
Embedded Systems 

Dr. Santanu Chaudhury 

Department of Electrical Engineering 

Indian Institute of Technology, Delhi 

 

Lecture - 15 

Bus Structure – 2 SOC bus Serial Bus 

 

In the last class, we have studied bus structure and bus is the most important component 

which connects CPU with memory and peripherals. Today, we shall study more specific 

bus structures both parallel as well as serial buses to recapitulate what we did in the last 

class. 

(Refer Slide Time: 01:24) 

 

We studied single boat computers as examples of Embedded Systems. Single board 

computers are nothing but a PC put on to a single PCB. So, the single PCB satisfies all 

the basic characteristics of a PC architecture. The bus which runs on their board is 

typically ISA bus or PCI bus that we had studied earlier and you have serial and parallel 

ports. So, in fact, SBC’s provide all the flexibility and power of a PC with very small 

space requirements. So, basically what has been done is that foot print of that card which 

is being used has been reduced. So, that it can be used in an appliance. The basic 

motivation of doing this is that your software can be very easily ported. And you do not 

spend time as well as money in using tools targeted for specific microcontrollers like 



peak enough. In fact, PC 104 and PC 104 plus meet the need of SBC’s. In fact, these are 

nothing but these specification of ISA and PCI bus suited for small foot print devices. 

(Refer Slide Time: 03:04) 

 

In fact, the basic bus architecture is that of PCI bus. In fact, we looked at these diagram 

in the last class also. We are just looking it again in order to understand it is dynamics. 

So, the moves important thing to note is that this is an hierarchal bus structure. In fact, 

there are three levels of hierarchy. We have got the CPU bus we have got PCI bus which 

is the bus which connects the CPU with other peripherals and there is an ISA bus which 

is for the slower devices. In fact, among the three buses in this hierarchy CPU bus is the 

fastest bus. And you will find that we have got a bridge of PCI host bridge which 

actually does the communication between the CPU bus and other peripherals whenever it 

is required, the most important and interesting thing to note the communication with the 

DRAM. 

We have already studied the DRAM is a slower device and the CPU bus will be pretty 

fast because CPU is working at a higher clock rate. So, the PCI host bridge provides the 

communication interface between the fast CPU bus and that of the slow DRAM device. 

In fact, it also provides connectivity to the basic IO system ROM as well further this PCI 

host provides connection with PCI bus. The motivation is a same here you have got 

slower devices. So, this slower device access will be on this PCI bus and this bridge will 

actually control the communication between these two buses. In fact, these basic 



architectural model, you will find today in most of these buses which are targeted for 

connecting high speed processors with peripherals and memory. 

(Refer Slide Time: 05:26) 

 

What is really a bridge? A bridge is a slave on the fast bus and master of the slow bus, 

because bridge is actually sitting on both the buses. And if I look at a typical master 

slave configuration then you CPU will be the master for the faster bus and bridge will be 

slave over there. So, the bridge will take commands from the fast bus which as got the 

CPU and it will become master in the slower bus for carrying out the transactions read 

and write transactions with the slower devices. So, it will issue common on the slow bus 

so, effectively it can become a master on the slow bus. So, the basic responsibilities 

returning results from slow bus to fast bus as well as if something as to be foot from fast 

bus to the slow bus. It also functions as what is call a protocol translator because I can 

have the 2 buses working with different transaction protocols. 

So, I request from one bus has to be translated into a request compatible with the 

protocol of the slower bus. So, the translation is also carried out by the bridge so. In fact, 

bridge you can consider is actually an additional hardware. In fact, in very simple case a 

bridge would be a simply implementing a protocol machine that is a finite machine, but 

in more complex cases like PCI bridge it will as good as that of a controller with it is 

own registers and control logic. In fact, if I now look at system on chip what is a system 

on chip. It is actually what we have seen in terms of discrete components on a PCB that 



being put onto a silicon element and a System-on-a-Chip can have multiple processors as 

well. 

