
Embedded Systems

Dr. Santanu Chaudhury

Department of Electrical Engineering

Indian Institute of Technology, Delhi

Lecture - 16

Bus Structure – 3

Serial Interfaces

In the last class, we had discussed the buses which we expect to find we expect to

implement in an SOC. We have also looked at serial buses and we had started

discussions on one of these buses that is I2C. Today, we shall continue the discussions

on I 2C and look at other serial buses as well.

(Refer Slide Time: 01:52)

First let us recapitulate the I2C basics that I had done in the last class I2C is basically a 2

wired bus. It has got 2 lines serial data line and the serial clock line the voltage levels are

logically high and 0 that is low. The bit transfer takes place when your SCL is 1. So,

SCL 1 implies that SDA line now has a valid data. So, you got to have valid data when

the clock is high and data change can take place. The transitions on the data line can take

place when your clock is low. So, basically it is a 2 line bus and using 2 lines there can

be number of device hanging one after another and they can communicate data with each

other using just 2 lines. So, here the data transfer is in a bit serial fashion and that is the

basic difference with any of the parallel buses that we have seen so far.

(Refer Slide Time: 03:07)

So, I2C lines can have 2 possible states what we say a float high and drive low and pull

up resistor on the line are connected and only devices pull the line low. So, if no device

is pulling on the line it will float high; that means, by default the I2C signals will be

always high.

(Refer Slide Time: 03:39)

So, what is really the interfacing circuitry here you will find that I have shown 2 such

blocks if you look at it the, these are the 2 lines. This is corresponding to the SCL and

this corresponds to SDA the serial data line and there are 2 devices hanging from these 2

lines. So, here the serial clock is connected and this will be the internal input to the

device and this is the out and this is basically in. So, what is that mean? That means, that

when it is driving when this device is intending to drive the bus. The clock should be

generated by this device else it will get the clock in that is the clock which is currently on

this line being generated by some other device. Similar thing is true for the data line that

is SDA line as well. So, these are all Open Collector Interfaces or Open Rain Interfaces.

So, you have got the resisters connecting these lines to the VDD that is rain voltage. So,

that the normal condition for all of them is high an effectively these connection is

nothing, but wired ending. So, a device can pull the line low this is the basic structure

and interface of the devices for connecting onto the I2C bus.

(Refer Slide Time: 05:33)

Now, when the transmission is to takes place there has to be start condition and stop

condition. Start condition is when the SDA line makes a transition from high to low

when SCL is high. So, when the clock is high and SDA is making a transition it means

there is a start of a frame. There is a frame of data that is being transferred the stop

condition occurs when there is a transition from 0 to 1 and when SCL is high. So, these

two states this is S and this is P the stop condition there can be also another state what is

called a repeated start. So, start is generated instead of a stop after a frame. So, bus is

normally busy after S and before next P and free after P and before next S. So, this

actually indicates beginning of a data frame which is to be transferred. So, what happens

in data transfer?

(Refer Slide Time: 06:46)

Data bits are therefore, transferred after start condition and whole transmission is byte

oriented. So, one unit that your transfer is 8 bits, but that is consider as 8 bits data plus

one acknowledge bit. This acknowledge bit is to be transmitted by the recipient of the

data and the order in which data is send is that the most significant bit is send first. In

fact, since there are multiple slaves which can be connected onto the bus we need a

mechanism to identify the recipient of the data. So, address of the slave is also data. In

fact, the first byte after this transition when you start transmission is actually an address.

During the first byte the master is a transmitter and address slave is a receiver and next

bytes depend on last bit in the address byte. So, depending on whether it is a read

operation or write operation either it will be master transmitting the data or it would be

the slave transmitting the data. The recipient will always generate the acknowledge bit

after transmission of 8 bits. So, this is the basic addressing scheme.

(Refer Slide Time: 08:24)

There is seven bits which is used for addressing the slave devices. So, each slave device

can have a seven bit address. The 8 bit is basically the direction which tells you whether

it is a write or read. Master may generate repeated start an address another device; that

means, the bus still continuous to remain busy. Each device listens to address if the

address matches that of the device the device switches state according to its read or write

bit. Read or write bit as part of the data which is getting transmitted from the master.

