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Yes friends, let us start with our let us start with new phase of discussion today the performance 
of feedback control systems. Though this is not a new discussion altogether, in some form or the 
other what do we need from a control system, how do we specify the performance of a control 
system, all these has been discussed in many cases, qualitatively. So I think, before we go to the 
design problem it will be necessary to specify the performance quantitatively. The discussion 
today is primarily concerned with the quantitative specifications of performance of a control 
system. 
 
Recall the qualitative discussion for example to start with. The qualitative discussion if you 
recall, the performance called for the stability of the system, the system has to be stable. So an 
unstable system is not going to perform so the primary requirement on the performance of a 
system is that the system must be a stable system. The second aspect we discussed qualitatively 
was on transient response. We want that the transient response of the system should be 
acceptable by acceptability I mean that the system should rise to the desired value quickly and 
should not have large overshoots, should not oscillate around its equilibrium state before it 
settles down to the equilibrium state. The third point raised was steady-state accuracy. The 
steady-state accuracy is concerned with the steady-state response; after the transients are over 
whether at the steady-state the response of the system the output of the system is equal to the 
commanded value or not, if not then there is an error steady-state and most of the systems will 
require a very good static accuracy so that after the transients are over the output follows the 
command accurately. 
 
Next we had taken was the sensitivity and robustness issues. Sensitivity and robustness issues 
called for the effect of variations in the system parameters due to errors in modeling or due to 
changes of the parameters with usage in time. You see that we wanted that the system must be 
robust, that is, the system must perform acceptably even under the situation that the parameters 
of the model are different than those used in your control system design. The other point we 
discussed was disturbance rejection. In this particular case again the requirement was this that 
when the environment affect the system when the disturbances uncontrolled disturbances affect 
the system then the output should reject their effects that is the output should not be affected by 
this at least at steady-state, during transient state the effect of the disturbance on the system 
should die down quickly. So this is what we qualitatively found is the requirement on a control 
system. 
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(Refer Slide Time: 4:06) 
 

 
 
Now, various quantitative relationships for these measures were also discussed. But now coming 
to the design what we are going do is we are going to specify the performance in terms of 
transient and steady-state accuracy. Once the performance is specified in terms of transient and 
steady-state accuracy and a control system is designed after that we will analyze that system to 
see whether other requirements on robustness and disturbance rejection are satisfied or not. 
 
I think, at this juncture, this point must be very clear. I told you this point earlier also that as far 
as the current research in control system design is concerned methods are being developed 
wherein the sensitivity and robustness can be specified quantitatively right in the beginning and 
the design is carried out to meet that requirement on robustness. But since this subject is yet to 
mature, you see the research in this area started somewhere in early 80s, since this subject is yet 
to mature this subject still has not been brought to the classroom. So we discuss the classical way 
which definitely is going to provide the background for the discussion on robustness also later. 
 
The classical way of discussing control system design is to specify transient and steady-state 
accuracy and then analyze the control system design whether it meets your requirements on 
disturbance rejection and robustness or not. If not then you re-enter this cycle; after all design is 
an iterative process, you re-enter the cycle till you find that your robustness and disturbance 
rejections requirements are satisfied to a reasonable extent. So, as far as quantitative 
specification is concerned it will be on transient response and steady-state accuracy. Of course, 
the stability of the system is the prime requirement because without stability without that 
condition being satisfied all these specifications do not carry any meaning.   
 
So what we normally do in design, first we find out the domains of various parameters which 
result in stability. As we have done using Routh stability criterion, couple of problems we have 
solved for simple cases of one or two parameters. So we find the domains of parameters which 
result in system stability. Once the system stability is guaranteed that is within those domains a 
suitable search is carried out so that the transient and steady-state accuracy requirements are 
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satisfied. Once those requirements are satisfied you go back to the original system, simulate the 
system to find out whether your robustness and disturbance rejection requirements are satisfied 
or not. So, with this background I take you now to the specifications on the transient and steady-
state performance. 
 
Let me take the transient performance. You see that if I have a system a typical system I could 
take this way to simplify the situation. Though the discussion can easily be carried out to a more 
general case I take a unity-feedback system. There is no loss in generality in this you see, the 
discussion can easily be extended to a non-unity-feedback system. So now you know that in this 
particular case Y(s) over R(s) equal to G(s) over 1 plus G(s) is the function of the system. 
 
(Refer Slide Time: 8:00) 
 

 
 
You are interested in the transient response of Y(t) in response to the input signal R(t). Now look 
at a practical situation please; in a control system you can never decide beforehand as to what 
type of input signal will be coming to the system. After all the control system has been designed 
to take up any situation it comes across and therefore the input signal to the control system really 
cannot be decided beforehand. So we should use some standard signals, some test signals so that 
if the system is designed for those test signals it should perform satisfactorily for any input signal 
which it takes up. And you know that the transient performance of a system is dictated by the 
poles of the system and is really not affected by the nature of the input. you see that the poles, if 
all the poles (Refer Slide Time: 8:57) are in the left-half plane it has been discussed it has been 
proved by now that the system transients will die down will die out if all the poles are in the left-
half plane. 
 
