
Embedded Systems

Dr. Santanu Chaudhury

Department of Electrical Engineering

IIT Delhi

Lecture - 33

Platform Based Design

We were discussing Platform Based Design, in the last class platforms providers with a

set of possible architectures to be explode for designing an Embedded Systems. Today,

we shall continue that discussion. In fact, platforms enable as we have already seen,

software and hardware reuse.

(Refer Slide Time: 01:17)

We would like to use as many hardware as components, because that give an advantage

of knowing there performance statistics. Like power consumptions as well as the time

taken to do a particular computation on the hardware block. We would like to use

software libraries, wherever possible. And we can do that by making use of the software

platform, which can be accessed for an application to an API.

And the software platform makes use of an underlying or task kernel, which simplifies

design of multitasking system. So, these are the basic features of platform based design

approach. So, related to this is that, when we are starting from a functionality and gone

into a task graph. The question is, how do you map your task or your application to a

platform? And one aspect of the mapping is the mapping on to the hardware architecture

of the platform.

 (Refer Slide Time: 02:33)

So, we have to keep track or know about the system topology, requirements about the

different processing elements. What are the different kinds of communication channel

available there may be constraints in terms of communication channels. In fact, we have

seen in the last class an example, where we might designed a platform around arm,

where AMBA bus provides the communication interface and that may be a constraint.

But, we have to do the design keeping in mind, I have got the AMBA bus for

communication, on top of that there are software services. So, the software services have

to be made use of to coordinate the different functions, which have been performed on

the different hardware blocks, as well as for invoking those functions through your

software services.

(Refer Slide Time: 03:48)

The first question that comes up is how many processing elements to you required for a

given application. In fact, this might lead to also the choice of the platform, if you are

talking about using one big CPU. Then, obviously, we might light to go for a platform

which has got one CPU along with may be some amount of programmable logic, which

may be through your FPGA block may be implemented or we might not required even

that programmable hardware.

We can build in the behavior completely using software, so in that case the instance of

the platform would be particular software running on a big CPU. But critically that

depends on your time constraints. In fact, if you go back to the example of your camera

design that we had considered, we are not being able to do the design using only 8051

simply. Because, I had the timing constraints that the camera should be able to take the

next snap within one second and I cannot do compression of the image using your 8051.

Even when I am using additional logic on FPGA blocks. So, tight deadlines in many

cases are also in compatible with multitasking, when we really have the deadlines and a

deadlines are universally to be obeyed in a real time application. So, what we need, we

need to mapped task now to different hardware units, some tasks may be to one CPU

other task to may be a dedicated hardwired unit.

Similarly, tight communication deadlines discourage shared communication links. So, in

that case we might need to build dedicated communication link using the configurable

logic facility available on a platform.

(Refer Slide Time: 06: 04)

So, therefore what would be the reasons for having dedicated unit, we shall have

dedicated units only when the shared unit is not fast enough to meet our timing

constraints, as well as our deadline requirements. In fact, what we have found is that

even when if I use rate monotonic scheduling. The utilization of the processor

asymptotically approaches about 69 percent, so what it implies. It implies, that we really

have hard deadline constraints using a simple CPU and trying to use that CPU optimally

by following a proper scheduling approach will not giving results.

If, your constraints are tight enough, so under those circumstances you have to go for

dedicated unit. Also there are overhead effects as I have told you in a software platform

my RTOS kernel can be made use of for managing the concurrent model, but each task

will correspond to a process in RTOS and there would be context switching. The context

switching overhead can actually affect my timing constraints, because of the context

switching overhead I might not be able to meet my timing constraints.

When we are using one CPU and mapping multiple tasks on that CPU. At the same time

there can be cache thrashing; that means, when we are switching from one task to

another I might need to reload the cache memory, so there will be miss and hit at regular

suggestion. When I am trying to access pages corresponding to one task, I shall

encounter and miss, I have to reload and there for the task for the small time period I

might have the pages in the cache.

But, whenever there is the task switch I might not get those pages on the cache and there

will be a miss. The moment I have got cache thrashing coming into the picture, we are

paying for performance and not only performance, we shall be paying for energy.