(Refer Slide Time: 09:24)

So, what is exactly the synchronization takes place the master sets SCL 0 and generates

pulse for each data bit and 8 pulses for data is to be followed by one for acknowledge.

So, here master responsibilities to generate the clock although the acknowledge data will

come from the slave, but master will be generating the clock because it is driving the

bus. After acknowledge the master tries to generate next byte’s first pulse. The slave can

hold SCL low. So, if the slave holds SCL low then the master will switch to wait state

because it cannot send the next data, because devices not yet ready to receive the data.

So, that ready condition is now being provided by pulling the clock low.

(Refer Slide Time: 10:22)

So, pictorially if you look into it. So, this is basically the transition, which is taking place

from one to 0 when my SCL is high which is indicating that a data frame is starting

followed by these. There are this clock pulses which have been generated by the master

and these data is being sent with the most significant bit first. Now, at this point

corresponding to these clock the master does not send any data. And here actually the

whole reason is why master is not slaving because it is really waiting for the

acknowledge to come from the slave. After these what happens the slave will pull down

the clock because slave would like to now have a wait state. Because it may be using an

interrupt slaves, may be using an interrupt call to transfer the data or do anything any

other housekeeping task. So, it introduces a wait state here. So, when there is an wait

state effectively, no data is sent again the clock starts pulsing at these point. And from

these point onwards the data transmission can start. And here what is being shown is that

after that there can be a restart or a stop condition that is depending on how your SDA

line is going through a transition when your SCL is high. So, this is exactly how the data

transfer is coordinated by the clock the master clock.

(Refer Slide Time: 12:17)

Now, the data bits which flows along your SDL Serial Data Line is generated by the

transmitter. Now, transmitter can be master or may be the slave depending on whether it

is a read or write operation in the ninth pulse the transmitter releases SDA. The receiver

must hold SDA low in order to acknowledge the received data and slave must release

SDA after the acknowledge bit. So, that now the master can against start transmitting

provided the clock is not pulled low by the slave. So, now, if you see the waveform, if it

is the same thing so, what you a finding here, this acknowledgement which is coming.

So, this acknowledgement here the SDA line is now pull low by the slave and this is

corresponds to this clock pulse which is generated by the master.

(Refer Slide Time: 13:34)

So, the frame format is you have got the complete frame format is you have got the start

transition. You have got the slave address then you have got the read write bit then

actually you should start the address. Now, here A is the acknowledgement which comes

from the slave. So, after your first byte which indicates address you got to have an

acknowledgement from the selected slave if no such slaves exists are currently connected

to the bus. Then, obviously, the acknowledgement will not come and the frame has to be

important. So, this is exactly how the whole frame format looks like and the master

receive this is a second byte onwards this effectively similar. So, you have got the data

which is getting transferred and with the corresponding acknowledge. Now, I2C is

basically a multi master bus. So, in that I2C bus there are multiple devices which are

hanging from and they can take up the role of master or slave in an interchangeable

fashion. So, there could be multiple master which can be there on the bus. So, you need a

mechanism for bus arbitration.

(Refer Slide Time: 15:25)

Now, any one of several different devices which are they are on the bus may act the

master as a master at various times. And what you have observed I think by now that

there is no global master to generate a clock. In fact, the device which is currently

driving the bus becomes the bus master and the master drives both SCL and SDL as a

case may be now when to devices try to drive SDL to different values there would be

actually a conflict. So, what is what it is done is the device can listen to the bus to be sure

that it is not interfering with another message; that means, if a device is trying to send a

logic 1, but hears logic 0. It will immediately stop transmission and gives the other

sender priority. So, the moment it detects a conflict it would be draw. The whole logic

the hardware should be build in such a way that when the devices with trying it is not

really disturbing the data which is pursing on the bus an after sometime again it should

be tried out.

(Refer Slide Time: 16:53)

This is the basic scheme of the bus arbitration. So, if you looking to it that this whole

arbitration implies the there is a synchronization with respect to SCL, because all these

decisions are being made with regard to your SCL and SDA lines. So, what is being

shown here is the SCL and SDA line of the bus and these are the data may be coming

from 2 distinct devices. This is your data 1 and this is from data 2 now what you are

finding here is that, the data when it is going through this point both devices are

generating identical data corresponding to this clock. So, now since the data is identical

there is no way to detect a conflict there is no way to detect a conflict. So, the other

device which is sending it it will not detect a conflict and it may assume then the bus is

with it only. Now, what happens is that when it comes to the next one there also you will

find no conflict. The conflict comes in at this point only with respect to this clock.