So it means, as far as the transient performance is concerned it is based on the system 
characteristics and not on the input characteristics and therefore if I excite the system by any 
input in that particular case all the modes of the system will be excited and we will be able to 
look at the transient performance of the system and hence it is really not necessary to take up 
more than one inputs and you know this has already been given to you that the test inputs which 
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we have already discussed are the step, the ramp and the parabola. There is no limit to these you 
see, the step, ramp and the parabola; you could extend higher order polynomials as well. But we 
find that these test inputs are standard inputs are good enough to study the performance of a 
control system. After all, these are not the actual inputs, these are the inputs, if a system is 
satisfactory with respect to these inputs it is hoped that it will perform satisfactorily with respect 
to any input it comes across and we have to satisfy ourselves that this statement is true.  
 
(Refer Slide Time: 10:26) 
 

 
 
Let me talk of the transient performance first. Now you see, what is the difference if I take a step 
input, ramp input, parabola input or any other input when I know that the transient modes are 
dictated by the system poles and therefore one of these inputs will suffice and obviously the 
simplest one will be better and a step input is taken for the purpose. So it means from now 
onwards almost exclusively throughout our course we will be taking step input response of a 
system to quantitatively specify the transient characteristics of the system. The reason should be 
very clear because I am interested to see the behavior of various modes of the system; the input 
nature is not going to affect the transient modes of the system. So step input will suffice for me 
and therefore I consider that r(t) the input is equal to mu(t) which is a step signal and let me say 
that this is the input 1 I could take. After all if I take a step of larger magnitude it is not going to 
change the nature of the response it is again going to change only the magnitude of the response 
and the therefore unit-step input is the slandered signal we use to study the transient phenomena. 
For the transient characteristics unit-step input is the standard input we take. 
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Come to the study state response now. Now, if I consider the steady-state response, now recall, 
what is the steady-state response; steady-state response depends upon the system characteristics 
as well as the input. You consider any situation, take the transfer function, and determine the 
steady-state and transient response components of the system you will find that the steady-state 
component of the system depends upon the characteristics of the system as well as the input 
function. So it means I cannot take a single input to specify the steady-state performance of a 
system. Effectively speaking I should really have the actual input which the system is going to 
take up so as to clearly and rightly specify the steady-state performance. But since in a control 
situation the input is not known to me. 
 
for example, take a tracking radar, tracking radar is going to track the aircraft motion. now how 
do I know beforehand as to what will be the profile of the aircraft motion, it is not known to me. 
take a numerical control of machine tool, I cannot say beforehand as to my machine which type 
of jobs it will do; will it taper, will it do it a circling job or will it cut a parabolic profile or any 
other profile; after all if I have designed a control system for a machine tool for a cutting 
machine it should be able to cut any profile it is called upon to work with. 
 
So naturally I cannot decide the input function for my control system it could be anything 
because it depends upon the users’ specification of the job. Consider residential heating system. 
Well, you see the effect of the environmental temperature on my control system is going to 
change from the summer season to the winter season because the environmental temperature is 
going to change drastically so the disturbance signal also is going to change and hence I cannot 
specify the disturbance signal. So you see that the inputs cannot be specified and the steady-state 
performance is definitely a function of the input.  
 
So how do we come out of this dilemma? 
You see that a way of coming out of this dilemma is to consider the actual input as a suitable 
summation of polynomials. In general, let me take a polynomial function r(t) is equal to 1 over k 
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factorial t k mu(t) it is a polynomial function of time. You see that this is sure I hope you will 
agree that you give me any function, well; it will be possible to decompose that function into a 
suitable set of polynomials. So it means, if my system is going to behaves satisfactorily for all 
these polynomials so it means I can really rest assured that the system will behave satisfactorily 
for the actual input. So a set of polynomials I am going to take as the standard inputs as far as 
specification of the steady-state performance is concerned. 
 
(Refer Slide Time: 15:10) 
 

 
 
Now let me take up k is equal to 0. If you take up k is equal to 0 you find that your r(t) is nothing 
but the unit step function, it is a zero-order polynomial. For k is equal to 1 r(t) is equal to t mu(t) 
it is a ramp function, it is a first-order polynomial. Now this point may please be noted that r(t) is 
equal to t mu(t) is a more difficult signal for the system as far as the steady-state performance is 
concerned. Take k is equal to 2 r(t) equal to 1 by 2 t square mu(t) it is a parabolic function, it is a 
second-order polynomial. You see that, as you keep on increasing the values of k the polynomial 
is becoming or the input is becoming faster and faster.  
 