Because I need to transfer the data from main memory to cache, so energy budget will

also increased.

So, under these circumstances it may a good decision to go for a platform, which

provides the support for multiple CPUs may be multiple ALUs, as well as you might like

to have a dedicated FPGA block, where you would like to implement a specific

functionality. So, that FPGA block in that case becomes the dedicated unit.

(Refer Slide Time: 09:12)

So, therefore the question comes up is, what kind of processing elements Hardwired

versus programmable. Now, it depends on what kind of algorithms that you are making

use of. In fact, in both that cases, if you look into it if it is a programmable option that

means, if you have a multiple CPU and you would like to implement a certain

functionality on another CPU the entire implementation is software based.

And there we need to have efficient algorithms, but if you looking for a dedicated

hardwired to be built for that purpose then you got to have an algorithm, which can be

translated easily to an efficient hardware implementation not all algorithms can be

directly mapped on to hardware. It might requires some world to map it into a hardware

and you will be using, possibly VHDL to code that hardwired algorithm for the target

dedicated unit.

In fact, when we are using a programmable CPU, the chip vendor selection usually limits

the choice. In-fact you cannot have all possible kinds of combinations, see if I go for TIs

OMAP I know what kind of CPUs are available and how the heterogeneous task graph

for an application should be mapped on to the CPUs taking into account there

characteristics features. And what do you would to like, if you are going for a multi CPU

platform to maximize parallelism and that would give you a maximum benefit.

But there also we have to keep in mind that when you are looking at a task graph, the

alternate branches of the task graphs are getting map to different CPU. So, the total time

delay would be decided by the time taken for the longest branch. So, when you are doing

an allocation that point has to be kept in mind to make sure that finally, you satisfy the

timing constraints. We are looking at one problem, one aspect of this platform based

design, where we are having.

(Refer Slide Time: 11:41)

Let us say as CPU, along with some kind of a programmable logic the question is we

need to have some functionalities to be implemented in hardware, depending on my

timing constraints. Now, you have generically two basic approaches, if you really have a

soft core, you would like to modify the CPU add on new instructions and get something

done. On the other hand, your other approach could be if you are not having a soft CPU

or a soft core based platform, you might be having a hard core CPU with a

programmable logic on the platform.

Then you would like to design the accelerator that means a particular hardware function

to accelerate one bottle neck that you figured out. See if you go back again to the camera

example, we have found the DCT was the bottle neck. So, we might like to use this

FPGA block to implement DCT to remove that bottle neck. So, you are not modifying

the CPU by any sense, but we are implementing a special functional unit and that in

many of times you refer to a accelerators.

In general purpose computers, you do use very commonly graphics accelerators, which

accelerates, graphic state of processing for the purpose of realistic image synthesis on the

screen, which you need for variety of applications including gates. So, accelerator

provides accelerated options.

(Refer Slide Time: 13:38)

So, how do you go for such an accelerated implementation, we can look at a possible

implementation platform and we are just looking at one example platform, which is

actually available commercial. In fact this comes from arm manufactures, so what we say

arm integrated logic module. So, here we have got a basic arm processor based card,

which may be an arm nine based card, if, you are looking at arm nine integrator to which

an FPGA accelerator board can be plugged in.

The FPGA interfaces to the arm processor via AMBA bus via AMBA bus. So, here the

communication is fixed, the FPGA can use AMBA bus to connect to SRAM and IO

devices contained on the integrator board. So, the integrator board is basically your hard

core host CPU and this accelerator board is the basic hardware frame work on which you

would be implementing the required function. And these accelerator makes use of the

same AMBA bus to communicate with the processor, as well as it make for making use

of the memory and IO devices.

(Refer Slide Time: 15:16)

Now, what are these FPGAs really if you are trying to design a function, we should

know what are these FPGAs, in fact FPGAs are in a way a programmable fabric that can

be dynamically reconfigured. In fact, this point we have looked at when you looked at

reconfigurable SOCs. So, basic job now turns out to be mapping of your task to FPGA.

Typically, only the time consuming computations are mapped, that computations which

are basically bottle neck.