So, here there is a mismatch between the data to which is currently driving the SDA line

and it is finding that this is the data is high. So, it cannot drive the line and hence it

would realize that there is a conflict and it should ((refer time: 18:56)) the bus. Now;

obviously, this whole logic works out with respect to a synchronized clock, because the

all these transitions I told you that the data valid condition is when your clock is high. If

the SCL is not synchronized for these 2 and if 2 devices start issuing non synchronized

SCL then there would be a problem. So obviously, the bus arbitration requires as step for

synchronization on SCL and then the arbitration on the serial data line. Now, I2C is

available the hardware for I2C is available in a variety PIC microcontrollers.

(Refer Slide Time: 19:47)

In variety of microcontrollers and in PIC family as well typically this MSSP module

which is their in PIC provides the support for I2C.

(Refer Slide Time: 20:00)

Now, the basic structure is that in the I2MSSP module you have got these I2C engine

you have got these 2 registers SSPBUF. This is a register. So, this is the master and this

should be the corresponding peripheral. Peripheral should also have the I2C engine

otherwise it cannot communicate following I2C protocol. So, it has got the control on the

control logic as well as action part. So, effectively the I2C engine implements I2C

protocol in hardware. This SSPBUF is a register that stores data sent or received on I2C

bus because there will be serial data. So, it has to be stored and buffered and this control

controls action of the device based on I2C instructions. Now, try to understand the

difference between the functional role of I2C engine and that of these controls. Because

if you remember I said that if I have let us say a data frame I have started and I want to

read data the master wants to read data. So, I2C engine will detect this, read operation

and depending on that read operation the control logic has to be activated to provide data

on the serial data line.

So, this is this control logic controls actions of the device based on I2C instructions. In

fact, in a mode general case if you remember I say the I2C bus has been used as a control

bus for connecting on to various peripheral devices. So, if the peripheral devices has got

as a set of commands then those commands will be transmitted where the I2C bus. There

will be dedicated by the I2C engine and passed on to control logic. So, that there can be

device specific action. Now, the most interesting thing that we have seen therefore, with

respect to the I2C is that it almost provides all the capabilities that you typically find in a

parallel bus. Although the bus is essentially serial and based on just 2 lines the basic

point I was making is not in terms of the foot print that is being satisfied in this case. So,

on a board if I on to connect my PIC microcontroller with say another device and use a

small foot print PCB at desirable feature would be to use I2C bus. Because I have to just

put in 2 wires to connect a variety of devices a peripheral variety of peripherals to my

PIC microcontroller. And it has got the complete logic for bus arbitration which you

typically find in a parallel bus as well.

(Refer Slide Time: 23:30)

So, what are the advantages? Advantage is good communication with on board devices

that are may be accessed occasionally because if it is being regularly accessed say a

cache memory. Obviously, I would not like to use a serial bus because that would be

delay. But if you remember I said that in PIC E square PROM has got an I2C interface

why, because E square PROM will be typically a program which is stored which may be

downloaded onto a RAM for execution or some book keeping data would be stored on

the E square PROM. So, these are occasional reads and writes it is not an a regular basis.

Now, this bus is easy to link multiple devices because of its addressing scheme and cost

and complexity do not scale up with the number of devices, because you still continue to

use simple 2 lines and you connect an additional device onto the bus.

The complexity of supporting software components can be higher than that of competing

schemes. For example, SPI why because you have a complete bus protocol starting from

how the address has to be put on the bus, how the address has to be interpreted and made

use of . So, the complexity of the supporting software as well as hardware may be not

desirable feature with regard to a simple application , but the more important things is

these which makes I2C more popular in. In fact, these software components they

implementation of software components are also facilitated by making appropriate

hardware elements available in the hardware blocks providing the I2C interfaces.

