Embedded Systems
Dr. Santanu Chaudhury
Department of Electrical Engineering
Indian Institution of Technology, Delhi

Lecture - 31
Embedded System Design — IV

We were discussing, the different techniques been used for Embedded System Design. In

the last class, we have looked at task graph. And how high level transformations can be

applied to that task graph, to make it more amenable for hardware software co designing.

(Refer Slide Time: 01:24)

— /—-_‘

. —

Embedded Systé;n Design

Major Tasks

» Partitioning the function to be implemented into
Noclig s el

’ these partitions to MICroprocessors or
other hardware units where functions will be
implemented directly in hardware or in software
running on @ MICroprocessor

« Scheduling the times at which functions are
executed

+ Mapping a generic functional description into an
Iimpiementation on a particular hardware or
implemented using hardware components

Today, we shall continue our discussions on hardware software co design. So, the major
task to recapitulate; we know or that of partitioning the system function into small
interacting pieces. Then, allocating these partitions to microprocessors. That means a
pure software implementation or to other hardware units. That means we are using a

dedicated hardware for implementation of these elements.

Then, scheduling the times at which this functions are executed. Then, it becomes a
scheduling problem. But for doing all these things, we need to do mapping. Mapping a
generic functional description into an implementation on a particular hardware or may be
implemented using a set of hardware components. So, | need to have if |1 want to do this
mapping. | need to know, what are the different possibilities? Depending on the
possibilities, we shall do this mapping.

(Refer Slide Time: 02:23)

Design Space Exploration

A Candidate architecture must be proposed and

potential performance bottienecks in that
architecture identified

Modifications to the architecture must be

devised and performance analyzed

Finally one configuration chosen based on the
resuits of performance analysis and other
requirements like design time, manufacturing
cost, etc.

Performance analysis is the critical component

.l

So, the design space exploration would be candidate architecture must be proposed.
When you proposing candidate architecture. That means, we are making a choice among
the possibilities of the target architecture in terms of processor. Also in terms of the
hardware components which can be put together to make dedicated hardware. And can

we shall find out the potential performance bottle necks in the architecture identified.

We shall do modifications to the architecture. Because, we would like and need to
remove this bottle necks to meet performance constraints. Finally, we shall choose one
configuration based on the results of performance analysis. And other requirements like
design time, manufacturing cost, etcetera. So obviously, you can understand the

performance analysis is the critical component.

Whenever we are proposing architecture, we need to evaluate that architecture on the
basis of performance criteria. Now, this design space exploration can be done by actual
implementing on trying out different alternatives. So, it process can be completely
manual. Otherwise, we can also have automated schemes, formulating the problem as the
formal optimization problem and then exploring the design space. We shall look at both
these approaches in to this class.

(Refer Slide Time: 04:01)

Co-design
=
=

[

———

| SW-partie— PAMIONNG | LW part

[FW-synihesis |

Sugulabon provides

perfdrmance

So, effectively what we are looking at is that, we have the behavior the task graph. We
partition, we get software part hardware part. We can do the compilation, do the
hardware synthesis. Then, do a simulation of the two things together. And that
simulation can actually provide the performance statistics. If I find that, | am meeting my

performance constraint.

Then, | can accept the design else | shall go back, try out alternate partitioning alternate
architecture and repeat this process. So, these processes can be done through manual
intervention or can be done in an automated fashion provided. We have enough statistics

and computer aided tools to estimate the performance.

(Refer Slide Time: 04:54)

e

Steps
Consider task model (e.g. task graph) for
depicting behaviour of the target system
Computations can be represented in an
imperative language like C
Apply high level transformations if necessary

Compilation
+ All C programs compiled for the target processor,

+ Computation of\ve resulting program size,
estimation of the resulting execution time
(simulation of input data might be reguired)

Synthesis of hardware components if required

So therefore, the steps we shall involve that consider the task model. We have seen in the
last class, a task model for depicting behavior of the target system. This task model can
come from high level modeling, which can be represented through an UML notation.
Then, we can come to the task model. And in the task model, the computations can be

represented at each node in various ways.

One of the ways to represent, it could be using an imperative language like C. And apply
high level transformations to this node or to the task graphs. We have already discussed
the high level transformations in terms of computations. We have looked at different
ways to deal with looks, different ways to the ((Refer Slide Time: 05:41)) looks. So that,

we can have optimality in terms of cache access.

We have also looked at the possibilities of merging nodes or splitting nodes taking care
of 10 requirements. So, these are all high level transformations that we can apply on the
task graph. And then, if we are looking at each compile at computation of each node. |
can subject it your compilation. If I am doing this compilation and compiling it for the

target processor effectively, we are doing as straight software implementation.

We can look at it in this way. If | am doing that way, then I can get the computation of
the resulting program size, estimation of the resulting execution time. We might need to
do a simulation of input data to do this estimation. And if required, we shall be designing

the hardware components. In fact we can use system C or PHTL to represent the

hardware specification of the nodes. That means hardware design of the nodes that is to

be implemented. That specification can be a top level specification.

(Refer Slide Time: 06:57)

-~ — .
~ -

-~ -

Example: Simple Digital
Camera Design

Explorations of alternate design
possibilities

So, let us look at a simple example. A simple digital camera design, and through this we
shall look at explorations of alternate design possibilities. Here, we are not talking about
strictly and automated methodology for doing this alternate design exploration. So,
design space exploration would be only on the basis of manual suggestions and trying
out the different possibilities. We are not looking at a formal formulation of the search

problem.

(Refer Slide Time: 07:36)

Tasks

Processing images and storing in memory
+ When shutter préssed:
Image captured
« Converted o dgtal form by charge-coupled device

(CCo)
« Compressed and archived in intermal memory

Uploading images to PC
+ Digital camera attached to PC

+ Special software commands camera to transmit
archived images serally

So, what are the tasks for a digital simple digital camera? A digital camera basic task is
to process image and store them in memory. So, when the shutter is pressed the image
gets captured. The image is converted to digital form by charge couple device. We are
using the charge couple CCD sensors. And they are compressed and archived in internal

memory. That is the memory internal to that of the camera.

We would also like the feature to support uploading of images to PC. So, the digital
camera can be attached to pc via a very simple serial link. And you can have special
software commands for the camera to transmit archived images serially. So, these are the

basic tasks that had to be realized in a digital camera.

(Refer Slide Time: 08:35)

CCD Image sensors

CCD (Charge-Coupled Device)
Image Sensors:

+ e cloctronic devices that are
capabie of transforming a light '
i

pattern (image) into an electric
charge patterm (an slectronic
image). The (80 conssts of several
Incividuad elerments that have the
capabiity of collecting, storing and
transporting electrics charge from
one slement 1o ancther. This
together with the photosensitive
properties of slicon, s usad 1o
G0sign IMage sensors.