So, one way to identify such computation is by which process, we can actually compiled

the entire task by encoding it may be in C or a procedural language compile the entire

task, run it on the simulated of the CPU, profile the code, find out the parts of the code

which had actually consuming maximum time and figure out whether the code is really

violating the timing constraints. If it is violating the timing constraints you should

identify from the profile code the bottle necks.

The functionalities implemented in the bottle neck should really be mapped to FPGA.

The computations in this case have to be expressed in languages like VHDL. So, that

means, if that is the software algorithm it has to be mapped to a sequence of hardware

computations or hardware operations, which can be encoded in a language like VHDL.

Which enables you a ((Refer Time: 16:54)) as well as register transfer level, also

interconnect level specification of your computation.

But, the issue now turns out to be that you have expressed your computation, but that

computation has to be mapped among the logic blocks of the FPGA. Because FPGA is

what we said is the programmable fabric in a sense it contains, a set of programmable

modules, we shall see examples of those soon. But let us try to understand what FPGAs

are right, now conceptually there would be a set of logic blocks. So, when you are

writing a computation in VHDL, it comprises of a set of functions.

Now, these set of functions have to be again partitioned and mapped into the FPGA

blocks, for that we need to use what we called place and route tools for partitioning the

circuit, which you can actually synthesis from your VHDL description of your

computation to different logic blocks on the FPGA. And typically a structure of this kind

of an FPGA base code is FPGA, plus memory on a peripheral board. This memory can

have the data which is used by the computation that the FPGAs expected to do.

In fact, you can get FPGAs in various forms FPGAs can be some FPGAs can be

programmed only once. So, once it is programmed it can be changed, there are other

FPGAs which are reprogrammable FPGAs, which actually can form the reform

configurable component in a platform.

(Refer Slide Time: 18: 44)

So, what are really FPGAs, FPGAs we said is the configurable logic and here we are

showing a very simple example. In fact, this is a basic logic block, you have got a four

input LUTs, so it is a kind of a combinational circuits, this is another 4 input LUT. So,

depending on the four inputs you can synthesis any 4 input functions the basic idea is

that and this is the multiplexer, depending on control inputs you can choose the functions

from this two blocks and these are the flip flops.

So, this forms what is called a basic logic block, which consist in a way a set of look up

tables connected by a programmable interconnect. In fact, this multiplexer tells you

which one is to be connect to the flip flops and subsequently these blocks themselves can

be connected in a programmable way to realize the computations. So, effectively what

we have seen, we are seeing that we have got a set of combinational circuit blocks, we

have got a set of flip flops registers.

And if I have these set of blocks and if I have the freedom to connect them in any way I

would like, I can synthesis any combinational or sequential logic functions. And any

hardwired unit which is doing any kind of a function therefore, can be synthesized

through this kind of FPGA blocks. In fact, this is showing you an organization, where we

say that this is the logic block, these are effectively your IO blocks and these represents

the interconnect pattern and this inter-connection patterns it should be possible for as to

program.

(Refer Slide Time: 20:39)

So, typically therefore an FPGA consists of following blocks, what we call is IOB that is

input output blocks. Then you have got configurable logic blocks, these are the basic

units to which your functions are mapped and then you have got programmable

interconnections.

(Refer Slide time 21:10)

So, if we look at this is one FPGA there are various manufacturers we are looking a

Xilinx FPGA organization. So, this is exactly what we have got, we have got your

configurable logic blocks. These are your programmable interconnects. So, how this will

be connected these can be actually programmed and these are called long interconnects,

these are your IO blocks depending on your interface to the external world this IO blocks

can be set.

In fact, what is your programmable part of the logic you actually can synthesis what this

logic blocks can actually do, you can synthesis how this logic blocks have to be

connected. Also you can specify what kind of inputs should come into this logic block so

that means, using these blocks you have the ability to synthesis any kind of the circuit.

And in fact, SRAM cells at used encode the configurations, when I am using SRAM

cells to encode the configurations, which has actually means that if I change SRAM data

I can get another configurations for this FPGA block.