(Refer Slide Time: 25:31)

So, next we shall look at SPI which we say is a competing serial interface and this is

called Serial Peripheral Interface an. In fact, it was defined by Motorola and it is now

again available and can be implemented on a variety of this microcontrollers including

your PIC microcontroller. It is generally faster than I2C that is capable of several MBPS.

An applications is like to I2C used in E square PROM Flash real time clocks and it is

better suited for data streams like your ADC. The basic difference is it has got a full

duplex capability in case of I2C it is a how duplex, because I have got a single data line.

It has got a full duplex capability that is and therefore, it can be used for may be a

communication between a codec and digital signal processor.

(Refer Slide Time: 26:43)

So, let us look at these now this is not like a it is not using just 2 lines, but using 4 lines.

It is there is a master there is a slave and what are the interfacing signals, this is the basic

clock. This is a input output this is from master output and this is an input to the master.

So, these are the two data lines and that is precisely reason why it is a full duplex mode

communication and there is another line which is called slave select. This is basically

bar. So, active low this is a slave select line. So, using these lines you select the slave. In

fact, this implies there is no distinct capability in the SPI bus configuration of associating

unique addresses with the device themselves.

(Refer Slide Time: 27:54)

So, synchronous serial data link is operating at full duplex. So, it is a synchronous bus

because you have got a clock. So, it is a pure synchronous bus and synchronous serial

data link and it operates in a duplex mode. The basic model is master slave relationship.

In fact, there is there cannot be really multi master on this configuration. There are 2 data

signals these master data output slave data input also called is also called SDO Serial

Data Output and MISO Master Data Input Salve Data Output also called serial data

input. It has got 2 control signals one is; obviously, the clock other is that of selection of

a salve. So, it is a it is an active it is a logical line active low logic line and there is no

address in the point I had already told earlier.

(Refer Slide Time: 29:00)

So, now if you compare the 2 for point to point if you look at SPI is simple and efficient

less overhead than I2C due to lack of addressing and plus SPI is full duplex. So, it can be

much faster than that of I2C. So, for multiple slaves, each slave needs separate slave

select signal. These implies that there will be more effort and hardware cost on the

master itself. So, you can realize that here the whole approach is that I am trying to get

fast data transfer to slave devices are from slave devices and there is no provision of a

slave taking up the role of a master at any point in time. So, the basic configuration in

these case would be therefore, something like this.

(Refer Slide Time: 30:07)

So, you have got an SPI master and then the interesting issue is that in this case. I have

got multiple slave select lines just like if you remember that when we talk about

interfacing memory what happens when we interface a memory I put in a decoder. In

fact, we have seen that in the context of parallel buses we have a decoder where we fit

the address. And decoder generates the chip select signal by which I select appropriate

memory block and then I refer to a particular location in that memory block. Here,

actually master needs to incorporate a similar kind of a decoder. So, master would know

the address of the slaves and it would provide in the software the address to the decoder

and decoder would generate appropriate slave select signal which would flowing to the

slave and. So, that they are selected and they able to respond to whatever is coming from

the master. So, in this case the entire onus is on the master and the hardware complexity

of the master can also go up if it needs to interface multiple slaves. Now, so, here it is not

truly speaking if you looking to these this not truly speaking a bus. Although we are

comparing with I2C I2C is a bus why because I said there is a typically buses one feature

is that of a set of signal lines and number of devices being connected to that set of signal

lines.

Now, here all the slaves are connected to the same three signal lines, but each of them

have their own private slave select line in that sense is not strictly a bus. The, these three

signals are same, but the select option is different and here therefore, you have got

distinct slaves related to the master. So, if I have a problem of interfacing a device and

when I know thus device will be always a slave device. And it is not likely to become

master to take up basic job of initiating a transfer of data on the bus. Then I would select

SPI as a protocol mechanism because it enables be faster transfer, but when I need to

connect multiple devices with a controller or a microcontroller where I know that these

slave devices have the capability to become master and I would like this capability to

flow to the slaves. So, there can be even data transfer between 2 peripherals directly

without involving even the processor then I would like to select I2C as a preferred

option. This is a vary key point to remember when you designing a system based around

microcontrollers like PIC which provide support for both I2C as well as SPI.