(Refer Slide Time: 07:33) 

 

In fact, we have already seen O map which has got a ARM as well as a CP55 DSP. So, 

this is an example of System-on-a-Chip. So, there will be a fast bus you have a system 

bus you have a bridge connecting it to a slower bus to which this kind of input and 

output devices can be connected. There may be also custom interfaces here an example 

has been given for an encoder. So, if I have the data that empec encoder converts it and it 

uses a kind of a custom interface to write the data through the memory controller. It may 

also invoke the DMU DMA controller and DMA controller is actually sitting on these 

bus transferring the data from this special purpose peripheral to the corresponding 

devices. It may be even to the memory. So, what we say the System-on-a-Chip requires a 

busing system to connect various components including one or more microprocessors 

memory peripherals and special logic like your empec encoder. Now, here; obviously, 

my bus specification and bus protocols have to be different from what we have consider 

an seen for a PCB requirement. So, in this context we shall look at ARM Processor bus 

Interface in many of the SoCs use ARM CPU core as a main driving CPU 



(Refer Slide Time: 09:17) 

 

So, ARM provides Advanced Micro controller bus Architecture and this bus is called 

AMBA bus. ARM processor uses AMBA to interface to the System bus that CPU 

interfaces to the system bus and the what is the advantages of these kind of interface 

definition it is standardizes bus interface it allows increased reuse of IP in designs 

because I can pickup another IP which is compatible to the AMBA interface and I can 

put them together to design my own SOC and it enabled the creation of upgrades and 

various families of devices because it devices make to be just compatible in the bus. In 

fact, this is the basic underlined theme for definition of all the buses and the necessity for 

defining a kind of a fixed protocol for the buses. So, once I have a devices confirming to 

the bus protocol they can be used in a system without a necessity for developing special 

interfaces. In fact, this is the key motivation for defining buses and also studying the bus 

structures. So, you go back to the picture that we had already seen earlier. So, you have 

got this ARM processor. 



(Refer Slide Time: 10:56) 

 

It has got it is bus interface making the interface compatible with what is call AMBA 

bus. Now; obviously, when I am having a bus and definition of the signals they may not 

be always same as that of the signals being provided by the core processor core. So, I 

need to have an interface unit. So, this is the internal bus these bus connect it is what we 

have called the system bus. These bus connects a processor to the on chip RAM as well 

as these provides a interface to the external bus interface. So, these are external devices 

since it is a multi master bus actually there would be an arbiter we are discussed how 

what is the role of arbiter? Arbiter arbitrates between the request coming from multiple 

masters sitting on the bus and just like PCI bus here also I have got a bridge. The 

function of the bridge is a same it is connecting the high speed system bus with the low 

speed peripheral bus. You have got a timer interrupt controllers and other devices which 

should be lying on the peripheral bus and what is important this AMBA is basically one 

chip bus specification. Your PCI 104 or 104 plus why not really one chip bus 

specification, but actually external to the chip PCB based bus specification. 



(Refer Slide Time: 12:46) 

 

So, it is again as we have seen it is a multilevel bus it has got at the system level the bus 

is called ASB or AHB. These are two different bus specifications and they have got 

different capabilities they are they define the structure of the system bus. We shall not 

really distinguish between them we shall look at their characteristics more in reference to 

AHB and these parts will translated most of the cases to ASB as well. So, here the 

objective of this bus to connect high performance modules. The APB is Advanced 

Peripheral bus simpler interface for low performance peripherals. In fact, the whole bus 

supports what is called 32 bit 64 bit as well as 128 bit data bus transfers using a 32 bit 

address bus and this is the basic characteristic of ARM it can also be used for doing 

smaller bi transfers like that of smaller word transfer though word byte etcetera. It is a 

synchronous bus non multiplex buses that supports bursting that is bus mode transfer as 

well as that of pipelining. 



(Refer Slide Time: 14:13) 

 

So, system bus interconnects a processor in an SOC with memory controllers on chip 

memory and typically DMA controllers. Slower peripherals are connected to the slower 

and simpler APB peripheral bus and this system and peripheral bus; obviously, it is 

expect to run at different clock rates and they link via bridge that buffers data and 

operations between the two buses. Why it needs to buffer data? Because, there is a 

mismatch in the speed between the 2 buses. 

(Refer Slide Time: 15:01) 

 



This AHB and ASB which are really the system buses are typically multi master buses. 

And they use a central arbiter that is the basic arbitration scheme is based upon a central 

arbiter block and each transfer on these bus has got an address as well as a control cycle. 