(Refer Slide Time: 22: 34)

Let us look at an examples, CLB If you look into here I have already given a simple

example, here this is example from an actually FPGA block. See these are your 4 input

look up table implementations, which can synthesis any 4 input function. This can

synthesis another any 4 input functions and this is can synthesis a 3 input functions. This

can synthesis a 3 input function and these are all multiplexers and these input is basically

your control input that means, using these inputs, you can actually configure the system

to synthesis different functions.

If you look into this path, this actually tells you that whether this H 1 is to be computed

or not. In fact, the other information which are coming out, that is your controlled inputs

for your multiplexers and others that also can be provided through this inputs. Here, we

have got the flip flops, this flip flops also have got set, reset logic, we have also got the

set reset logic and they can be positive or negative edge triggered synchronous or

asynchronous and you can provide the clock as well clock as well to this blocks.

So, effectively what you are finding here is that you can synthesis logic functions both

combinational and sequential logic functions even using a single FPGA, block logic

block. But and you can synthesis; obviously, more complex functions when you connect

this logic blocks together. So, effectively what we have got, we have got therefore a kind

of a programmable fabric to synthesis any logic functions. So, in a way we have got what

we called hardware programmability.

Try to distinguish between the software programmability with respect to hardware

programmability in terms of your platform based design. FPGA is providing with you a

feature for hardware programmability. That means you can synthesis different functions

by selecting, which four input functions to be implemented here, selecting how this

muxers should be configured, multiplexer should be configured, figuring out or telling

how this registers should be really behave.

(Refer Slide Time: 25:32)

And these becomes the programmable switch this is the programmable switching matrix,

which is connecting the different CLBs together and I can load. In fact, the data on to

this matrix to decide on the inter-connection and as well as for configuring, may be the

CLBs because they have to provide various kinds of control inputs. So, it will come from

one CLB to another and you can be an input as well.

So, the switching matrix determines the inter connectivity between the logic models so;

that means, when we are looking at the problem of designing an accelerators it means

what, the function which is to be implemented in hardware has to be mapped to FPGA.

So, if you are using mapping tools straight away then what do you need, you need to

encode your function in VHDL use the tools to simulate and find out first whether your

VHDL code is correct or not.

Second thing, whether your VHDL code is synthesizing a circuit, which can satisfy the

timing constraints, if you are satisfied with that then you do the mapping on to that

FPGA block and once you have done in the mapping you have got an FPGA based

implementation of the function.

(Refer Slide Time: 27:03)

So, therefore, if I now have got that implementation, I have got an accelerator, the

question is that implementation also implies that you have designed the glue logic, using

which the accelerator knows how to communicate with the CPU and memory. So,

typically what happens is the CPU puts in a request to the accelerators. Accelerator

performs the function. In fact, it can access the data because to perform the function it

would deep to access the data. So, it will access the data which is in the memory.

And can write the result back to the CPU, add the memory or you can write the data on

to the memory and inform the CPU that it has written the data on to the memory. This is

how typically and accelerated functions and this interface forms part of your glue logic.

(Refer Slide Time: 28:07)

Now, this takes as to the software aspect of the whole design, I told you that a platform

based design is just not hardware design, but software design as well. The question is if

you have got the CPU and accelerator, so how should the software be designed to

manage these two things. So, typically what we say is that, these kinds of configurations

would require a multithreading implementation. Why multithreading, one of the threads

can manage the CPU task the other thread can actually look at to the accelerator.

Obviously, the thread is not really getting executed on the accelerator, but keeps track of

the job being done on the accelerator. Because what would be really that communication

modality between the CPU and accelerator, will it be a blocking communication. That

means, the CPU we have found that CPU typically request the accelerator to do the job.

So, if the CPU is requesting the accelerator to do the job will CPU get blocked

If, I really do not have a multithreading kind of an environment, that CPU can actually

be blocked and wait for the result to come back from the accelerator. If you are really

looking at a multithreaded implementation then thread can be blocked, but CPU can be

used for servicing some other thread, CPU can be used for servicing some other thread.

So, typically a kind of an accelerator based implementation would like a software model

which is the concurrency based and the thread based.

So, that configuration can come from your API definitions, because through your APIs

you will be managing the concurrency models. And this concurrent threads you will be

linked with the different tasks, which have been done on the CPU with the help of the

accelerator, please try to keep this in mind that although this task is getting mapped on to

the accelerator CPU has to keep track of the data. So, that task is being mapped to the

thread which is running on the CPU.