(Refer Slide Time: 34:18)

So, let us now look at the details of SPI protocol. So, this is the clock and what we are

telling is I have got a rising edge mode of the clock. In fact, interestingly I can defined

what kind of clock would be used for synchronization on the SPI bus by using basically

2 parameters what is called Cock Polarity and Clock Phase which determines the active

edge as well as idle state of the clock. Now, this is a rising edge mode. So, these clock is.

So, all these data valid conditions would be with respect to the rising edge of the clock

and I got to have my slave select signal active for any kind of data transfer to take place

and this is a sample input. So, you have got again the same condition that you start with

MSP first just like in I2C. I had the most significant bits send first here also the most

significant bit is send first and the entire sampling or the data valid time is defined with

respect to the rising edge of the clock.

In fact, this is a kind of a convention or combination which SPI is specifies and talks

about it is a 0 0 is a rising edge 0 1. All these a falling edge and corresponding to these

combination there will be definition of the idle state of the clock. And that is why these

combinations defined four distinct specification of clock and the master and slave must

agree on these parameter pair values, in order to communicate otherwise the slave will

nott understand whether you have got a valid data or not. So, in a way what it implies is

that when multiple slaves are getting connected to the master. Master would need to

know with reference to the slave, what is the convention to be followed. So, if you have

a master hardware. The master hardware should have provision of specifying these 2

parameters.

(Refer Slide Time: 36:59)

So, SPI interface defines only the communication lines and the clock edge and there is

no specified flow control. No acknowledgement mechanism to confirm receipt of the

data. So, if you want to build up that mechanism are the protocol that is up to you. So, if

you have designed a peripheral with a certain kind of an acknowledgement scheme. Then

you need to write the software on your microcontroller to make sure the whole transfer is

confirming to that protocol that you have designed. Please note this, because in an I2C I

have a basic protocol already specified as part of the standard where I have got definition

of a frame that is start stop we have got definition of acknowledgement. So, that flow

control is part of the I2C protocol. In SPI it is just definition of the communication lines

and the clock edges your free to develop your flow control protocol and implement.

So, in that context your hardware realization the basic hardware realization can be done

with the simple shift register. If you see, because shift register why because it is serial

input output. So, if you look into here you have got the SPI clock generator and this SPI

clock generator could come from the always master because master is driving the bus.

Master would be to know that for a particular slave what kind of clock configuration is

defined by those 2 parameters that I had earlier discussion. So, it will generate the clock

and depending on the data which is getting generated. So, either it will be, if the slave is

generating the data is shifted out by the clock and the data is coming here. This shift

register is also effectively clocked by the same clock and. So, the data would be ready. In

fact, this is a very straight forward way if I continue to use it in definitely. Then the same

data will go from master to slave and from slave back to master, but in a processor its

implementation request certain support.

(Refer Slide Time: 39:43)

So, PIC provides that support for this processor for these protocol. In fact, there is SSP

protocol and SSP module as well as MSSP module in PIC through which you can really

implement SPI. MSSP is I2 can be used for implementation of I2C also. So, in fact,

using a PIC, if you are using that version of PIC, which has got both SSP and MSSP

protocol. You can setup on I2C bus a connect a set of peripherals via I2C bus as well you

can connect specific devices via SPI protocol using may be SSP module when there are

number IO devices is to be connected then you can adopt this kind of architectural

module. The two basic registers other than registers other registers data registers which

are involved. The two basic registers which are involved in PIC for managing your SPI is

SSPCON this is SSP control register an SSPSTAT SSP status register. The some bits

which are used are one is SSP overflow if there is a buffer overflow if you have seen the

shift register. If you do that kind of a connection there one be a any and any time buffer

overflow, because data is flowing from master to slave and back to the master.

But really I have to store the data in a shift register and if that shift register is not getting

cleared. The problem is there would be a overflow. So, the system should have an ability

to detect whether such an overflow is occurring or not. So, a bit that SSPCON bit

indicates whether there is a serial port overflow then you have got this enable bit. In fact,

if you want to implement your SPI you have to first enable the synchronous serial port

only when if you only when if it is enabled the whole implementation can really work.

Then you have got the 2 bits one is your CKP which is clock polarity and other is CKE.