These buses, I already told you is pipelined bus what is that been they can start the next 

transfers arbitration and address space while finishing the current transfer. While the 

current data transfer is taking place it can start the arbitration for the next phase so; 

obviously, since these are pipeline the speed at which the transfer takes place is much 

more. 

(Refer Slide Time: 15:56) 

 

So, how it works? AHB puts the address on the bus followed by the data if it is a write. 

So, the master provides the data it is supports wait state insertion and uses a data valid 

signal which is called HREADY which is just take a ready or a wait signal that you fine 

with ARM. 



(Refer Slide Time: 16:28) 

 

It has a separate read data and write data buses it supports bursts bursts can be in terms 

of 4 8 and even 16 watt transfers at one go. And these bursts can be addressed, wrapped 

that is this burst with saying within a fixed addressed range and slaves can insert wait 

states to adjust it is response. In fact, if you remember we say that if it is a sequential 

access the whole issue that comes up is you can generate address once you can arbitrate 

and generate address one and the master can have the bus for transferring up to 16 words 

at one go. It can be even undefined linked bus as well as there can be simply single 

transfers. 

(Refer Slide Time: 17:21) 

 



So, all bus operations are initiated by bus masters which can also be slave. So, there is a 

interchangeable role between master and slave. The master generated address is decoded 

by a central address decoder that provides a select signal to the addressed bus slave unit. 

The bus master can lock the bus reserving it with the central arbiter for a series of locked 

transfers. So, this is this can enable it to take over and an initiate fast transfer on the bus. 

So, how does really the arbitration takes place each master on the bus has got a unique 

identifier. So, it is a multi master bus. So, each master has got an unique identifier. 

(Refer Slide Time: 18:01) 

 

So, master x request for the AHB by issuing what is called a request signal x is the 

indicating the corresponding the master slave when bus is available the arbiter issues 

what is called a hgrant[x] to master x. So, master knows that bus is available with him 

upon receiving the grant signal the master issues address and control information to 

indicate the type of the transfer. So, the master has to first get the bus and then do the 

transfer. So, while one transfer is taking place another master can initiate a request for 

the bus which arbiter can process. So, the whole thing can be actually overlapped in 

time. So, if you looking do it the basic picture is something like this. So, I have got this 

as an central arbiter. 



(Refer Slide Time: 19:17) 

 

These are multiple masters which are actually sitting on the bus they will generate the 

request and arbiter will generate the grant once it resolves the priority. If there are 

multiple request coming in an the same point in time arbiter will use it is own priority 

scheme. We had discussed a priority scheme in the last class will use it is own priority 

scheme to identify which master now gets the bus. Once it knows, it enables these 

buffers. Once it enables these buffers the address would flow from the corresponding 

master to the target slave device. First the address would go. In fact, the whole point is 

once you have the address the decoder actually knows which of these is to be enabled an 

accordingly which slave device is now targeted to receive the data. So, which slave 

device is provided with an address and using that address master refers to the slave 

device? 



(Refer Slide Time: 20:31) 

 

In fact, the slave unit has some options as well. So, slave unit has option to terminate a 

transaction as an error if it fines there is an error condition currently valid with that 

peripheral it can flag an error. It can signal the master to retry or split the transaction for 

later completion. In fact, split transaction is an advanced feature which is available with 

edge bit. Now, the split transaction enables the slave to defer the operation until it is able 

to accomplish it and thereby releasing the bus for other accesses. So, what does split 

transaction really mean? In fact, the slave once it has received a request for a transaction 

and it fines then it is not to able to complete the transaction. It will indicate to the master 

that the transaction can be splitted. 



(Refer Slide Time: 21:50) 

 

So, the slave signals as split transaction and saves the master number, because each 

master has got a unique ID I told you that earlier. When ready when it is ready to 

complete the transaction the slave signals the arbiter with the master number. When the 

arbiter grants bus access to the master it restarts the transaction. In fact, the convention is 

no master can have more than 1 pending split transaction. I hope you of understood why 

this transaction is got a split transaction because master had initiate at the transaction. 