So, actually CPU in a way is still sheared, although the actual computation is being done

by the accelerator. Along with it also there had issues of memory design what kind of

memory system you would like to have.

(Refer Slide Time: 30: 48)

Cache if it is cache, then what is the size, what are the numbers of sets to be used, what is

the block size to be used, because that has to be determined depending on the

characteristics of your computation. Because you would like to optimally select this

numbers such that your cache needs it minimized and in a way your energy consumption

is minimized, as well as the cost does not go up. If you are using only say cache like

memory and nothing else.

Then; obviously, your cost go up, so you have to optimized on the cost as well, also an

on chip main memory what is the amount type because banking of the memory becomes

an important issue, because when we discussed the power architecture we have told that

if we can optimally arrange memory into banks then your power can be safe. Because

you leakage current over individual banks are much less, your capacity of current to your

capacity load also gets less because there are less number of lines to drive.

And there may be off chip main memory as well, which actually has got the code; that

means, your flash memory, so what kind of flash to be used, what kind of organization to

be adapted. So, these issues let us to what is called your memory design on the platform,

but; obviously, the platform gives you a fix set of choice, you have make choice among

those options only. But it may, so happen that platform has the facility to interface

external memory.

So, you have the advantage to make the choice about your memory. So, then the memory

architecture gives you another dimension of the exploration in the design space. We have

looked at one aspect of exploration that is use of the CPU and the accelerator, the

memory architecture provides you another space of design exploration. In fact let us with

this back ground, let us look at some of the existing platforms on which this kind of

strategies can be used and apply.

(Refer Slide Time: 33:11)

In-fact, there are number of these kind of hardware platforms which are today available,

where you have got microprocessors and configurable logic. In fact, the arm example

was arm integrated board with a separate FPGA board. Now, we are talking about may

be a single device, which can have microprocessors as well as the configurable logic. In

fact, there are two kinds of devices, which you get one is based on soft core approach

another is based on hard core approach.

And in a typical soft core approach, the basic idea is that you have got the FPGA, on the

FPGA you have actually synthesis the processor itself. And in a hard core approach you

have the processor with the processor you have the FPGA block, just like the accelerator

kind of a design that we had talked about. So, conceptually the block diagram looks

something like this, you have got here the configurable logic block, you have

microcontroller and other processing elements and these provides the memory.

(Refer Slide Time: 34:27)

So, let us first look at the soft core approach. In fact, if you remember we discussed that

in the last class also that, if I am doing a platform based design with the soft core

availability I have got certain freedoms available with me in terms of choosing the

processor architecture, choosing the IO devices, choosing the register set which a

processor can have. So, these could be the parameters of say VHDL base design, which

can be with to make a choice about the architecture.

In fact, in this case when we have the soft core based approach, you basically get a big

FPGA block. And you use a region of FPGA to implement the microprocessor core. In

fact, again if you go back to the camera example, we said that 8051 is available with us

in a VHDL form, if it is available in a VHDL form. If we have these kind of a soft core

approach and if we have a parameterized form of 8051 architecture then we can play

with the parameters to get variations of 8051 to meet our requirements and that gets

interface here.

So, once we get one particular configuration, what we are getting we are getting an

instance of the platform. The platform as such can implement if I start with the 8051 as

the VHDL can implement a variance of your microcontroller family of 8051. Which

particular instance you will implement will be dictated by your requirement. So, what we

say we use a part of FPGA to implement a microprocessor soft core and can synthesize

really any soft core to an FPGA fabric.

And some vendors, even when they provide soft core approach say provide also

processors tuned to their fabric. I have just picked up one example, Xilins Microblaze

which provides the soft core for a 32 bit RISC processor, for a 32 bit RISC processor.

That means you can actually, if you are looking at a platform instance we will be

searching around this basic architecture.

Some variant of this basic architecture to meet your requirements, because this is

typically provided as VHDL or Verilog structural source, Verilog is another language

that of your VHDL hardware description language. So, this is the typical way, this is

done in a soft core approach.