See let us look at the CCD image sensors. So, CCD is the Charge Coupled Device. They
are electronic devices that are capable of transforming, a light pattern into an electric
charge pattern; that is an electronic image. The CCD consists of several individual
elements that have the capability of collecting, storing and transporting electrical charge
from one element to other. The amount of electrical charge accumulated would depend
on the intensity of incident elimination. That is, together with the photosensitive

properties of silicon, is used to design image sensors.

And this CCD sensor typically arranged in the form of array, rows and columns. And
from there, the data corresponding to the image is collecting it. So, each CCD site can
correspond to a single pixel in your image. Now, when we are using a CCD there is one

important issue, which we need to look at and considered, which is called zero bias error.

(Refer Slide Time: 09:35)

Zero-bias error

Manufacturing errors cause cefis to measure slightly
above or below actual light intensity

Error typically same across columns, but different
across

Some of left columns blocked by black paint to
detect zero-bias efror

» Readng of other than 0 In blocked cells i Jero-bias error

» Each row is comected by subtracting the average error found
" blocked celly for that row

Because, manufacturing errors cause cells to measure slightly above or below the actual
light intensity. That mean the sensitivity can be addict. So, we need to have a measure of
the sensitivity. So, that we can actually correct the CCD readings. So, what is found is
that error is typically same across columns, but different across rows. So, some of the left
most columns, if this is a CCD array. And these are the values corresponds to the values
sensed at each of the CCD site.

Then, the cells the two cells corresponding to each row is power. That means, no light is
incident on them. Now, in measure the sensed current corresponding to the sites. So, we
get what is called a zero bias. So, this zero bias has to be subtracted to the reading
corresponding to other sites, to get the corrected value. So, what we say that some of the

left most columns are blocked by black paint, to detect zero bias error.

| am reading of other than zero in blocked cells are zero bias, and that is subtracted. So
here, | have done an averaging. And | have got this value. This value has to be subtracted
to get the corrected pixel values. Obviously, this involves computation. So, zero bias

error adjustment is the computational node in the task graph.

(Refer Slide Time: 11:15)

Compression

To store more images
Transmit image to PC in less time

JPEG (Joint Photographic Experts Group)

+ Image data divided into biocks of 8 x 8 pixeis

« 3 steps performed on each block
« DCT

Then, the images have to be compressed. So, that they can be stored in the internal
memory. The two motivations for this are to stored images and transmit image to PC in
less time. Typically, what we used and what we are talking about here is the JPEG
compression. You shall not go to the details of the JPEG compression.

But we shall briefly look at the states in order to understand the design. So, image data is
divided into blocks of 8 cross 8 pixels. And three steps are performed on each block
discrete cosine transform, quantization, Huffman encoding, which is nothing but,

entropic coding.

(Refer Slide Time: 11:59)

DCT step
Transforms original 8 x 8 block into a

cosine-frequency domain
FDCT (Forward DCT) formula

« O(h) = if (b == 0) then 1/sqrt{2) else 1.0
Auntiary funcoon used 0 man furetion Fliwy)

v Hupd = o x Q) x C{v) Loe s Yow s D x cos{a(2u + 1)/16) x
cosl + 1)v/16)
Gives encoded piaed it row 1, cokan v
Du & origne pived value at row x. colamn ¥

IDCT (Inverse DCT)
+ Reverses process to obtain onginal block (not needed
for this design)

So, how is the DCT done? In fact DCT is basically, that are transforming the data from
the special domain to that of frequency domain. So, for each 8 cross 8 block, we apply
the forward discrete cosine transform. The expression for the discrete cosine transform is
this. So, this D x y corresponding to pixel value. And what you get after transformation

is F u v, which corresponds to the frequency domain representation.

And this is actually we will find that, each of this elements is obtained over ((Refer Slide
Time: 12:40)) over the intact 8 cross 8 block. So, when | have got F zero zero that
basically means, | am looking at the DC component. And u and v corresponds to special
frequencies in both iterations. Because, it is a two dimensional data. So, | shall have two

frequency values. So once, we have these we get Fu v.

Why we do this kind of a transformation? The whole idea is that, if | do this frequency
domain transformation, | shall have the energy concentrated into few coefficients. See in
an 8 cross 8 block, | have got 64 values. If | do a frequency domain transformation and
consider for example, | am just considering an image block which consists of a single
color. If I do a frequency domain transformation, then the energy would get concentrated
for F zero zero and other values will be negligible.

So, | am left to it only one value rather than 64 values. So, that is the basic principle of
energy concentration. And DCT provides being a good tool for concentrating the signal

energy into few coefficients. That is why DCT is used in JPEG. When | would like to

decompress the image, | have to apply inverse DCT. The inverse DCT will give me back
the original pixel values. Obviously, this computation you can see will take place in real
domain. That means, it would really involve floating point calculations, if we do not get

any special measure.

(Refer Slide Time: 14:30)

- e

Quantizatidn' step

Reduce bit precision of encoded data
« Fewer bits needed for encading

« One way in to divide all valises by & factor of 2
« Simple right shifts can do ths

Dequantization would reverse process for

decompression

s Lossof image quality ~ lass of information

Next is quantization, because quantization reduces bit precision of encoded data. See if
values are small, | can use a threshold and make them zero. If they are zero, then
obviously | need not code them or store information about them. So, a very simple way
is one way is to divide all values by a factor of 2. Simple right shifts can do this. If |
divide by the value of 2 divide by a factor of 2, then what happens? The magnitude gets

reduced.

Since the magnitude gets reduced, the number of bits that can be used for storing can be
less. Here, I am giving you one example, that | am dividing each content of each cell by
8. Dividing the content of each cell by 8, this is the DCT value which have obtained and
this is dividing by 8. If I divide by 8, you will see the range of values exchanging.

Obviously I can use much smaller number of bits to represent these values.

This is the basic motivation for quantization step. And the lousiness of the image
compression comes from quantization. Because of quantization, we are losing
information. So, it is the glossy compression scheme that we are talking about. So, you

can understand that this quantization would also involve computation, at least a division

operation. And I would like to do may be a divisions by factors of 2. Simplify because,

that can be achieved by simple shift operations.
(Refer Slide Time: 16:10)
-~ o — ~
Huffman Coding
Serialize 8 x 8 block of pixels: Values are converted

into single list using zigzag pattern

Perform Huffman encoding

+ Mare frequently occwrring pixels assigned short
binary code

« Longer binary codes jeft for less frequently
ocourring pixels

E;mpudmsenalmcmvermommffmanmooed

values

’ MUQS'WI&MCOmm

Then, we do Huffman Coding. For Huffman Coding, what we do? Serialize 8 cross 8
block of pixels. Values are converted into single list using a zigzag pattern. In fact the
values are read in this pattern. Why it is done in this way? Because, if you look it look at
it, see these coefficient and these coefficient are conceptually similar in nature. Because,

this is representing the first component in x direction this is representing in y direction.