For some reason slave is currently not able to complete the transaction. So, it signals as 

split transaction and retains the master number then the slave request arbiter that I am 

now come ready. So, please provide the bus to the master to carry out the transactions. 

As long as it is not ready the bus becomes available for other operation. So, this is a 

more sophisticated way of doing a transaction with a peripheral. So, what are the AHB 

signals if I have if I look at these as an AHB master? 



(Refer Slide Time: 23:14) 

 

This a kind of a conceptual model they can be any CPU or a DSP can be an AHB master. 

The whole issue is that the interface bus interface unit of the AHB master shoot have 

compatibility with these kind of signals. Already, we have seen that it will generate the 

request this is the request to the arbiter. It will get the grant from the arbiter if the slave 

wants to introduce waits state this is the input which will come from the through the wait 

state. The response keeps the states the response from the slave and these are; obviously, 

address and the control signals. These are address and control signals this is the data this 

is your you have got your write data bus as well as read data bus which are two distinct 

buses and these indicates the transfer type. 



(Refer Slide Time: 24:20) 

 

You have seen that there was signals called HPROT. In fact, this is point we had not 

discussed earlier. These are protection control signals provide additional information 

about a bus access it is primarily intend for use by a bus decoder when acting as a basic 

protection unit. So, the signals indicate if the transfers is an op-code fetch or data access 

if the transfer is a supervisor mode access or user mode access. The signals are driven by 

the active bus master and have the same timing as that of the address bus. So, this a 

protection information and we call this as a protection data these signals really do not 

provide the production, but these signals actually encode what the staters of the current 

transaction by making use of these bits. The bus decoder can function as a basic 

protection unit a simple example is if a transaction is taking place in user mode. It will 

not be permitted may be to access register of another processor or may be another 

memory area which is granted simply supervisory access write. So, that protection can be 

ensure in hardware through the bus decoder and that is why the protection signals from 

part of your bus signals specification. 



(Refer Slide Time: 25:58) 

 

Some more AHB signals are size. In fact, this size we have already seen in the context of 

ARM signals memory interface signals also an it is consistent in that context and edge 

trans. This transfer signals indicate the type of next transaction which may be address 

only non sequential or sequential. These signals are driven by a bus master when 

appropriate GRANTx signal is asserted. So, that to prepare the devices to expect what 

kind of transactions would ((refer time: 26:36)) next. 

(Refer Slide Time: 26:47) 

 



Let us look at it is timing diagram. In fact, I said that they are synchronous bus. So, if it 

is a synchronous bus the whole thing is actually driven with respect to a clock. So, all 

transactions I said as got a address and control phase. This is followed by data phase. In 

fact, the address is provided on your edge address line and you have got the control 

information coming in. So, these control information has also provided in the address 

phase to prepare the devices for the targeted transaction and these effects are write 

operation being initiated by the master. The data should be available at this point itself 

and if and when there is edge ready signals what happens if you have these when you 

have these edge ready signal depending on the status of the edge ready signal. There will 

be wait states introduced. So, in these case your data which is here gets it is delayed I 

introduce wait state of are here. Similarly, for the read also there will be the data phase 

which will get delayed. 

Now, these timing diagrams, is very very similar to what we have seen in the context of a 

simple memory interfacing. But the overall transaction definition with respect to the bus 

which involves communication with the arbiter and grand signals as well as the response 

signals coming from the slaves makes the transaction much more complex than that of 

accessing a simple memory. So, the bus structure since it needs to deal with a variety of 

devices. So, the signal definitions the protocol definitions is much more complex than 

that of a simple memory interfacing. In fact, memory also is a different speed. And that 

is precise their reason why we need these kind of a variety of signals and to speed up. In 

fact, to club transactions together you have the information about the next transaction 

which you takes place to implement the protections. You have got the protection signals 

defined as part of the bus itself. Now, the interesting feature is also you should note is 

this this is the one chip bus. So, for these bus there are know mechanical parameters 

really specified. So, now how does ARM core interface with among them. 



(Refer Slide Time: 29:48) 

 

Let us take simple example of ARM7 and we have seen ARM7 signals. So, ARM7 

signals is not directly are strictly compatible with AMBA signal in standards. In fact, 

they do not translate directly. So, typically you need on interface unit for decoding and 

translation to ASB or AHB signals. Some signals may be just renamed when it is directly 

their and. So, this is what is important when I am using IP core. So, if I choose to design 

and IP core compatible with the bus I need to define also the interface unit which will 

make the core compatible with the bus. 