(Refer Slide Time: 37: 23)

So, if you look at the basic structure of this Microblaze soft core architecture, we will

find that this is basically the processor configuration. This processor configuration on the

processor logic how it would work, everything should be available in a VHDL form

along with it, you have got peripherals. So, numerous integrated on chip peripherals and

on chip memories have been provided here. So, here what you find that, there is an on

chip data memory, you have got these part is your actual architecture the control unit,

instruction buffer, program counter, machine status registers, register file.

And these are variety of peripherals which are available and you can configure the whole

system has a soft core and then implement for your embedded systems. So, in this case

the advantage is your search flexibility that means, flexibility of the platform is much

more compared to a hard core approach. Because you can actually play with the

processor core itself, to meet your requirements.

(Refer Slide Time: 38:47)

On your other hand the hard core approach, in fact the accelerator design is an example

of exploitation of this hard core approach. Many devices include hard core that means, a

processor, cache, RAM and configurable logic. So, in this case your memory architecture

is also not available to you to decide, it is a kind of a fixed memory architecture what is

available is primarily is configurable logic. Compared to soft cores it can be more area

efficient, because you are deciding the processor once in the most efficient fashion.

And leave more configurable logic for other uses. Because in the other case the processor

itself is consuming the configurable logic block, it can be faster because you can have an

optimized implementation of the hard core CPUs. But tradeoff is obviously less flexible

cannot choose arbitrary number of cores. In fact, in a soft core approach I can actually

choose multiple CPUs and I might like to implement multiple CPUs, depending on my

requirements and mapped tasks on to this multiple CPUs. But, those kinds of flexibilities

are not really here because here, these CPU is expected to control the basic operations.

(Refer Slide Time: 40:29)

Now, with this back ground, let us look at actual design examples, with the platform

based approach, first you shall look at an accelerator of video accelerator and this video

accelerator is very common for any kind of an appliance, which is doing a video

compression. In fact, with the camera we had discussed the basic principle of image

compression, what we do we apply DCT to the image, then do quantize then we do

entropic coding, when we are looking at that video analysis.

When we are having a video camera for that matter, we would like to design which

would stored in the memory stick MPEG videos then we need to implement in hardware

the MPEG compression. The MPEG compression scheme is conceptually similar to that

of JPEG in various ways the only difference is the MPEG also has to exploit what we

called temporal redundancies. And to exploit temporal redundancy, they need to perform

what is called block motion estimation.

And that is the most compute intensive part of the video compression. So, we shall look

at the problem of building an accelerator to do block motion estimation, in a way this

would perform a two dimensional difference computation.

(Refer Slide Time: 42: 09)

Let us try to understand this problem, what is the problem of motion estimation, this is

say this is the frame n and this is a frame n plus 1. Now, actually if you see these parts of

the picture has moved almost in an un-changed fashion to these paths. So, if I can know

this shift with x and y, delta x and delta y shift corresponding to this block then I did not

encode this image refresh. I can reproduce this block from the previous frame, this is

what is called the temporal redundancies in a video stream.

And we would like to exploit this temporal redundancy for the purpose of compression.

In fact, MPEG compressions stream consist of what we called i p and b frames. In fact, i

frames are nothing, but JPEG compress frames. P frames are what are called predictably

compress frames; that means, for p frame we actually exploit this kind of temporal

redundancy. That means the data in the current frame I can predict from the previous

frame.

And what we stored in that case, we stored this shift vectors and the error. The error is

stored again like a JPEG image we apply a DCT to the error, then we do quantization,

then we do entropic encoding and stored the error corresponding to p frames. When we

have b frames, b frames means bidirectional coding. So, in that case I can it may be

possible for me to predict a window here from one of the feature frame; that means, from

the frame n plus 2 I can predict also backward.

When we are using a combination of forward prediction as well as backward prediction,

we get b frames. You can realize obviously, that computation of b frames for the purpose

of compression is computationally most complex and in your video telephony, video

conferencing kind of a applications. We typically do not use b frames, we use i and p

frames.

So, when we use i and p frames you can understand the DCT is; obviously, a time

consuming block and another time consuming block is this your motion estimation.