So, depending on the frequency content of the image, you can consider that, if there are
no changes in x, there may be very low changes in y as well. So, these two coefficients
may have similar values. And as | am moving ahead, | am actually considering
coefficients corresponding to greater frequency. So, it may so happen. That in an image,
if you see any natural phenomena if | am taking an image of natural external world, the
changes are smooth changes are not really sharp, if we are not taking images of

artificially generated patterns.

So, its moral less smooth major part it will be smooth. So, high frequency values can
actually turn out to be very small. And through a quantization process, those high
frequency values may become actually zero. So, then you do once you have therefore the

sequence of these values, where many of them has zero because of quantization you

perform Huffman coding. In fact, you group them together to form symbols and form

Huffman coding.

So, more frequently occurring pixels there are assigned short binary code. Because, that
is the basic principle of Huffman coding and entropic coding and longer binary codes for
less frequently occurring pixels. Because, depending on the entropy that codes are
associated. So, each pixel in serial list is converted to Huffman encoded values much

shorter list and thus compression.

Because, we are not using same number of bits for representing each and every pixel
value. We are using different number of bits depending on probability of occurrence of
that pixel value. In fact, actually you do not use individual pixel values, but you actually
look at the group of this value for the purpose of Huffman coding. So, this is another
computational task.

(Refer Slide Time: 18:47)

—~ —

—
-~

Archiving Images

One possible way to archive images

« If max number of images archived is N:
« St aside memory for N addresses and N image-size variables
* Keep a counter for location of next available address
+ initialize addresses and image-size variables to 0

* Set global memory address to N x4
» Assaming addresses, mage-side vaciabies oczupy N x 4 Dytes
+ First mage archived starting at address N x 4
Giobal memory address updated to N x 4 + (compressed magd
size)
Memory requirement based on N, image size, and
average compression ratio

2.

So, next if | have done the compression what shall I do? | shall be archiving the image. |
would like to store the image. So, storing the image would be in the memory. And | can
keep global memory address assigned and reserved for the different memories. So, we
can set aside memory for N addresses and N image size variables. And the image in the
image memory requirement would be based on N that is the image size and the average

compression ratio.

So, that would give you the number of bytes required for storing an image and the
average. So, you actually initialize the addresses and image size variables. These are the
basic algorithm which will be involved. Assuming addresses image size variables occupy
N into 4 bytes, allocating 4 bytes. And first image is archived starting at address N into

4. And subsequent will be at the offset of compressed image size.

(Refer Slide Time: 19:58)

N =

-

Uploading to PC

- When connected to PC and upload
command received
» Read images from memory
» Transmit serially using UART
+ While transmitting

* Reset pointers, image-size variabies and global
memory pointer accordingly

Therefore, once you have stored these images depending on the requirement, we shall be
connecting it to a PC and upload command. So, read images from memory. So, that
means it will transmit serially using UART. While transmitting, you need to reset
pointers, image size variables and global memory pointer accordingly. Because, you

have to keep track that you have finished transmitting a single image.

So, image after image is to be transmitted sequentially and the pointer adjustment have to
be done by the software. So therefore, if we now summarize if we now remember the

task graph, what are the different steps involved in a task graph?

(Refer Slide Time: 20:37)

Processing Scheme

- Zero-bias adjustment Image Size:
DCT to each 8x8 block Sixbs
~ Quantize

Archive in memory (flash)
Upload to PC when required

Zero bias adjustment, DCT, Quantization and Entropic Coding, Quantization and
Entropic coding, Archiving in memory and Uploading to PC, when required. These are
the basic steps of the nodes in your task graph. And what | need? | need to map them to
the processor or to dedicated hardware, depending on my design constraints. | have just
specified the task. 1 would have not really looked at yet the design constraints. | have just

considered one possibility, that image size. Let us considered 64 cross 64.

(Refer Slide Time: 21:27)

Design Metrics

Design metrics of importance
+ Performance: time required to process image
1 s&c as constraint

+ Size: numbder of elementary logic gates (2-input

NAND gate) in IC
+ Power: measure of avg, electnical energy
consumed while processing
+ Energy: bDattery lifetime (power x time)
Metric can be both constrained and
optimization

So, what are the different kinds of design metrics which would be feasible and possible?
The most important is performance. The time required to process image is 1 second and
these should be constraint. What is that mean? That means, | can not choose a possible
architecture, while the time taken to compressed and stored a image would be greater

than 1 second. Such architectures have to be rejected.

So, this is the constraint. The other design metrics are size, the number of elementary
logic gates, 2 input NAND gate in IC. So, number of logic gates would determine the
area or the size of the chip which is required. So, this is what we want to optimize. We
do one to optimize power measure of average electrical energy consumed, while
processing. And energy is battery lifetime that is power into time. What is this time? This

time is the time taken to process an image.

So, that is the energy. We would like to optimize size, power and energy. And this is the
constraint, which I might satisfy. So, you can see that actually exploration in a design
space is therefore, searching a solution which meets the constraint and optimizes the
parameters that we are looking for. So, what we say the metric can be both constrained
and optimization. So, here | have got one constrained parameter and remaining a some

kind of optimization parameters.

(Refer Slide Time: 23:05)

Implementation 1: Microcontroller alone
Exampie : Intel 8051 microcontrolier
Total cost small
Well below 200 mW power
Time-to-market about 3 months
However, one image per second not possibile
» 12 MHz, 12 cycles per instruction

« Executes one millon imstructions per second
- out from CCD array require nested loops
resulting INNg096 (64 x 64) iterations
+ =100 assembly instructions each teration
409 000 (4096 x 100) nstructions per mage
* Ha¥ of budget for reading mage alone
» Would be over budget after adding compute-intensive
DCT and Huffman encoding

Let us look at possible Implementations. And | said at we are looking at a manual

exploration of the design space. So, when we can use microcontroller alone. Let us take

an example of Intel 8051 microcontroller. What is the motivation for choosing this
architecture? The total cost small, well below 200 mega watt of power consumption,

time to market will be less because, you need to just simply write software.

So, these are an assumption. However, look at these possibilities. One image per second
is not possible. Because, it typically works 12 megahertz with 12 cycles per instruction.
So, it will execute one million instructions per second. Now, reading out from CCD array
required nested loops, resulting in 4096 iterations of the order of 100 assembly

instructions in each iteration.

So, you have to execute 4096 into 100 instructions per image which consumes the half of
the budget, because your budget was 1 second. Because, time constraint was 1 second.
So, half of the budget is getting consumed, would be over budget after adding computes
intensive DCT and Huffman encoding. So obviously, this is not a feasible or acceptable

architecture.