(Refer Slide Time: 30:43) 

 



So, here it is an example of what we say that bus interface which is nothing but a ((refer 

time: 30:48)) it is wrapping the basic CPU. So, what we are looking at is you have got 

this amber bus inputs these are your amber bus outputs and this is primarily with relation 

to ASP interface. So, these ASP interface is. So, you will find some difference in the 

signals with respect to the AHB signals that we had discussed earlier. Now, here what we 

have got? You have got the signals coming from ARM7 this is basically the ARM7 

((refer time: 31:23)) amber related signals which are directly available and these are 

interface onto the amber bus. So, you will find that here in fact, the signal HREADY that 

we had discussed in case of AHB bus here it is ((refer time: 31:45)) because that 

definition slightly different in the AHB bus. 

So, this is ((refer time: 31:52)) and which is equivalent to that of N wait on the chip itself 

similarly you have got the sequence the ((refer time: 32:03)) you. In fact, we have used 

to see how this can be used for accessing BRAM in a in a bus mode where I can get data 

from after selecting a row from consecutive locations. So, this can this should be used in 

kind of define defining what kind of transaction is actually taking place also the size 

information when we provide in AHB bus that size information would be obtained from 

the outputs provides by the ARM chip. So, this is basically an interface unit. So, with the 

CPU code typically you design an interface unit to provide it to provide it with the ability 

to communicate on the AMBA bus. 

(Refer Slide Time: 33:02) 

 



The next thing is your peripheral bus. So, the APB are the peripheral bus is designed to 

support what we call low speed peripherals such as UARTs keypads and general IO 

parallel IO. All bus devices in these cases are slave to the master what is the master in 

these case the bridge. All bus devices are slave to the master if you remember I said 

basic definition of a bridge bridge is a slave in the high speed bus and master for the low 

speed bridge. So, here the all devices are slaves to the master the bridge to the AHB or 

ASB system bus. It provides a simple address with latched address and control signals 

for easy interfacing and APB can be implemented with a single tri-stated data bus. So, it 

is very very similar to kind of a bus which you encountered for with 8085 for 8086 

family and. So, it has got also the latched address the address gets latched and control 

signals it is a it is a very simple straight forward bus. 

(Refer Slide Time: 34:20) 

 

So, an APB bridge now we talked about instead of AHB master now here it is an APB 

bridge. So, it will have got a system bus. This is a slave interface and these are the 

signals which goes onto the bus. So, it is basically selects the device. It has got it enables 

this is the basically the strobing signal for operations on the bus when these are address 

and control signals. And this is a write bus this is for writing the data and this is for 

reading the data from the master that is the high speed bus. 



(Refer Slide Time: 34:59) 

 

So, the basic operation is very simple. In fact, it does not support bursting because we are 

not really looking at high speed transparent. In fact, each transaction here also consists of 

2 cycles an address cycle which is a setup state and a data cycle which is called an enable 

state. So, in fact, the basic the cycle definitions are with respect to the enabled signals. 

The bus uses a single clock call PCLK in setup what happens the bus brings the PSEL 

and the PWRITE up putting address on the PADDR address bus. These are the address 

lines. So, the address is put on the address bus in the enable state it brings PENABLE up 

and places the data on the PWDATA or PRDATA bus. So, enable is. In fact, the data 

cycle and this data cycle is actually controlled by your enable signal. In fact, the enable 

signal will be de-asserted on the next clock cycle. So, you can realize it is a very straight 

forward and simple bus consisting of two cycles and that is the typical feature of most of 

the peripheral buses. 



(Refer Slide Time: 36:33) 

 

Now, if you look at the complete system architecture this would look something like this. 