Because I have to actually, search in this image to find a match for this block to exploit

this redundancy. In fact, what I have shown here is the search area, the bigger block is

the search area and I am mapping this block in the search area and I am moving around

this block over the search area to find the best match. So, these computation, is what I

would like to accelerate.

(Refer Slide Time: 45: 43)

So, if we look at more technically what we have got is that in MPEG, the image is

divided into what are called 16 cross 16 macro blocks, now the 16 cross 16 macro blocks

have to be searched, in the search area to find the best match that means, I find the best

match for the corresponding macro block. So, here in this image if we this is my

reference picture, in the reference picture I, have to search over the search area, to find

the best match for this block.

So, what we are doing is, this is the basic idea is if I consider this left most corner as the

anchoring point for the macro block, then this is giving me the shift, x plus u and y plus v

actually I am interest it to stored u and v which minimizes this error, I would like to

stored u and v, which minimizes this error. So, that would gives me the motion option

and I need not store, the data actual pixel data.

So, we have to search around this and at each position therefore, at each position of this

anchoring point I need to compute this function, this is actually an absolute error.

Summation of your absolute error over each pixel in a macro block, this is clear.

(Refer Slide Time: 47:28)

And I would like to find out u and v which would minimize this. So, what is the

algorithm to be used, we are considering here the most inefficient algorithm, but we call

of full search algorithm; that means, you search for the best match within the search

range and search at each position; that means, compute the match score for each position

of the block. So, I shall shift x y to each pixel position over the search area and compute

the match score. Fine and then find the location with the minimum error. So, this is the

algorithm and list efficient algorithm, which is called full search algorithm.

Now, one point you should keep in mind is that, this searching algorithm is not part of

the standard. So, if you are making a video camera and if you can do this process well

and first; that means, your camera is better compared to your competitor’s camera and

both the cameras are at the same time compared able to your MPEG standard. And that is

the one of the reason and the motivation behind looking at different algorithms as well as

hardware implementation for solving this problem.

In-fact same thing is true for DCT computation also the standard talks about using DCT,

but what is the algorithm what is the hardware algorithm to be used for computing DCT

is not part of the standard. So, you have the option to innovate and get better design for

developing this kind of embedded systems. And in fact, that whole idea terms from why

we are talking about a platform based design platform pixels of certain aspects, certain

aspects are open the standard pixels of certain aspects, certain aspects are open. So, you

can exploit the open part get a better design on a platform.

(Refer Slide Time: 49:28)

So, what is the computational requirements MBSIZE is typically 16 cross 16 and

SEARCHSIZE is over 8 cross 8 window. So, your search area is 8 plus 8 in each

dimension. So, therefore you need to perform how many operations, 16 cross 16 into 17

cross 17 operations this operations is actually difference computational operations. And

typically a CIF format, which is a smaller format frames has got 352 into 286 pixels,

which translates to 22 into18 macro blocks.

And if for each macro block, if this computation is to be done you can realize how many

times therefore this difference has is to be there, that is the basic time consuming part of

the compression scheme and this is to be built on FPGA block, for high speed operation.

(Refer Slide Time: 50:24)

So, let us look at the basic design, if we are coming from a pure object oriented approach

we have to identify the basic data types for doing this computation. Data types are what

the motion vector, macro block and the search area fine, these are in-fact the classes are

the objects, which will be using for doing the computation. This classes will also in

capsulate the hardware resources. So, I am showing a top level resource, which is host

processor along with the memory, where the data would be there and you have got a

motion estimator, which is actually the accelerator block. That we are trying to design

and the operation that is the request the processor will make will be compute the motion

vector.

(Refer Slide Time: 51: 23)

Now, these should be represented through a sequence diagram, so you have got the host

this is an instance of a host, this is the instance of the motion estimator, this is the search

area and the macro block, so what you have got. So, the host actually makes the request

to the accelerator for computing the motion vector. On receiving the request, the motion

estimator should get the data about the search area and the macro blocks, so I need to get

the memory request on to the host. So, it implies that is from the sequence diagram itself

you can realize, there has to be a substantial data movement between your memory and

the FPGA block.

