descending.

(Refer Slide Time 18:53 min)

Similarly I can have the other counter parts as well. So, we talk about instructions

LDMFA. LDMFA actually translates to this LDMDA and STNFA translates to STMIB

and SP points to the last item in the stack. When I am using empty descending this

translates to IB that is increment before and STMIA is increment after, okay and SP used

to the first unused location in the stack, okay. Now, in this case the interesting feature is

if you look into it, that these are not real instructions. In many case the ARM assembler

provides this instructions, okay and these instructions translates to one of these

instruction modes. Next, we have got swap instruction. In case of swap instruction what

happens- a word is swapped between memory and register.

(Refer Slide Time 20:12 min)

In case of SWPB, you swap a byte between memory and register and this is useful for

implementing synchronization primitives like semaphore. If you have already done a

course on OS, you know what a semaphore is and we have also discussed in the context

of PIC that is if you want to prevent access to a common memory location by concurrent

threads, that we want to restrict the access to a single thread when a memory location is

shared between two concurrent threads, we would like to use semaphores. To implement

such operations swap is a hardware supports; swap instruction is a hardware support.

Next, we shall look at control flow instructions.

(Refer Slide Time 21:15 min)

You have got branch instructions, conditional branches, conditional executions, in fact

this is the very interesting feature of ARM. ARM enables execution of each instruction

conditionally. Then you have got branch and link instructions as well as subroutine return

instructions. And these instructions are all used for controlling your program flow.

Typically branch instruction has got 2 variance; one is branch which is actually an

unconditional branch or jump.

(Refer Slide Time 21:46 min)

The other one is conditional branch that is you branch on certain condition. In both the

cases you have address label which is part of the instruction and is a signed pc-relative

offset. So, you jump to the location whose address is calculated with reference to the

current value of PC. Now, we can look at an example how to use this conditional jump

instruction. In this case if you look at here, that we have used multiple transfers, multiple

byte transfer instructions. This is load and this is store and then we have compared and

then we have jumped. So, I can have r9 pointing to source of data and r10 can point to the

start of destination data; r11 in fact r0 and r11 points to end of the source. So, what we

are doing here? I am loading this r9 is points to the source of data; so data is loaded onto

this registers and then I am storing them back. So, effectively these two instructions are

doing block memory copy. If you look into it I am copying what- a set of memory

locations from one base address, starting from one base address to another base address

because I have got the source in r9 and destination base in r10. So, these are two distinct

values so I can actually do a block memory copy using just 2 instructions. In fact here I

am checking whether my r9 that is it is end of the source because whether I have actually

reached the end of the source and if it is not again I am going back and I am actually

doing the loop. So, this is the simple code snippet, okay, of ARM instruction by which

we have shown how this load store compare as well as conditional branch can be used.

(Refer Slide Time 24:24 min)

This loop is typically a label, okay which will be obviously used by that assembler to

calculate the address. This address will be replacing these loop a symbolic reference and

it will be calculated with respect to what, the current value of PC. The assembler will

calculate the current value of the PC and with respect to the PC, the offset will be

provided here for doing the actual jump. An unusual feature of ARM instruction set is

conditional execution of each and every instruction. We have already shown that I can

have branch instruction with condition code but it is not that you can use condition code

only with branch instruction. You can use condition code with other instructions as well.

Here is an example where we have shown that this addition, okay; so this addition

instruction is associated with the condition code. Now, what does that mean? That is

addition instruction will only be executed when the 0 flag is set to 1. That is exactly the

condition code that I am referring to here. Now, if it is not so what will happen- this

addition instruction will be skipped and next instruction will be executed.

(Refer Slide Time 25:27 min)

So, effectively this ADDEQ will be converted to a no operation instruction. So, what are

the advantages? Why is that, that in ARM instruction set these kind of instructions have

been provided.

(Refer Slide Time 26:45 min)

Obviously it reduces the number of possible branches, okay. As I reduce branching if I

am implementing a pipelined architecture, then the number of pipelined flushed reduces

because if I have a pipelined architecture then what happens; I need to pre-fetch the

instructions and when there is a branch the pre-fetch instructions have to be removed

from the pipeline. Now, when I have a conditional instruction and I am not using

branching then the conditional instruction remains in pipeline only that this instruction is

not really executed and I replace that by nop, no operation. As a result, since I am

reducing the number of pipeline flushes I have got an improvement in the performance.