So, we can see that if | simply, take the C code corresponding to the computations,
subject it to a compiler which we generate 8051 code. And estimate the runtime of the
code define, that the constraint cannot be met. So, if the constraint cannot be made | have
to look at alternate possibilities. So, implementation 2 could be an SOC approach,

Microcontroller and Dedicated Hardware.

(Refer Slide Time: 24:53)

Implementation 2: SOC Approach
Microcontroller and Dedicated Hardware

7

CCDPP (image read) funcuion implemented on

custom single-purpose processor
+ Improves performance - less microcontrolier cycles
+ Eaoy to imploment
Simple
Few state® In controller
Simpie UART easy to implement as single-purpose
processor aiso
EEPROM for program memaory and RAM for data
memaory added as well

Here, we are talking about say image read function, CCD read function implemented on
a custom single purpose processor. It improves performance less microcontroller cycles,
easy to implement because it just leads to do what? Read and Subtract. Simple data path,
so that such a processor would have a very simple data path and few states in controller.

In fact, the whole thing can be represented by a simple FSM and what do you need?

You need an implementation of 30 FSM in a dedicated hardware. Then, also we can also
use UART that is Universal Asynchronous Receiver Transmitter as a single purpose
processor. It should have along with it EPROM for program memory and RAM for data
memory added as well. In fact, that can provide the storage for the intermediate

processing and EPROM will have the program.

So, this is a kind of an SOC based approach that we are talking about. Here, we have
8051. We are putting in an UART here. We are putting in a special purpose processor
which will communicate with the CCD and do the adjustments. This is a RAM and this
is the EPRAM. EPRAM is the Programmable RAM which is called program to run the

system.

(Refer Slide Time: 26:23)

~

-

Microcontroller

Syrehesizabie version of Inted
8051 avatable
Wrizen i VHOL
Cagtured at register branafer
leTfi h‘
Fetches instruction from ROM -
Decodes using [nstruction
Decoder
ALL oxecutes arthmetic
operatioos
Sounce and destination regitees
resice n RAM
Special data movernent
ostructions used to load and
1tore extermally

Hiock diagram of inted 8051
processor cone

So, how to do that design? In fact what we have the design is to develop the SOC? In
fact, the other way could be using an 8051 is the discrete component and using all these
as an external devices. What we are looking at? We are looking at a possibility of

implementing a SOC. Now, if we are doing that, then we got to have the specification of

the processor also in a core form soft core form. | have talked about the whole design

approach based on the soft core.

See if it is available in a soft core then 8051 specification, it should be possible for me to
have in VHDL and captured at register transfer level. This obviously, would specify the
complete architecture and its operations. So, we have already seen VHDL. So, basically |
shall have description of the processor in terms of the VHDL code. So, it has got the
controller, the ALU, instruction decoder, 4 k ROM and 128 RAM. This is an internal

memory.

So, the whole description of the processor and how the processor works have to be
captured through your VHDL code. Now, you can buy if we are talking about a soft
processor code and somebody selling it out licensing out the core. It means, these VHDL
code is being supplied to you. If the VHDL code is supplied to you, you can anywhere

modify the code depending on your requirements.

And when you are designing an SOC, what is it required? | shall write the VHDL code
for the additional hardware components. We shall also to specify the bus interconnect
structure. We shall also specify the memory which can be used by both this 8051 as well

as your other dedicated hardware.

(Refer Slide Time: 28:21)

UART

UART in idle mode untdl invoked
« UART evoked when 8051 executes store
nstruction with UART s enable register as
wrget address
Memory-magpend Comnurcation betvesn
G051 and ol single puUIpose DrocesIon
* Lower §-bitn of memory address for RAM
* Upper 8-bits of memory address for
marrory-mapped VO devices

Start state transmits O indicating start
of byte transmission then transitions to
Data state

Data state sends 8 Dits serially then
transitions to Stop state

Stop state transmits 1 indicating
transmission done then transitions
back to idle mode

So, first let us look at an UART. So, these are the different states that UART can have, it
is originally in an idle state. Now, when it is invoked that is when the transmission has to
be done, its starts transmission. And typically, if you are familiar with RS 232 C kind of
a protocol, what it will do? It will have a start bit bring the line low. So, this is a start.

Then, it transmits the data depending on the data format.

So, it is said 8 bit data has been transmitted. Then it will go to the stop bit. And again go
back, when it is transmitting a sequence of such bytes. So, this is a basic FSM which
needs to be implemented with provision for appropriate data buffer registers, to store the
data as well as to transfer the data. So, effectively what we are telling is that, I can
implement this FSM, but how should it be interface to the 8051.

So, we are using memory mapped communication between 8051 or and all single
purpose processors. What is that mean? The register of this processor would be the
memory map of 8051. And lower 8 bits of memory address is for RAM, upper 8 bits of
memory address for memory mapped 10 devices. So, this is available to me because,

now | can add the VHDL code corresponding to this UART implementation.

(Refer Slide Time: 29:55)

Image Read (CCDPP)

Hardware implementation of pero-bias
aperations
Interacts with external CCD chip

(ED ¢ng romudey, eviems % aw W0OC -
camteing (D wes ontnary 0K "ot

Intemal utfer, £ memory-mapped 1o
8051

Varables £, Care buffer s row, cohann
ndices

GetRow state reads in ane row from CCD
s

+ 66 bytes: 64 poasis + 2 blached-txtt phosts
Computebias state computes bias for that
row and stores In variable Sies
Focias state tarates over same row
subtracting fikes from sech element
NextRow transitions to GetRow for repeat
of process on next row or to idie state

m‘«mm

Similarly, the image read can be done in a similar way. So, we have got an internal
buffer B which is memory mapped to 8051. The variables R C are buffers row and

column indices. Get row state reads in one row from CCD. So, if it is reading in one row

from CCD, it will get 64 pixels 2 blocked out pixels. The compute bias computes bias for

that row and stores in variable bias. If there are 2 pixels, it would be an average.

And Fix Bias iterates over the same row subtracting bias from each element. And next
row transitions to get row for repeat. So, this becomes effectively the FSM to do bias
error adjustment on the memory read. So, this can be again mapped into VHDL. And |
can have a dedicated hardware doing this function. And how does it interact to the
external CCD and mainly because combining CCD with ordinary logic not feasible. So,

that will communicate via this buffer.

(Refer Slide Time: 31:03)

—

Connecting SOC components
Memory-mapped

« All single-purpose processors and RAM are
connected to 8051's memory bus

Read
+ Processor places address on 16-Dit address bus

+ Asserts read controd signal for 1 cycle

+ Reads data from 8-Dit data bus 1 cycie later

» Device (RAM or SPP) detects asserted read control
signal

+ Checks address

« Places and holds requested data on data bus for 1
e YOI o

Now, we need to what we have got? We have got UART. We have got the special
purpose processor to do bias error adjustments. Now, we need to connect this SOC
component. In fact connection of SOC components is basically the glue logic using
which the different components can get connected. So, all single purpose processors and

RAM are connected to 8051 memory bus. So, what is the basic read operation?