(Refer Slide Time: 52:09)

So, what we say that requires large amount of memory, macro block has got 256 pixels

search area is 1089 pixels. And if such a large memory transfers has to be done that

means, your accelerator needs to be changed as well. So, you need external memory,

especially if buffering multiple macro blocks or search areas is required. And that would

be on the accelerator external to the FPGA block, but that memory is not part of the host

memory. So, you may have a DMA block, a DMA controller to transfer the data from the

host memory to that of the memory on the accelerator block.

(Refer Slide Time: 52: 54)

So, this is one of the possible architecture, if you see here this is the memory macro

block and the search area this contains the data, this is the basic address generator and

this PEs are implemented on the FPGA block. Each PE does what, perform absolute

difference computation for a pair of pixels and your comparator takes the data from PE

integrates it together and produces the motion vector corresponding to the best value.

The interesting thing is that this is the network which connects the data from the macro

block and the search area to the PE, depending on how the scanning is taking place.

Because you are scanning the macro block over the entire search area, depending on the

scan this interconnection has to be done and which data is to be selected is given by the

address generator. So, address generator is actually taking care of the scanning task.

So, if you want to implement a different algorithm from full search, the address

generator logic has to be different. And that they need implement and different logic, you

might not like to search at each pixel, you might like to sample and search. So, these

become the basic organization, in terms of the FPGA block.

(Refer Slide Time: 54:14)

So, the pixels how they are schedule, because that scheduling is an important factor for

doing the design, if you see that if I have PE 0 PE 1 and PE 2 from a macro block, I can

have one pixel from macro block memory and two pixels from search block memory and

if they are distributed these operations can be scheduled, simultaneously. So, I can have

same pixels coming in and I can do this computation. And therefore, these pixels are

distributed in a regular pattern and this distribution is done with the help of the network

and that organization is a key issue in terms of this design.

So, here you will find that S 0 2, how it is taking care of these same data, this is your

same S 0 2 and I can use the same data over multiple macro block pixels and these macro

block pixels, a traversing along the diagonal path over the PEs. So, that traversing and

fetching regularity pattern gives you the efficiency in computation. Now, we shall look at

very briefly another example in the network platform.

(Refer Slide Time: 55: 29)

This problem is that of designing a sensor network with platform based approach. So, if

you are talking about a network platform, a platform instance will be a set of resources

links and protocols that provide communication services, you got to have a network

platform API for providing a set of communication services. And set of communication

services is mechanism could be used to transfer messages between ports, because these

are the elements, which have to be used to characterize to network platform. So, your

network platform talks about a variety of possible instances of the resources that we will

be using.

(Refer Slide Time: 56: 07)

So, let us look at a very simple example, see if I have a network platform API, by which

you can make a choice about your network components nodes, links and ports IO. What

will be doing, you will be actually deciding ((Refer Time: 56:25)) configuration and the

protocol using the API mapping on to that will give you a network platform instance,

you do a performance estimates on that network platform instance. See whether your

budgets constraints are getting satisfied or not.

So that means, when you are doing the API through the API specifying the architecture.

Because, specifying the architecture primarily would been specifying the communication

service of architecture that is the different protocols and with this protocols and the

constraints budgets, you get one particular network platform instance. And on the basis

of that you get the performance estimates. So, one possibility could be is it a single half

network and a multi half network, if it is a multi half network, then you might have the

better energy estimate.

You might have a better Qos, so those things can be checked up through this API and

have the complete distributed embedded system design. So, in fact, the reason for

looking at briefly this example is to understand the distributed systems can also be

designed through this platform based approach. Because here your hardware elements

are what your nodes, different parameters for the nodes, different parameters for your

communication link.

The software elements are your protocols everything put together with the budget

constraints can be tried out obtain the performance estimate. And that specifically your

search in the possible space of alternatives formulations, to get an identify the optimal

configuration for your network.

(Refer Slide Time: 58: 16)

So, what we have looked at therefore, at platform based design approaches and

considered design examples this moral less brings us to the end of basic design schemes

for embedded systems. In the next class, we shall look at some of the software related

issues, particularly compiler related issues which can be used for optimal design.