So, normally what is seen is that the actual input applied to the system is not so fast as to require 
k more than 3, please see, it is only an experimental evidence; it is only the evidence seen in the 
actual seen as far as the actual usage of the control systems. Mathematically you require a large 
value of k to specify any input function as a set of polynomial functions. But actually you do not 
require more than k is equal to 2 because the system inputs are not that fast because these inputs 
the second-order polynomial or a parabolic function is fast enough and if a system is able to 
perform well for the second-order polynomial it is going to perform satisfactorily for any input it 
is hoped. 
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Now, as you will see when we come to practical systems, you see, normally we do not take even 
k is equal 2, for the sake of completeness okay some difficult control problems do require k is 
equal to 2 but normally k is equal to 2 also is not taken up, k is equal to 1 is found good enough. 
You will find that k is equal to 2 raises or gives raise to difficult control design problems. control 
design becomes most difficult with increasing values of k. So it means there will be some value 
of k may be k is equal to…….. I think if I can quote, may be after k is equal to 4 it cannot be 
stabilized at all. So it means the stabilization problems keep on increasing as the odd as the k 
keeps on increasing. So it means, even for k is equal to 2 after all, your requirement is this that 
all these steady-state performance or transient performance has to be satisfied within the 
umbrella of stability requirements. So, as the order k increases the stability becomes difficult to 
maintain and therefore larger values of k though mathematically quite satisfying but practically 
will become very difficult. So, k is equal to 2 is almost ruled out unless there is a very specific 
situation and as I am telling you mostly we will satisfy ourselves with k is equal to 1 because it 
satisfies the practical requirements, it satisfies the industrial control requirements in many 
applications. 
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So I hope this point is now clear that as far the steady-state performance is concerned I will be 
referring to the unit-step, the unit-ramp and the unit-parabola. Unit-parabola the word unit is 
coming because its derivative is unity; it gives you the unit value. so in this particular case unit 
slope value it gives you once you take the derivative of this: r(t) is equal to 1 over t squared 
mu(t) take the derivative it is a unit-slope so let me call this as a unit parabolic function on 
account of that. So these are the three types of inputs I will be referring to when I come to this 
steady-state performances specification. But please note that the difficulty of design increases 
with increasing value of k. Your design is going to more difficult because you will not be able to 
maintain stability of the system. So with this now I think I can straightaway go to the transient 
performance specifications. 
 
How do we specify the transient performance?  
I am not taking any mathematical model. I simply say that you go to industry, take any typical 
industrial control system working there, excite that system by a unit-step input or a step input. 
You see, unit step is only the scaling of the response it should not make any difference, you just 
excite the system, the industrial system by a step input, let me call this is a unit-step input and 
measure the response, the response in all likelihood in more than 70 percent cases or even you 
can take a larger figure you see will turn out to be of this nature (Refer Slide Time: 20:31). This 
is what I am saying is the industrial scene today. So it means I am going specify the performance 
as such because all these systems are working in industry and they give this type of performance 
naturally this performance is adequate, the reasons will become very clear as to why this 
performance is better, why the industrial control systems will perform this way if excite the 
system by a step input. 
 
Now you can see that it is a damped oscillation. So you will note that damped oscillation is 
accepted you are not taking a system with no oscillations because it is not going to be an 
acceptable system to you as you will see. So it means some of the overshoot in the performance 
is acceptable to you because most of the control systems are working this way. So the 
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specification of transient response effectively will mean specifying this curve for a particular 
system. But if I specify this quantitatively like a graph in that particular case you see the control 
design will become difficult therefore this particular graph I translate into a set of indices. What 
are those indices or what are those measures I take? Please see this. First measure I take is this 
time (Refer Slide Time: 21:51) the time taken for the response to come to 100 percent of the 
desired value for the first time. It will come later also at this value but this time which I am 
referring to as t(r) the raised time of this system is the time for the response to rise from 0 percent 
to 100 percent of the final value for the first time. This is one index I take. 
 
(Refer Slide Time: 22:18) 
 

 
 
The other index I take is the following: I take this particular magnitude that is how much it has 
over what is the overshoot and it is the peak overshoot as you will see because the next 
undershoot and second overshoot etc these magnitudes are going to be lower and lower in a 
damped oscillation. Since these magnitudes are going to be lower so it means if the peak is 
acceptable to you the other undershoots and overshoots also will become acceptable to you. So 
M p the peak overshoot is the second index which I am going to use. And of course the time 
taken to reach this peak overshoot t(p) I will call it peak time is another index, I will write the 
words here the rise time t(r) I need not write the definition I hope this is clear now, the peak time 
t(p) the peak overshoot M p and what else, the next and last I take is this settling time.  
 