Also it increases code density. Why? Because a branch could essentially mean that I have

to actually used a branch instruction if I think in terms of the previous example I have to

used a branch on the condition code, branch on equality and then I have to used the add

instruction.

So, the instruction count becomes 2. If I use a conditional instruction in this case

instruction count is 1 and obviously my code density increases. So, a thumb rule says that

whenever the conditional sequence is 3 instructions or fewer it is useful to exploit

conditional execution than to use a branch. But if it is really a number of instructions that

is to be executed on a particular condition is bigger than this, what will happen. If you

use conditional instructions, your pipeline will only have effectively nops. So, when the

condition is not getting satisfied, the pipeline will effectively execute nop. So, your CPU

becomes under utilized, okay. So, when the branching that is branching say branch set of

instruction is small enough, you should use conditional instructions rather than branch.

That would increase code density and at the same time increase efficiency of your code.

 (Refer Slide Time 29:54 min)

Next, is branch and link instruction. This branch and link instruction is primarily used for

subroutine call. So, it performs the branch; using this instruction you can perform a

branch. But along with branching what happens? The address following the branch is

saved in the link register, the next value that is the return address is saved it in the link

register, okay. So, the basic different between ordinary branch and branch and link is the

use of the link register. In case of a branch the next value of PC is not saved in the link

register. In this case the next value is saved in the link register. So, here we are showing

an example that is when I do a subroutine call, I use branch and link subroutine. So, here

I am branching to the beginning of the subroutine and the return address which could be

the instruction following this branch will be stored in the link register. Now, I have got

only 1 link register, okay and there maybe nested subroutine calls. What is to be done

under that condition? For nested subroutine, you will be pushing r14 that is the link

register and some work registers in the stack and stack will be set up in the memory. So,

here I am just showing you how it is to be done. Say you are now in the first, inside the

first subroutine. You have called the first subroutine, okay using BL sub1. So, the return

address is stored in a link register. So, from this subroutine okay from inside this

subroutine you would like to call this, okay. You would like to call this.

So, then what you will be doing, I need to save what, I need to save the link register as

well as the current working registers. So, I use a multiple transfer instruction, okay

multiple store instruction, multiple byte store instruction. So, where I am storing, I am

storing to the location pointed to by r13 which is my stack pointer. What I am storing? I

am storing the work register as well as the link, okay. So, the link register is link of the

previous subroutine call. Now, when I execute this BL sub2, the return address from this

will be stored in the r14, the current value of r14 and the previous r14 is now saved in the

stack. So, this is how the nested subroutine call is to be managed ion ARM processors.

Then how do you return from subroutine. Now, there are no specific instructions like

return because the moment I can load my PC with the value of the link register I have

returned to the main flow from where the subroutine was called. So, the simplest thing

would be this that is move you move r14 to the PC which is your the r15 that is the

register which is your program counter.

(Refer Slide Time 33:50 min)

But when the return address has been pushed into the stack then you can use what, this

kind of instruction okay a load instruction which uses the stack pointer register r13 and

you load the value onto the set of target registers. Now, what is interesting in both these

cases you will find that when I am really returning from the subroutine, if I am using this

multiple word or multiple byte transfer instructions, what it ensures, it ensures that you

registers are always correctly loaded because this register transfer cannot be interrupted.

If I am using, say for example, you do not have this multiple byte or word transfer

instructions or you are not using this instructions you are using single register transfer

instruction for loading the parameter pack onto the registers while returning from the

subroutine what can happen. If an interrupt occurs in between you will jump possibly to

an interrupt service routine, okay.

And these register will be lost and the state of the computation will not be correctly

restored when you come back and in fact typically when I need to return from this kind of

subroutines I would like to do what- disable interrupt. So, that the status of the registers

are correctly saved, okay. If I am using this multiple data transfer instructions, I make

sure that the state of the computation can not be corrupted by an interrupt .But what is the

consequence, I already told you that interrupt latency increases. So, when you are writing

a software these has to be kept in mind and your timing calculations have to be

appropriately done. Next, we shall look at software interrupt instruction.

(Refer Slide Time 35:56 min)

A software interrupt instructions causes what we call a software interrupt exception and

these provides a mechanism for applications to call OS routines.

Now, typically if you have this instruction that SWI which is software interrupt

instruction; now just like any other ARM instruction I can have a associated with it a

condition code and I have a software interrupt number associated with it. In fact in a way

you can realize that software interrupt is what, you are actually calling a routine, okay.