The processor places address on the 16 bits address bus, asserts read control signals,
reads data from 8 bit data bus 1 cycle later. The device can be RAM, a special purpose
processor. Because, special purpose processor also memory mapped with respect to 8051
detects asserted read control signal, check address, places and holds requested data on
data bus for 1 cycle. So, this is the glue logic which has to also going to the special

purpose processors, which have been implemented.

(Refer Slide Time: 32:04)

S —
\\-. = . S—

. -

Memory Operations

Write

» Processor places address and data on
address and data bus
» Asserts write control signal for 1 cdock cycle
+ Device (RAM or SPP) detects asserted write

Gnedsggrassbus
» Reads and stores data from data bus

Similar thing will be done for write. The processor places address and data on address
and data bus. Asserts control signal, the device detects asserted write control signal;
checks address bus, reads and stores data from the data bus. So, this becomes the basic
protocol, if you see why this becomes important? This defines a basic protocol for the

special purpose processors to communicate with microcontroller 8051.

(Refer Slide Time: 32:33)

Evaluating the Architecture

Test SOC on VHOL simulator
Interprets VHOL descrigtions sl
functionally simulates execution of
Sysoeen

+ Tests for comect Runctionality I

+ Meanures clock cycied to prooess - ;-“— =
one image (performance) 2 P, o

Gate-dovel description obtanoed 3 -
'Mun}\ syrthess Pt
svnmmbhwmfav

, Mrwwm&m
cbtain data for power ananlyss
Namber of timies gates cwich
fom IR0 Otl
Count rumber of gates for chip
aren

So, next question is comes that of evaluating this architecture. So, what | have got? |

have got my processor in VHDL. | have got the special purpose processors also written

in VHDL. We have also defined, how they can communicate with each other. So, | have
got the complete design of SOC in a VHDL form. So, Test SOC, so we can test SOC on
VHDL simulator. We need not actually fabricate the system, which interprets VHDL
descriptions and functionally simulates executions of the system.

So, on the simulator one job is to test for correct functionality. That means, whether |
have written the VHDL code correctly. And it can also measures clock cycles to process
one image. So, this number of clock cycles would give you an indication of the
performance. Next we can go to the gate level design, when you go to the gate level

design, we are going through a processor synthesis.

When we are at register level design, we can get the clock cycles. But further down, we
can get the gates through the processor synthesis. Once we have the gate, so what we can
do? Simulate gate level models to obtain data for power analysis. There are various
power estimation techniques. We can try to use some of them, to get an estimate of the

power.

So, the number of times a very simple way of estimating is the number of time the gate
switches from 1 to 0, 0 to 1. If you remember when we discussed this power our
architecture we said, that this transitions is the source of power consumption. So, if |
simply count this, this gives an estimate of power not accurately the power consumption.

And you count the number of gates for chip area.

So, | can get therefore through this simulation and synthesis tools and estimation of the
performance of the system. Obviously, this is the very simplify picture, whole all these
performance estimation measures and how they have to be implemented at complex task.
But, in principle we have tools to do this kind of estimation. So, once we have the

estimation we can evaluate the architecture.

(Refer Slide Time: 34:46)

Example Evaluation
Analysis of impiementation 2
+ Totai execution time for processing one image:
9.1 seconds

+ Power consumptions

0,033 watt
v Energy consumption: (battery life time)
* D30 joule (9.1 5 x 0,033 watt)
+ Total chip area:
« 68,000 gates

So, what is the evaluation? We find the total execution time for processing one image
trans out to be 9.1 seconds. Power consumption is .033 watt. Energy consumption is .3
joule because | am multiplying this and total chip area is this many gates. | am violating

this constraint and hence this design is also not acceptable.

(Refer Slide Time: 35:12)

Improvement Fixed-Point DCT

9.1 seconds still doesn't meet performance
constraint of 1 second

, DCToperaﬂonprknemnddatefor
improvement

Emmnofmmzm
microprocessor spends most cycles here

« Could design custom hardware like we did for
cCoPP
* More complex 50 more design effort
« Instead, will speed up DCT functionality by

So, what we do the next option is, the next option is to look at the DCT. If you remember
we said one high level transformation was to go from floating point to fix point

representation, in the task graph. So in fact, if you do a profiling we shall find the DCT

operation is the takes major time. And we could design custom hardware, it is more

complex. So, design effort let us we can therefore try out alternate possibilities.
(Refer Slide Time: 35:46)

\\ N /:_‘
\\\'\

i

DCT floating-point cost
Floating-point cost
+ DCT uses ~260 floating-point operations per pixed
transformation

» 4056 (64 x 64) pixels per image
« 1 million floating-point operations per image
. Noﬂoatir\g-polmwpportmmweo.',l
c@pmmmm
+ Garerates procedures 10 sach floatng-port opamation

« Thus, > 10 million integer operations per image
+ Procedures increase code size
Fixed-point arithmetic can improve on this

In fact DCT uses 260 floating point operations per pixel transforms. And in fact 8051
does not support floating point calculations. So, that has to be taken care of by the
complier. Compiler needs to generate instructions to do the floating point calculations,
using basically integer operations. So, each procedure uses 10s of integer operations. In
fact at estimate is greater than 10 million integer operations per image of size 64 by 64
and the procedures increase code size. So, other possibility is, whether we can transform

it into a fixed point representation.

(Refer Slide Time: 36:30)

Fixed-point arithmetic
Integer used to represent 3 real number

+ Constant number of integer's bits represents fractional
portion of real rumber

© More bits, more acosmate the representaton
+ Ramaining bits represent portion of real number before
decimal point

Translating a real constant to a fixed-point
representation

« Multiply real value by 2 ~ (& of bits used for fractional part)
» Round to nearest integer
+ Egqrepresent 314 b5 §-bit integer with 4 bits for fraction
PN =16
* L14x 16 = 50.24 - S0 = 00110010
-(:‘clg;i)n-un\muwmmmows
* Last 4 bits (Q010) = 2
* 2x 00625 = 0,125
* N0011) + 0.125 = 3125 « 114 (more bats for fraction would
TR 500

There may be lack of precision, but when we are representing an image that lack of
precision may not be critical enough. Because, in any case we are doing one digestion.
So, how do you do fixed point arithmetic? In fact, what we do, we use fixed number of
bits in the word to represent the fractional part of the binary number. So, if we put the
real value by 2 raise to the power, number of bits used for the fractional part we are

actually getting the representation.

So, this is the simple illustration only if you know this, that we can represent 3.14 as 8 bit
integer with 4 bits for faction. So, effectively if it is a 4 bits for fraction, then why |
multiplying this? Because, here each bit is representing actually .0625. It will be 1 by 16.

So, I am multiplying the value by 16, to get the actual integer representation.