Now, this is in SSP stack register clock edge select and this is also the buffer full

indicator is also there in the SSP standard. So, obviously, depending on the slave and

depending on the modality that the slave is excepting the modality that a slave is

excepting you have to set CKP and CKE bit for during any kind of data transfer.

(Refer Slide Time: 42:41)

So, again this registers are involve this is SSPBUF register we have already seen earlier

in the context of I2C. The same registers are involved and this is the control logic which

would generate the clock and it has to also generate the slave select signal. So, what we

have got here is SSPSR these are now shift registers. SSPBUF was a buffer register and

it is not a shift register . So, the shift register is loaded by SPI data when the data is being

received and when the data is being sent the data has to be loaded in parallel onto this

shift register and your serial buffer this is your SSPBUF. Now, the data is put here after

an SPI transfer or before SPI transfer that is from in these case, but you see which is

interesting to note is that once the data is loaded onto the shift register. The loading of

the shift register will be guided by the clock once the data on is loaded onto the shift

register it is transferred to SSPBUF.

So, it is a kind of a serial in parallel out operation when you are actually transmitting the

processor will load data onto SSPBUF and then SSPBUF will load that data onto SSPSR.

So, it is parallel out from here and parallel in to SSP here and then it is shifted out when

the data is being sent. So, this is the basic mechanism involved here with regard to the

device of the slave I have also shown existence of similar registers. Whether their name

SSPSR or SSPBUF or not they will have the similar capability I got have a serial shift

register to get the data. And from there it has to be loaded in parallel to a buffer register

and vice versa for the purpose of transmission. So, therefore, what we have seen so far is

mechanisms for connecting peripheral devices to the processor using serial bus.

I2C is a true bus which can be a multi master bus this is SPI is a bus where I connect one

device to the processor. There may be a multiple devices to be connected, but each of the

device which have been connected will be slave. They cannot take up the role of the

master and each device is being selected by a dedicated slave signal. Now, we shall take

our attention to a slightly different problem. So, far what we have look that in terms of

parallel bus as well as the serial buses, the problem of designing the Embedded System,

and how to use bus inside an Embedded System? Fine. Now, the problem is once have

made the Embedded System I need to communicate with that Embedded System as well.

So, how that protocol is to be defined fine. So, we are going to another domain. So, we

talk about what we call communicating with Embedded Systems.

Now; obviously, this communication means that there would be a kind of a host and we

are talking about communicating with Embedded System with the host. What is the other

possibility? Other possibilities there could be 2 Embedded Systems and I might like the 2

Embedded Systems to communicate with one another a kind of a peer to peer

communication. Now, there are various modalities by which this communication take

can takes place. If we are going into a complete network base protocols we can use that

network base protocols for communications I can have Embedded Network devices that

is embedded devices for the complete networking protocol is enabled. Now, before going

into the network issues we shall address network issues later on in this course here we

shall look at specific protocols which have some characteristics of the network protocols.

But not really full fledge it network protocols which have been used for this kind of

communications.

(Refer Slide Time: 48:02)

USB is one such protocol. In fact, USB is another serial protocol and also defines the

physical link. Now, it transmits all data differentially on a single peer of wires and there

is another peer which provides power to downstream peripherals. So, these bus also

delivers power so far in the buses, we have not really talked about power delivery. And

in fact, the whole development ((refer time: 48:37)) with keeping PC as a core host. So,

it is basically PC centric protocol and in a way every USB device is an Embedded

System. Even the flash disk, that I am putting onto my PC it itself on Embedded System

with the small processor setting in it. So, why we need to k? Now, therefore, the USB

protocol as an embedded designer must be very clear, because I am trying to design an

Embedded System. And I want to provide that Embedded System the facility to

communicate with host it should be enabled with the USB protocol.

(Refer Slide Time: 49:36)

So, the basic concept is that of a bit serial bus now this bit serial bus which uses

differential drive technology is distinct for USB and different from that of your I2C or

SPI. Because I2C on SPI was primarily on board specifications that is typically on a

single PCB when I am trying to put different devices I would connect them using I2C or

SPI. Now, these are kind of external bus definitions. So, external devices are to be

connected. So, it is a. So, I have got the differential voltages which are between these 2

lines which would define the big levels high and low. Obviously, it would be much more

robust and signal to noise ratio would be better compare to that of a single wire bus.