That means you are calling a routing which is part of the operating system and not part of

your program that is user code. You are calling a routine which is part of your operating

system and not part of your own set of code. Now, what is the different between a

software interrupt and subroutine call; this is the basic different that in case of a

subroutine you actually call a subroutine which maybe part of your code and the

subroutine can be located anywhere in the memory.

But when you are actually using a software interrupt, the software interrupt servicing has

to start from fixed locations, fixed vector locations and that is why you can established a

kind of a universal protocol for accessing OS utilities from the applications of the users

because if the OS locates the utilities at different memory locations and if you have to use

a subroutine call to do that, then it becomes an unmanageable situation; you have to

remember and you have to be notified and told about the location of all these OS

routines. So, that you can use them through a subroutine call when I using a software

interrupt the protocol gets fixed, you exactly know where the interrupt handler is located.

And there is another real advantage of using software interrupts in case of ARM there is a

mode switch because I have already told you that your application program will run in

user mode, but OS routines will run in supervisor mode.

So, when you have to actually call the OS routines, you have to switch mode from user to

supervisor mode and supervisor mode is a privileged mode. So, software interrupt

enables this switching of mode as well. In this case, in case of a ARM it sets the program

counter PC to the offset 08 in the vector table. In fact I am not going into the details; this

can be a different address as well. So as I have already told you, these software interrupt

instruction is typically part of user program.

(Refer Slide Time 39:52 min)

So, it is executed in the user mode and instruction forces the processor mode to become

supervisor and this allows the OS routine to be executed in privileged mode. Each

software interrupt instruction has an associated number which is used to represent the

particular function caller feature. But this number is not directly used by this instruction;

please keep this in mind. This number is not directly used by this instruction. In fact what

happens is, the software interrupt handler routine or the exception handler can use this

number for identifying the service to be provided. You need to pass parameters, so use

typically registers for passing the parameters. In fact return value is also passed using

registers. So, let us take an example; this is an example of a software interrupt instruction

and in this case you have got, this is your CPSR which is the program status register I am

showing you these are the flags- condition flags. These are your interrupt enable disable

flags, this is the thumb mode flag and this is the mode bit which is now user mode.

This is currently of this value. So, currently this is the instruction which is to be executed

and this is the software interrupt instruction. This lr is the link register value, some value

okay which is not really consign right now in this context of discussion and this lr is what

the r14 value.

(Refer Slide Time 41:11 min)

And you can have this register r0, okay. You may use r0 for passing parameters; so I am

just showing one some value or 0 having 12. So, what happens when the software

interrupt instruction is executed? These kinds of changes take place. Obviously the mode

now switches to the system. So, it is SVC and this is what, this is saved program status

register. I hope you remember this register that I had talked about in the last class; this is

the saved program status register. This register will have the previous value, the previous

value the mode was user, so that is saved, but in this case you will find that these bits

remain unchanged. The other bits remain unchanged. Now, the PC value, okay has been

changed to the desired location and now this lr is what, this lr value if you see, lr value is

will be this location okay and what is the interesting feature. The interesting feature here

is that your lr is what; now linked register is r14 is SVC. r14 SVC is what the copy of r14

which becomes available in SVC, okay. Now, we shall look at some of the program

status register instructions and there are typically two instructions to control PSR directly.

One is MRS another is MSR.

(Refer Slide Time 43:33 min)

MRS transfers contents of either cpsr or spsr into a register and MSR transfers contents

of register to cpsr or spsr. Now, there are this example, example is that of enabling IRQ

interrupt. So, how will you do it? So, the code uses these instructions, okay; this is for

accessing cpsr, so I get the cpsr. Then I use the bit manipulation, the PIC instruction and

then I load it back to cpsr. So, the PRE in this case I was not set and in this case I was set

I am showing in a small the change.

(Refer Slide Time 44:04 min)

So, now this is the modified status of the IRQ flag that is this is the masking bit. So, what

I have, these instructions are typically executed in SVC mode. So, I told you that SVC is

the privileged mode, so in that case you can actually modify this, these bits, okay. So,

that is why you have got these instructions which are available in your privileged mode.

In your user mode you can only change the flag bits and not the status and mode bits.

Next, we shall look at co processor instructions. In fact this is again another interesting

feature of ARM because ARM architecture as such is an extensible architecture. That

means what we have discussed so far is basically the instruction set which is supported

by the core ARM processor.