So, that we can work with fixed point, so what we are getting effectively since this is the
precision. We are getting depending on the number of bits we are using. So, that
introduces approximation. So, 3.125 are actually representing 3.14. So, this is an

approximation.

(Refer Slide Time: 37:52)

Fixed-point arithmetic operations
Addition
« Sengty add integer representabions
« £, 314 4271 =585
* 114 -+ 50 = 00110010
171 — 41 = 00101011
* 50 4+ 43 =9 =01011101
5(0101) + 13(1101) x 0.0625 = S.B12S - 5.65

Muitiply
» Multiply intogor represantations
« Shift rdult right by # of bits in fractionad pert
v Eg, 314 * 271 = 8.5004
+ 50 * 43 = 2150 = 100001100110

¢ >> 4 = 10000110
» #(1000) + 6{0110) x 0.0625 = §.375 - 85094
Range of real values used limited by bit widths of possible
resulting vaives
>l

But what is the advantage? Advantage is, now | can do say operations like addition by
simply add integer representations. So, this integer representation shows you, that when
the result is 5.85 | get 5.8125. Because, here these bits are integer, remaining are the
fractional bits. Even the multiplication can be done through integer operations. So, you

shift result right by the number of bits in fractional part.

So, effectively what we get is these results. Because, that many shifting has to be done
this points on to adjustment of the binary point. So, range of real values used is limited
by bit widths of possible resulting values. So, what is for interesting to node is that, you
are actually using straight forward integer operations to deal with real value calculations?

So, that reduces the instruction count substantially.

And that is one of the reasons for we said that we might look like to do this kind of high
level transformations of the task graph nodes, to get optimal solution. So, this is the

transformation that we are doing, because we need it.

(Refer Slide Time: 39:09)

Evaluation

' AnalysisanplementaﬁonS
+ Tota! execution time for processing one image:
* L5 sacorxis
» Power consumption:

* 0,033 watt (same as 2)
« Energy consumption:
* 0,050 joule (1.5 s x 0.033 watt)
« Battery Ife 6x langer|t
+ Total chip area:
* 50,000 gates
* 8,000 lesn gates (fess memory needed for code)

So, then we go into an implementation. So, this is what? This is the pure again we have
not done any change in the architecture. We have simply done a transformation of a task
level node. So, we get this kind of statistics. What do you find is that, since the time
reduces the energy consumption is less, the battery life becomes longer. So, all this

parameters in a various way are dependent.

The total chip area is this. And the gates are less why because, your less memory is
needed for code. Because code size reduces your procedures goes off. You are using
single instructions. So, your memory requirement reduces. You can realize why these
transformations are important, when you will go into design for portable devices. So,

your performance is close, but not good enough.

(Refer Slide Time: 40:01)

Improvement: Codec in Hardware

Performance close but not good enough

Must resort to implementing CODEC in

hardware
»gngle-purposeprocessortopuformoﬁmsxe

So finally, | have to go for a CODEC, a dedicated CODEC for implementation of DCT.

That becomes the special purpose hardware.

(Refer Slide Time: 40:11)

o —

—

RS
Evaluation

Total execution time for processing one
image:

+ 0.099 seconds (well under | sec)
« Power consumption:

« 0.0wats

+ Increase over 2 and 3 because SOC has another

processor
+ Energy consumption:

* 0,00040 Joule (0,099 < x 0,040 watt)

+ Battary e 12x longer than previous implementation!!
« Total chip area:

* 128,000 gates

So, under that condition we can bring it down to .099 seconds. | am not going into the
details of the design of the CODEC. But these standard CODECs are available. And that
would be also available with VHDL code. You can generate a design the glue logic and
get the system. So, here the power consumption is less increase over 2 and 3, because

SOC has another processor.

So, the power consumption increases, but what is less is energy consumption. Why?
Because, again the time goes down. So, the battery life becomes longer. So, total chip
area is more because you are using another dedicated processor. So, this is the kind of a

manual exploration of the design space.

(Refer Slide Time: 40:56)

\{\ W

Overall Picture

Several Possible implementations

» Microcontroller: too siow

» Microcontrolier and coprocessor: better,
but still too slow

» Fixed-point arithmetic: almost fast enough
» Additional coprocessor for compression:
fast enough, but expensive and hard to

» TRadeoffs between hw/sw

Now, we can also have the formal formulation of this problem. So, before going into a
formal formulation, let us try to get the overall picture. So, what are the different
architecture, we have tried? Microcontroller, pure software implementation,

microcontroller in a co processor that is with additional hardware.

So, | have mapped some things to the hardware, but still slow. We have looked at fixed
point arithmetic. Then, we have looked at additional coprocessor for compression. So
obviously, what we find is the tradeoff between hardware and software to meet the

performance constraints.

(Refer Slide Time: 41:36)

- P —
SO —

-

Optimisation Problem

Given a system description in terms of task
graph, with timing goal, a set of target
architecture accompanied by a set of
architectural constraints (e.g. maximum
hardware area, maximum memaory size) and

a cost function that estimates quality of the
solution,

Find a mapping of each node in the task
graph to a processing unit (may be with
starting time) while minimizing the cost
function

So, if we now look at more formal specification of the problem on the basis of our
analysis of this example. So, what is that formal formulation? So, what we are telling is,
given a system description in terms of task graph with timing goal, a set of target
architecture accompanied by a set of architectural constraints. Target architecture was
8051 and possible implementation of FSM into with the help of VHDL.

And the cost function that estimates quality of the solution, the design problem or the
partitioning problem is that of finding a mapping of each node in the task graph to a
processing unit. A processing unit can be specially design or can be standard processor.
And also the starting time, in the previous example we have not looked at the problem of
scheduling, because it is a typical sequential operation while minimizing the cost

function.

See if | have a set of possible architecture specified before and then the whole problem
becomes the optimization problem, a standard optimization problem. And we can use

standard optimization problem base techniques, for doing hardware software core design.

(Refer Slide Time: 43:02)

Integer Programming

Cost function C= }_:a,x‘wnha, eRx el (1)

el

Constrants:vjeJ: Y b, x,2¢c withd, .c, e & (2)

The problem of mimimizing (1) subject to the
constraints (2) is called an Integer programming (IP)
problem

If all x. are constraned to be etther 0 or 1, the IP
problem said to be a O/1 integer programming
_problem

So, let look at a one such problem which is integer programming. | think many you and
all of you are familiar with this integer programming as an optimization scheme. So,
what we are trying to optimize? We are trying to optimize this cost function C subject to
these constraints. In fact, we are looking at a minimization problem. And this is calling
an integer programming problem, because the constraint is that these are all from the

integer value.

And if X i are constrained to be either 0 or 1, the integer programming problem is called
a 0 1 integer programming problem. And in fact, there are standard techniques for
solving integer programming problem, when even commercial packages are available.
So, my job is therefore to do what? Map my hardware software core design problem to

that of an integer programming problem. There are other optimizations schemes also.