And this is what you should note carefully, because that tails you have a complete SOC 

architecture internally would look like see you have got the ASB again we are looking at 

using ASB. These are all ASB masters because and this is your ARM7 core ARM7 core 

would communicate with you an arbiter. This is another ASB master, because there can 

be multiple bus masters on these on these bus. You have got these bridge now, this 

bridge is actually a slave there could be other slaves as well, but bridge is actually a slave 

with of the master bus. And your peripherals are connected to the bridge and this master 

the control signals communicate from the master signals manager to the bridge. And the 

whole idea is these data which comes from here can be to any of these slaves and these 

response if you remember there was a response signal flowing in. So, the slave sends the 

response signal. 

So, that response signal goes to the ARM core are to be other master. This is a transfer 

response. So, what is the response to the transfer transaction which is currently being 

executed? And this is your data which flows from the slave back to the master and this is 

where the arbiter is. So, once the request comes in the arbiter resolves and gets a grant to 

the core. Once it gets a grant then only the transaction is initiated. So, this is architecture 

basic architecture of an SOC using the 2 buses there is a hierarchal bus structure and all 

data transfers here or in parallel. So, they are both actually parallel buses and this your 

system bus which can be ASB or AHB is capable of handling a variety of complex 



transactions and these gives more flexibility and speed to the bus. In fact, bus as such is 

the key issue for any kind of SOC designs for Embedded System. I may have a very high 

speed processor, but if I do not have and efficient bus transaction protocol design then I 

cannot really exploit the processor features. In fact, I may have multiple processors, but I 

cannot I shall not be able to explode the characteristic optimally until in the analysis has 

designed optimal bus connecting them as well as with the memory at peripherals. 

(Refer Slide Time: 39:54) 

 

The other issue, other trend which develop to, relate to bus for SOC is, what is called 

Open Core Protocol. In fact, the example that we have seen so far is that of a particular 

bus. In fact, proposed and use then popularize by the ARM processor manufactures. So, 

thus got a definite transaction definition is that got a specific signal definitions. And 

when we designing an SOC your picking up the modules compatible with this bus 

structure. This Open Core Protocol why while discussing it clear is conceptually 

different what it tries to define is a comprehensive bus independent high performance 

configurable interface. In the ((refer time: 40:51)) all your interfaces where predefined 

and your actually making your IP cores compatible with though definitions. Here what 

we have talking about is a kind of an open core protocol. So, it defines a comprehensive 

framework and using this framework you can actually design and implement components 

in an associates. 



So, it provides a kind of a communication interface and why it is bus independent 

because you will be actually defining the bus which is consistent with the protocol. 

Because a protocol can have a variety of transactions defined depending on your 

requirements and the device characteristics you may define the bus. But if I pickup an IP 

core an if I say that my IP core is compatible to the Open Core Protocol; that means, it 

can support the transactions which have been defined as part of these protocol. So, what 

in these context. It is synthesis and timing analysis friendly, because I have to put 

everything to gather to synthesis chip and it encompass entire core and code or system 

interface needs that is data control and test flows. 

(Refer Slide Time: 42:19) 

 

Test is another important issue. So, basic idea look at these that I have got this IP core 

these are different IP core. This is basically my on chip bus and these on chip bus have to 

be definitely in a hardware implementation in terms of a signal. But these request that 

my master and the slave would may these requires are the transactions are defined 

through this Open Core Protocol. So, once these transactions are defined through Open 

Core Protocol. So, there is a standardization in the nature of transactions. So, tried to 

understand this this in case of AMBA bus AMBA bus had what as set of signal 

definitions as well as as set of transaction definitions. In fact, we had discussed for AHB 

bus transactions like burst mode transaction then transaction with security features split 

transactions. So, all these transactions define as part of that burst definition itself. Here 



what we are trying to define is basically the protocol for this transaction. So, if you have 

a standardize protocols basically the IP cores would be compatible with these protocols. 

(Refer Slide Time: 43:35) 

 

So, they are Protocol Phases in this case in the standard if you look into you will find a 

very similar kind of a protocol, but just structured in a slightly different way. You have 

got a Request Phase which begins the transfer master presents request command address 

etcetera. There is a more the elaborate definitions I am not going entry then just giving 

the basic idea. Response Phase is ends transfer slave presents a response success or fail 

or read data if it is a read operation it has to be data to be presented to the master. I am 

this Response Phase is typically available for read transfers. In fact, if you see that there 

also similar thing was also there in the ARM, but here we are trying to evolving to a 

generic protocol phases and protocol definitions. 