Now, I can have add on coprocessor to that core. These core processors can be targeted

for specific applications; a very common is memory management application. Now,

when we have got a coprocessor, what does the coprocessor mean, it effectively means

that I am having another processor working with my original processor and what is

interesting. Whatever instruction I actually fetch from my program memory that becomes

visible or available in a sense to the coprocessor. And coprocessor can execute those

instructions if those instructions are meant for coprocessor.

(Refer Slide Time 45:07 min)

So, that is why in the instruction set of ARM you have got what are called coprocessor

instructions. In fact the pneumonic for coprocessor instruction is one of the coprocessor

instructions that is coprocessor data processing instruction is CDP. Now, this CDP

instruction will be useful if and only if there is a coprocessor core present in the actual

chip- ARM chip that way you see. And these instructions will have as part of its parts of

its operands the specification of the operation that coprocessor is expected to execute,

okay. So, it will be for coprocessor specific instructions. The only thing is that when I

have a CDP, so CDP will stand for certain binary code and by looking at the code ARM

would know that this instruction of the coprocessor and coprocessor would know this is

an instruction for the core processor to execute.

Now, ARM has a provision for having up to 15 to 16 coprocessors, okay. So, what you

have got as part of the instruction, this filled with specifies the coprocessor number. Then

you have got opcode, these opcode describes the operation for the coprocessor that means

this opcode is expected to be recognized by the coprocessor and not ARM. And these

could be the registers of the core processor for doing the operation; in fact optionally you

can specify additional opcode for the target coprocessor. And this is a typical syntax for

coprocessor data processing instruction. You have got similarly coprocessor register

transfer and memory transfer instruction because if I have a coprocessor that is again

another processor, it will have registers I need to a instructions to transfer data between

the registers between register as well as that of memory. Now, we look at thumb. Thumb

is what? A16 embedded 16 bit variant of ARM.

So, what we say in case of thumb, a subset of the 32 bit instruction set is encoded into a

16 bit subspace for thumb. In fact thumb has a higher performance than ARM on a

processor with 16 bit data bus. What does it mean? It means that if I now build, ARM is

basically a 32 bit processor, if I build a processor with 16 bit data bus then if I am using a

32 bit processor I have a degradation in performance, so if I use the 16 bit variant I shall

have a much better performance because I shall be getting the 16 bit word and each

memory. You can understand very simply your memory transfer becomes much more

efficient. But actually what I have you got? You have got a thumb embedded into a 32 bit

processor. So, when you use thumb, you use thumb when you actually require 16 bit

operations and not really 32 bit operations. And in many cases the 16 bit is good enough

to specify 16 bit operations and even 32 bit operations can be also specified by 16 bit

instructions. So, thumb is good for specifying 16 bit, 32 bit operations using 16 bit

instructions. If I am doing that effectively what happens? My code density increases and

that is the prime motivational factor for enhancing ARM architecture with thumb mode.

(Refer Slide Time 48:48 min)

So, thumb is targeted for what we call memory constraint embedded system. Let us take a

simple example to understand this code density. This is a code for divide operation. This

is ARM code when it is not operating in thumb mode and this is the code when it is

operating in the thumb mode. Now, you will find here what I have done is obviously

since it is a subset, the simplest thing is, you will not find this kind of conditional

instruction in case of thumb because it cannot be accumulated in a 16 bit instruction

word. 16 bit processor means a 16 bit instruction word and also you do not have this kind

of variants sub. SUBs is what? The instruction when it FX is the flags. Now, it is a

division operation implemented by I hope you understand repeated subtraction, okay

(Refer Slide Time 50:54 min)

Now, here the number of instruction is 5. Each instruction occupies 4 bytes. So, it is 20

bytes is the total memory requirements. Here, I am doing the same operation because if

you look into it I have got my, I am doing operations involving same registers, okay, r0

r.1 And in this case what is interesting? The total number of bytes required for coding the

same division operation is only 12, okay. And this increases effectively my code density.

This is the reason why you have got 16 bit thumb more embedded into ARM, okay. In

this case I really do not need to use 32 bit instructions. So, I can use 16 bit instructions,

the instruction count can be more but the memory usage is less and hence I can write

code which can be accumulated in less memory. So, typically thumb instructions are

subset. So, there are some restrictions, only low registers r0 to r7 is fully accessible in all

operations. High registers accessible with only MOVE ADD and compare instructions.