See if | mapped to an optimization scheme, then I can run an optimization procedure to
get an architecture generated automatically. And that is, what is the CAD tool?
Completely Computed Aided Design tool for this developing an embedded system. So,
this is an example of an integer programming. So, this is the cost function. These are
basically the constraint and | can get the solution which is an optimal solution. And here,

| am assuming that x 1 x 2 x 3 are between 0 and 1.

(Refer Slide Time: 44:30)

Formulation

Notation:
+ Index set I denotes task graph nodes.
+ Index set L denotes task graph node types
e.9, square root, DCT or FFT
+ Index set KH denotes hardware component types.
€.g. hardware components for the DCT or the FFT.
+ Index set } of hardware componenidnstances

+ Index set KP denotes processors,
All processors are assumed to be of the same type

So, let us look at a formulation because, that is a more interesting part of it. The index set
| denotes task graph nodes, because | have to deal with task graph nodes. Index set L will
denote the task graph node types. That is depending on the type of computation, say
DCT, square root, FFT different kinds of computations. And index set KH, denotes

hardware component types.

Because | said already, we can have hardware component for DCT a dedicated hardware
component, so hardware component types. Index set J is of hardware component
instances. And index set K P denotes processors. | can use multiple processors and all
processors are assumed to be of the same type. So, | have got these sets. In fact what is
the interesting and important to notice that, what we are doing is we are assuming this

kind of an index sets.

So that means, | have got a library possible architectures. And what | am trying, what |
shall try out through an optimization problem that of mapping, the task graph nodes to
different elements of the library to get optimal cost. So, my solution is through a process

of searching among the possible set of known architectures.

(Refer Slide Time: 46:02)

.

IP problem

X . =1 If node v is mapped to hardware component
type k& e K+ and 0 otherwise.,

7 =1 ¥ node v, 15 mapped to processor K = APand 0
otherwise,

NY,, =1 if at jeast one node of type / is mapped to
processor k € APand 0 otherwise.
;iaamnmmnzaskgraohmdeswun«wpesz
e d =l
The cost function accumulates the cost of hardware
units:
C = cost{processors) + cast{memories) + cost{application
_specific hardware)

=l

So, that searching is being done through integer programming. So, the problem is that we
shall have X i k, the variable is one if the node V i. This is V i of the task graph mapped
to hardware component of type K. So, it is X i k and K will be an element of K H. This
set of possible architecture and 0 other wise. And if node V i is mapped to processor K,

element of K P which is the set of processors and 0 otherwise.

So that means, this is indicating X and Y is indicating what? Whether | am designing a
dedicated hardware or whether I am mapping it to software. N Y | k is equal to 1 is
another variable. It says, that if at least one node of type | is mapped to processor k equal
to K P, this is one otherwise it is 0. That means, what we are telling is at least this task,

one instance of the task is mapped to a processor.

T is the mapping from task graph nodes to their types, because there are various types of
computations. So, | need to know what type of computation is each task graph node is
really represented. And | can use variety of cost function. This is one cost function,
accumulates the cost of hardware units cost of processors cost of memories cost of

application specific hardware.

(Refer Slide Time: 47:19)

N

.,\\\:. =

Constraints
« Operation assignment constraints
Viel: Z Xl.k 4+ ZYL* =1
ke KM ke KP

All task graph nodes have to be mapped either in
software or in hardware.

Vanables are assumed to be integers,

Additional constraints to guarantee they are either
orl

V — e — s B tn & et P—

Then, we have to specify the constraints. This operation assignment constraint, what it
means? It means either the operation has to be associated either with the dedicated
hardware or with software. So, these constraints represent that. Variables are assumed to
be integers. And additional constraints to guarantee, they are either O or 1.

(Refer Slide Time: 47:40)

P

OO —
e R o o

Constraints
Vitel ¥V ET(v)=¢, ¥ ke KP:NY ;2
Yix
\
For all types /of operations and for all nodes /
of this type:

if /is mapped to some processor &, then that
processor must implement the functionality of
¢

Decision variables must also be 0/1 variables:
Viel Vke KP:NY, ;< 1.

There would be other constraints as well. These constraints what does it say? For all
types of operation | is the set of possible operations. For all types of operations and for

all nodes stand of i of this type. If i is mapped to some processor k, then that processor

must implement the functionality of I. So, if it is mapped. So, what we say that if T Vi is
equal to C I. So, this is the corresponding mapping. Then, that corresponding processor

has to implement this function.

And decision variables must also be 0 1 variables. And that is why for all | element of
this set | types of computations and for all k, which is element of K P that is the set of
processors N Y | k. It is mapping has to be less than equal to 1. In fact, the values could
be either 0 or 1. So, what we are telling is that effectively | am telling that the nodes have
to be mapped, constraints are telling you what? Nodes have to be mapped either to

hardware or to software.

And if a particular computation is mapped to a processor, then that processor must
implement that functionality. So, there has to be formally mathematically represented by

this constraints. There will be other constraints now coming in.

(Refer Slide Time: 49:10)

Sy S —
N .)’

Constraints

¥ k € KH, the cost (area) used for
components of that type is calculated as the
sum of the costs of the components of that
type. This cost should not exceed its

maximum.

¥ K & KP, the cost for associated data
storage area should not exceed its maximum,
¥ k e KP the cost for storing instructions
should not exceed its maximum.

These constraints would come from design metrics. In the previous example, we have
worked with only one constraint that was time. There could be other constraint as well.
So, one constraint we are looking at the cost. That is the area used for component. In
fact, of that type is calculated as the sum of the costs of the components of that type.

That is the area be gets added up.

This cost should not exceed its maximum if | put a maximum area constraint. This keeps
you a constraint on the data memory. | would not like to use data memory beyond. This

keeps you a constraint on instruction memory, the program memory which is to be used.

(Refer Slide Time: 49:58)

S W —
\\\\ .

Constraints

~ The total cost of data memories (Xk « KP)
should not exceed its maximum

~ The total The total cost (Xk « KH) of HW
components should not exceed its maximum

x, The cost of Instruction memories (Xk « KP)
™ should not exceed its maximum
Time constraints: These constraints can be
used to guarantee that certain time
constraints are met,

Then, you will have total cost of data memories should not exceed its maximum. The
total cost of hardware component should not also exceed its maximum. And instruction
memory should also not exceed its maximum. And we also talk about time constraints.
There may be multiple time constraints used to guarantee that certain time constraints are
met. So, what we have got? We have got constraints now on the area. We have got

constraints in terms of memory usage.

We can have constraints in terms of time. So, these are all design constraints. So, what |
am trying to do is now, that | have got a set of task nodes the graph representing the
dependencies control dependencies. | have got a set of possible architectures. | have got
the constraints. | have got the cost function. I need to find out the mapping which would

minimize this cost function. Such that, all these constraints are satisfied, this is clear.