(Refer Slide Time: 44:32) 

 

Similarly, there is a Datahandshake Phase which is a part optional a part of your protocol 

phases. So, what we says that allows pipelining request ahead of write data and only 

available for typically write transfers. So, the Phase ordering typically for a transaction 

would be request at Datahandshake followed by response. 

(Refer Slide Time: 45:09) 

 

In fact, this is the generic form of most of these protocols and Open Core Protocol is 

basically just defining this protocols for transactions on the bus and how do you use this 

protocol. And designer selects only those signals and features from palette of OCP what 



you call open call protocol configurations needed to fulfill all of an IP core’s unique 

data, control and test signaling requirements. So, try to follow the difference in case of 

AMBA it is a complete specification. In these case it is not a complete specification you 

a defining a standard and you have got in the devices are the IP codes which a 

compatible with these protocols depending on what are the features you will be using in 

an SOC. You can pick up a set of signals and define your actual bus because using those 

signals you will be implementing those aspects of the protocol which is required for your 

SOC. So, therefore, your platform becomes more flexible your choice is more flexible 

and generic. In fact, this is trend which is emerging for defining buses in an SOC 

application. Next we shall look at serial buses. In fact, when we have looked at these 

SOC and PCB based application. This whole concept of the buses has been parallel data 

transfers if you are transferring 32 bit I shall be transferring that on parallel lines. 

Obviously, this can be use for short distances that we did not cheap or within hard. 

(Refer Slide Time: 46:59) 

 

The serial buses, that we are now talking about this is also for short distances is not 

really very large. And the basic idea is for moving data quickly from one device to 

another. And the basic objective is; obviously, if you have serial protocol your varying 

requirement is minimum. So, if you are trying to put a complex system that is you have 

starting with a pick microcontroller and pick with pick microcontroller. Let us see want 

to interface additional devices and putting them into an appliance a box. Now; obviously, 

would like to use minimum number of wires signaling wires to do the connectivity. If 



you are using your PCI your ISA it as go an elaborate number signals. And it is signal 

definitions which itself it would occupy space and your hertz have to be compatible with 

those definitions. 

If I use a kind of a serial protocol I have only very few signals to connect. So, my foot 

print can be further reduced and. In fact, that is the precisely reason why this kind of I2C 

SPI. This kind of a serial protocols a serial bus protocols has become popular and being 

widely used in Embedded Systems. The whole idea is low complexity as well as low cost 

and it is meant for short distances inside the box itself. So, it is not really on chip. In fact, 

we can have on chip as well, but typical use is within the box admits may be connecting 

a big microcontroller with another device. 

(Refer Slide Time: 48:45) 

 

I2C; in fact, the basic name is inter Integrated Circuit Communication this is for 

communication between 2 ICs. In fact, it was developed by Philips Semiconductor for 

TV sets in 1980’s. So, it is a pretty old kind of a serial protocol. So, originally what was 

it being used for was it was used as a control interface to signal processing devices that 

have separate data interfaces. For example, RF tuners video decoders in fact, originally it 

was being used for this kind of tuners on other applications. Today is also used for RF 

tuners video decoders encoders and audio processors. 

Now, what is this mean it beans that see these devices will be transferring say let us 

consider a video decoder. So, add an audio processor it would transfer the data through a 



separate data bus and. So, they have a separate data interfaces depending on the task. 

Now, this devices have to be control and this control scheme is not always very simple 

and straight forward you need a set of control information it there may be a set of 

instructions which may be sent to the audio processor to do have a write your task. Now, 

you need a control interface for doing that communication. In fact, I2C is used for that 

purpose? In fact, I2C devices include EPROMs electrically erasable PROMs thermal 

sensors real time clocks and lots of lot many sensors are actually used with this kind of 

I2C devices. 