Only branch instruction can be conditionally executed that is I do not use condition code

with each and every instructions.

(Refer Slide Time 52:44 min)

And Barrel shift operations are separate instructions. We do not provide it as part again

the same issue is that the coding instruction within 16 bit word. And the next interesting

thing is how do you switch from ARM to thumb. So, what we call ARM thumb inter

working. In fact for this purpose we typically use the instruction BX and BLX.

(Refer Slide Time 53:00 min)

Now, BX is used, the typical syntax is BX r0 and BLX is r0. The BLX is similar to

branch and link and this is typically branch kind of a thing, branch kind of an instruction.

So, when I execute BX or BLX in ARM mode that I am currently executing in ARM

mode and execute this instruction, it enters thumb state if bit 0 of the address in Rn

because this register can be any of the registers. Here as an example I have shown r0. So,

effectively bit 0 of the address which is specified in Rn is set to binary 1, okay. So, bits 0

if it is one of the address because this address is what the branch address, if 1 then this is

interpreted as switch to thumb mode, similar thing true is BLX. If it is 0 send from thumb

it can enter ARM mode. So, you can see that very easily I can do a switch, okay. Now,

the interesting feature here you can under stand why this bit is used because if you

typically look at that an address in case of a thumb mode will have last 2 bits 0 0 because

it will be at the 32 bit boundary, okay. So, that if I am using 1, so I can tell the processor

that I am now switching. Now, the architecturally if you see the thumb instruction

decoder is actually placed in the same instruction data path.

(Refer Slide Time 55:06 min)

What we call instruction pipeline path of the decoder and this thumb instruction decoder

is nothing but actually a thumb instruction de-compressor. That means it de-compresses

the 16 bit compress instruction, okay to a 32 bit value which is actually decoded by the

actual ARM instruction decoder, okay. So, now this multiplexer, okay you have a 32 bit

data and then this multiplexer is enabled by the appropriate bit. If this multiplexer is

enabled, then only this de-compressor the instruction will go through the de-compressor

and de-compressor means what, the thumb instruction is actually translated to a 32

instruction internally so that it can use the same instruction decoder. Is it clear?

Externally you are using a 16 bit instruction; internally it is getting decompressed to a 32

bit instruction so that it can use the same instruction decoder. We shall now briefly look

at this architecture 5E extensions. In this case, you have got what, this extension is

targeted typically for your signal processing operations.

(Refer Slide Time 56:24 min)

So, you will find in the instruction set of ARMv5E, okay ARM version 5E- signed

multiply accumulate instruction. We have already studied multiply accumulate but in

those cases we say that multiply accumulator does not have a signed version. So, it has

got a signed version, it supports saturation arithmetic and it has greater flexibility in

dealing with 16 bit data so that it can be used for 16 bit audio processing in the ARM

mode itself, okay. So, what is really saturation arithmetic? So, normal ARM arithmetic

instructions typically wrap around when there is an overflow of an integer value. I hope

you know all that; that is when it is all 1, 32 bit all 1 and if I try to add 1 its value will

become 0. The similar thing, if there is an underflow B 1 0 0, it will come all 1. So, that is

basically the under plan overflow wrap arounds. Now, using ARMv5E instructions you

can saturate the result that means the result will be stuck at the maximum or the minimum

value.

(Refer Slide Time 57:11 min)

So, the result remains that maximum or minimum value, okay. So, this is saturation

arithmetic and for that you have got additional instructions. These instructions typically

are indicated by Q as a first letter; I have given two examples QADD and QSUB. So, in

this case overflow or underflow will keep the value of the corresponding result register at

maximum or minimum.

(Refer Slide Time 58:14 min)

So, this finishes our discussion on ARM instruction set. We have also looked at today

thumb mode of ARM. And the other aspects of this ARM architecture, in particular, we

have not discussed in detail intra processing because you know intra processing is critical

for any embedded applications. As well as other features of ARM architecture we shall

take up next. Any questions?

See it is, the question is- what is the motivation for different mode of stack operations.

This different mode of stack operation is decided by the programmer, what I have trying

to illustrate is that these different addressing modes facilitate stack implementation in all

these variants. It is not architecture defined. So, this, the flexibility that these different

addressing modes provide you that enables a programmer to implement stack in any of

these modes that suites his application. Any other question, okay then we shall meet in

the next class and discuss remaining aspects of ARM architecture.