(Refer Slide Time: 51:03)

-
~

Scheduling
e 7,

L ASCR,

COomomairs \,v LHanne

nt

. ‘

So, we can get if we take an example. Let us say, this is my task graph. I will just
looking at a part of the mapping. So, what I can get? | can get, these are the nodes of the
task graphs which can get mapped to an ASIC. These tasks, nodes of the task graph get
mapped to a processor. This e 3 e 4 are communication tasks. They get mapped to the
communication channel or the bars by which the processor and the ASIC should get

connected.

And the scheduling problem will come to what? How these tasks have to be scheduled?
So, if there are two tasks which has been mapped on to, that is v 3 v 4 has been mapped
on to ASIC. Now, what is the order in which they should be scheduled? Similarly, if v 7
v 8 getting mapped onto this processor p 1, how are these to be scheduled? And how

communication has to be scheduled? So, that | satisfy the constraints of the task graph.

(Refer Slide Time: 51:59)

P

Scheduling / precedence
constraints

-

For all nodes v, and v, that are potentially mapped
instance, introduce a binary decision vaniabie 0, ,
with

b, = v, is exected before v, and

0 otherwise.
Define constraints of the
(end-time of v,,) < (start time of v.)) if 2, =1 and
(end-time of v,) < (start ime of v,) Iif b, =0

Ensure that the schedule for executing operations is
consistent with the precedence constraints in the task

So, these conditions can also be formally represented. Say for all nodes that are
potentially mapped to the same processor or hardware component instance, introduce a
binary decision variable. And you say 1, if Vi 1 is executed before V | 2 that means, |
am depicting what the precedence solution, straight forward precedence solution. And

you can define the constraints in terms of end time and start times.

Ensure that the schedule for executing operations is consistent with the precedence
constraints in the task graph. | cannot do away with that. Because, that is the basic

constraints which has come from the system model itself.

(Refer Slide Time: 52:43)

HW types H1, H2 and H3 with costs of 20, 25, and 30,
Processors &type P,
Tasks T1 to T5.

So, let us take an example to understand this integer program. Let us say, this is the
simple task graph and these are the execution times. Now, how we have obtained these
estimates that is basically a key problem. But | am assuming such estimates are available
because, if you remember | told you this performance estimation is the critical
component for all these exercises. So, | have got this estimations may be through

simulation or otherwise.

So, I have got hardware types H 1 H 2 H 3. And they have got cost associated 20 25 then
30. We have got a processor which is of type p and the tasks are T 1 to T 5. And for each
task, these are the execution times on the different hardware components and that of the

processor.

(Refer Slide Time: 53:39)

Operation assignment
constraints

viel: N X, 4+
— e

B

i1 (task 1 mapped 1o H1 or to M)

-
=1

So, effectively what | need to find out? | need to find out a solution such that the cost
would be optimized, satisfying the constraints. This is an example of the constraints. The
first constraint is telling you that the task has to be either mapped to the dedicated
hardware or to the processor. So, you will find that these constraints would translate to

these kinds of expressions because, other possibilities it does not arise.

Because the task 2 cannot be mapped to each one, it can only be mapped to either H 2 or
to the processor. That means, either pure software solution or mapped to this kind of a
dedicated hardware. So, | have got these constraints, this is operational assignment

constraints.

(Refer Slide Time: 54:22)

So now, the other operational assignment constraint is what? Assume types of tasks are |
1 2 3 and one these are the different kinds of tasks. So, what it says? If you look into it,
the functionality 3 to be implemented on processor if node 4 is mapped to it. Because
that is mapped to type of functionality 3, the node 4 is mapped to the type of

functionality 3.

Since it is mapped to type of functionality 3, then the processor is it is implementing in
it, because if node 4 is mapped to it. So, this is basically the operational assignment
constraint which says, that if it is mapped to a processor, processor must implement that
functionality.

(Refer Slide Time: 55:06)

o~

Other equations

Time constraints: Application specific
hardware required for time constraints
under 100 time units

Cost function
Co20 #{H1) + 25 {H2) + 30 ¥ (H3) + cost{processor
Scosimen)
o

So, let us look at other equations. There will be time constraints because other
constraints should now come into the picture. We are looking at a time constraint to one
constraint for the timing. Application specific hardware required for time constraints
under 100 time units. And we are defining this as the cost function; this 20 25 30 is the

cost of this hardware.

And this should be multiplied by the number of this units been used, plus the cost of the
processor plus the cost of the memory. So, this is what we would like to minimize,
satisfying this time constraint and other operational assignment constraints.

(Refer Slide Time: 55:45)

Result

For a time constraint of 100 time units and
cost(P)<cost(H3):

So, let us look at a result for a time constraint of 100 time units and cost of the processor
p, if is less than the cost of H 3. So, what | have done in this case you will find that |
have mapped T1toH1T2toH2T5toH1T3and T 4toP 1. Now, if you look at the
time constraint, the time constraint will come from 20 plus 20. And this T 5 is mapped to

H 1. So, | am using two units of H 1 that is 20.

So, | get a time constraint along this path less than 100, along the other path is also less
than 100, because | am mapping T 3 and T 4 to the processor which is 10 plus 10, 20. So,
| have got a solution which satisfies the time constraint. And why | said there is the cost
of processor P is less than that of H 3. And that is the reason why I have used the
mapping them on to the software, instead of using a dedicated hardware. So, | am

optimizing on the cost, because | have to satisfy the constraints.

And after satisfying the constraints among the possible solutions, if 1 am choosing a
solution which cost is less then | have to mapped the task T 3 and T 4 to the processor.
So, | have got this assignment and this problem can be solved through an integer
programming toolbox. So, what | am telling is | have got an automated mechanism for
solving the problem. I am not doing a manual exploration of different possibilities. In
fact the all these kinds of techniques are used for this kind of software hardware co

design and partitions.

(Refer Slide Time: 57:41)

NN -

Summary
- We have looked at the steps involved in
hardware-software partitioning
- We have understood formulation of the
partitioning task as an optimisation
problem

So, what we have looked at, we have looked at steps involved in hardware and software
partitioning. And we have understood formulation of the partitioning task as an
optimization problem. In fact, all through it was an optimization problem either you
manually try it out or use an automated algorithm, with a set of possible target

architectures to get a feasible solutions. Any questions?
Student: ((Refer Slide Time: 58:05))

The question is, if we are using a dedicated hardware for two functions whether | am
using one of them or two of them. In this case, actually I have using two of them.
Because use of both, use of two H 1 would act to the cost. So, when we are talking about
a dedicated hardware the model that we have used for this example is that, it is
implementing only one function. So, if | need two of them it will be two instances of that

hardware element.