(Refer Slide Time: 50:35) 

 

What are the I2C features here the data can flow in both directions, but it has got base 2 

wires just the clock and the data line. So, it is not a full duplex communication, but 

actually an half duplex communication. It is a synchronous bus. So, the data is clocked 

with the clock signal. In fact, clock signal controls when data is changed and when it 

should be rate. In fact, that clock maintains the overall control. The clock rate can a vary 

unlike asynchronous communication in an asynchronous communication RS 232 C. You 

have to have a fixed clock rate because you are sampling the bits. That means, you are 

finding out whether there is a start transmission or not at the clock intervals, but since 

here the clock is going transmitter along with the data. The clock determines the valid 

data transitions. So, they are may be change in the clock speed as well. In fact, typically 

you have got three speeds slow fast high speed this is I2C version 2.0. We shall primarily 



talk about the older version which is slower and this between this two. So, I told you 

already my I2C is typically a serial connection. 

(Refer Slide Time: 52:12) 

 

It has got 2 it is a 2 word bus one is called your serial data line another is serial clock 

line. In fact, your data so, what we say that actual bit transfer takes place when your SCL 

that your clock is 1. So, SCL equal to one implies SDA is having valid data. So, the data 

meats to remain valid during the high clock and the data changes during low clocks. So, 

the transaction would take place during low clocks. So, the data transition takes place 

when the clock is low. So, change of the data is allowed when the clock is slow and these 

clock is actually therefore, controlling whatever bus transactions the takes place on the 

I2C bus. 



(Refer Slide Time: 53:35) 

 

The basic protocol is a master slave protocol. In fact, there is no external clock 

generated. There is master device the current master. In fact, master and slave can be 

again interchangeably. Current master can become slave for other application. So, master 

device controls the clock. This slave devices may hold the clock low to prevent data 

transfer . So, master is driving the clock. If the slave and there is a single clock line to 

which the slave is also connected slave can pull the clock low if slaves pulls the clock 

low then you data is no longer value. So, effectively the master is put into a weight state. 

So, no data is transfer unless a clock signal is present. So, if a slave pulls a clock low 

then no transfer can take place. So, if there is a speed mismatch then the slave would do, 

what simply pull the clock low and all slaves are controlled by the master clock. 

Obviously, this implementation would require a kind of a wired and connections. 

In fact, all these interface lines are part of open collector or open drain connections. So, 

you have to put pull up registers to connect these interface lines connecting them to the 

actual supply high voltage so, that they can become operational. So, since it is wired on 

you can understand that the normal state would be high. So, when there is no 

transmission there would be high and if there is a one of these slaves pull things down. 

So, it will be low across the bus. So, you can realize that using just 2 lines just using 2 

lines they way by defining the circuit connection appropriate sophisticated protocol can 

be done. Obviously, it is not as sophisticated in terms of the protocol as that of your ASB 

or AHB. But still you have the features of multi master control arbitration everything is 



built using just 2 lines without involvement of an external arbiter. In fact, this is what we 

shall discussed in the class. 

 (Refer Slide Time: 56:22) 

 

So, here what we have done we have studied today the bus specification used typically in 

an SOC. Looked at the basic serial bus for connecting devices to micro controller. And 

we shall learn about more about the serial buses in a next class because you have got SPI 

bus also there will be the bus definitions for connecting peripheral devices. So, other bus 

definitions in fact, particularly for the IO devices like your USB fire wire we shall look 

at them in the next class. Any questions? In a AMBA bus change a IP core an like fault a 

making it compatible with a bus do in the change or IP core. The question is that for 

making the ARM core AMBA bus compatible do you change need to change the IP core. 

We are not talking about changing the IP core what I had shown was an interface unit. 

So, you design an interface logic. 

So, that the signals become compatible with the AMBA bus, but for the other bus we do 

not need the like the open core wire. Open core; it is a bus what we say it is a bus 

independent it is a definition of a set of protocol for bus transactions. And on the base of 

the protocols a designer can select the set of signals to define the actual bus 

requirements. Any other question ((refer time: 57:57)). So, posted write is if a write say 

the basic idea is that I have asked for a read operation. So, and and then I have got a 

write posted posted write is I have put in a write request I can have send the data and an 



overlapping it with the corresponding read. So, I said that that operation is available only 

during read. So, if if you look at look at it slave presents a response it is a Response 

Phase success fail. So, it is a only available for read transfers in the sense that posted 

write models that is you have posted the request and then you will be bring it later on. 

So, kind of a Response Phase tells you that whether it is a successful or failure on it can 

be even done later on. 

. 

 