(Refer Slide Time: 50:33)

Typical speed is a high speed bus between. In fact, if it is a high speed its 480. In fact, 12

Mb it can walk to the lower speed is 1.5 Mb. Signals are basically Vbus that is a this is

basically the power signal in the ground and the other signal is basically D plus and D

minus is the differential levels for communicating the data.

(Refer Slide Time: 51:02)

What we say that USB devices can pull a limited amount of power from the bus. If I

device requires additional power it may be connected to a power line, but if it is not

show it can be throwing power from the bus itself. So, my flash disk which I connect

which does not need additional power is actually drawing power from the bus itself and

system may provide a power management protocol. In fact, which is independent of the

USB what would be the basic motivation of this power management protocol. If the

devices not being used, shut down the power to it. So, actually save power in the process

of communication

(Refer Slide Time: 51:51)

What is the basic USB architecture? USB peripherals a slaves which typically response

to comments from the host. So, its I told you this a host based structure. So, there is a

host and these are all slaves when a peripheral is attach to USB network the host

communicates with the device to learn its identity and to discover which device drive a

restrict wire. So, these process is called enumeration and these enumeration process is

supported as a device driver for the USB port on the host on the master. So; obviously,

the architecture wise a really a do not have what is called the multi master I have only

one host and the multiple slaves which can be connected to the bus.

(Refer Slide Time: 52:49)

The USB devices are typically of two types one is called standard alone which has a

single function like that of a mouse. There may be compound devices those that have

more than one peripheral shading a port. Typical example is a video camera because it

has got image captured device it has got a audio process device. So, it has to send both

image as well as audio via the USB link. So, they are compound devices. In fact, USB

distinguish between this to distinct types of device the basic organization is what is

called a hub based organization.

(Refer Slide Time: 53:35)

So, you have a host device. So, do a host device you can connect the hub and your

peripherals gets connected to the hub otherwise you connect a single peripheral with the

host device so, I can build now a tree. So, if I connect at one port another hub, I can

connect more peripheral to this and that is why this is called a bus; that means, there can

be multiple devices hanging from one link.

(Refer Slide Time: 54:06)

And these USB hubs are nothing but bridges; we have already studied in the context of

parallel buses they are very very similar to bridges. So, the increase the logical and

physical fan out of the network a hub typically has a single upstream connection and

many downstream connections. So, these upstream connections connect the hub to the

host. It may not be directly communicating in the host. But it may be communicating

with the host through another hub. Hub themselves are USB devices and hubs of the

ability which is not there in all USB devices to detect topology changes due to insertion

or deletion of devices. And they are also source power to USB network because the

power has to flow for the down. So, these gives us more or less architecture of the USB

it has got a definite protocol for doing the data transfer which is much more sophisticated

than that of typical I2C kind of a protocol. Because your now communicating with the

with Embedded Systems and each of this system have got actually the capability to run

this the whole protocol machine on its processor. So, it is just not a simple FSM

implemented in the hardware the way it is in for I2C. Here, you have got processors

involved may be at the various devices you can have more complex protocol scheme.

(Refer Slide Time: 55:54)

So, this brings us to end of today’s discussions. So, we have studied serial interfaces like

SPI and I2C for connecting peripherals to the basic microcontroller blocks making an

Embedded System. Then you have started looking at the protocols which can be used for

connecting Embedded Systems to hosts and other Embedded Systems. You have studied

architecture of USB you have not really looked at protocol of USB. We shall look into

protocol of USB and other similar protocols and interface mechanisms in the next class.

Any question? See these are two parameters the question you have asked is what is the

significant of clock polarity and the clock edge parameters. See if I have the clock now

with regard to the clock whether the transitions that is the data I have the data line. So,

whether the data on the data line should be valid with respect to the rising edge or falling

edge can be configured. So, that can be done with regard to the clock edge. Now, with

regard to the polarity what we can do is now polarity means whether high is an idle state

or low is a idle state. So, therefore, using these two bits these combinations can be

identified these combinations uniquely configures the clock signals for a slave device.

So, that is a facility that SPI provides for.