The settling time you see that if I give you an exponential function e to the power of let us say 
exponential function I give you e to the power of minus t by tau (Refer Slide Time: 23:44) this 
system this particular function settles to the zero value only as t tends to infinity. So 
mathematically speaking, the settling time of this function is infinity but practically if I consider 
this particular function can be settled down when this particular value is negligibly small and the 
word negligibly small depends upon the application. You may say that if it has settled down 
within 2 percent of the desired value, okay, you can find that the system function is said to have 
settled down completely. 
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So what I want to say now, this is a higher order system not necessarily a first-order function. So 
if you take the mathematical mathematics mathematical response, in this particular case exact 
settling time will may will may will turn out be infinity, t tends to infinity will be the time 
required for this particular response to exactly come to steady-state. But what we are going to do 
is to specify a perturbation band, a tolerance band so that if the system settles within this 
particular band practically you will consider as if the system has reached the steady-state though 
exact value of 100 percent or exact value of 180 is yet to go to, but with in this tolerance band if 
the system has reached in that particular case you can say that the system has settled completely 
and this tolerance band (Refer Slide Time: 25:16) is normally taken as 2 percent of the final 
value or 5 percent of the final value depends upon the application. 
 
(Refer Slide Time: 25:24) 
 

 
 
If the application requires a larger static accuracy in that particular case 2 percent of the tolerance 
value is taken otherwise 5 percent of the tolerance value may turn out to be acceptable. So, as per 
the graph you find that……. yes, please help me, what should be the settling time, could I take 
this as the settling time (Refer Slide Time: 25:53) because once the system has entered this 
particular band as per this graph it is not coming out and if the response having entered this 
particular band is not coming out you can say that the system has settled within the accuracy of 
this specified tolerance band. So I can say that this is the settling time of the system. And lastly, 
this let me say settling time; t s let me call it.  
 
Lastly let me say the steady-state accuracy. Steady-state accuracy I will take separately because 
steady-state accuracy as we have seen is not specified only to a step input it is specified to step 
ramp and parabolic inputs. So, only if I am considering the step input response I can consider 
only the transient response specifications. Now you can see that if I give you these four 
parameters you can almost reconstruct this step response and hence the complete graph of the 
system is more or less specified if I give you these four values t r t p M p and t s. Now what is 
the requirement? The requirement is this, you see that the t r should be as small as possible 
because if t r is not small if it takes larger time then your system is a sluggish system; it takes lot 
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of time to rise to the value you require. The t p should also be small so that whatever is the peak 
it should come quickly and then the system should settled down; t s naturally should be small, M 
p should also be small. So I want all these values to be small but unfortunately these things are 
conflicting as you will see. If you tend to make one value small the other becomes larger and that 
is because of the design problem otherwise the design would have been a set of mathematical 
equations to solve. 
  
You see, the design does not turn out to be a set of mathematical equations for solution; the 
design is an iterative process because these requirements cannot satisfied simultaneously; these 
are conflicting requirements as will become clear shortly. 
 
(Refer Slide Time: 28:10) 
 

 
 
Let me go to the steady-state performance specifications. Steady-state performance 
specifications e double s is equal to limit t tends to infinity [r(t) minus y(t)]; recall the original 
block diagram I had given you. the original block diagram I may redraw it here because it is a 
simple one: plus minus r, e and y, this is a unity-feedback system I have taken therefore this e is 
nothing but the system error it is r minus y and value of this e as t tends to infinity because the 
system will completely settle down as t tends to infinity mathematically so using this 
mathematical relation gives you the steady-state value and this r t now (Refer Slide Time: 29:02) 
could be a step input, a ramp input or a parabolic input. So it means, as far the specification on 
steady-state performance is concerned the user may give you the specifications like this: e ss to 
unit step and or e ss to unit ramp and or e ss to unit parabola. This point may please noted, this 
and or because if the requirements on steady-state accuracy are not very stringent in that 
particular case a very simple situation is that only steady-state error to unit step is specified. 
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You will find that your design problem becomes very easy. As a designer you will be very 
comfortable if such a situation is there. The design problem will become more and more complex 
if more and more specifications are given. For example, if unit ramp steady-state error is also 
added, well, the design problem become difficult and it still becomes more difficult if I specify 
these steady-state errors to unit parabola as well. So these are the specifications.  
 
And in any particular control design problem user tells you that these are my specifications on 
transient and steady-state accuracy and now you give a design for me and once you give the 
design of course the user will definitely want that the actual system, when your design is 
implemented on an actual system it should set it should operate satisfactorily otherwise what will 
happen when the user takes your design from your table and implements it in the actual situation 
it will not work, the reason being, the model you have used on your table is definitely different 
than the actual process he is going to work with so it means your design has to be robust. So it 
means every design has to be declared complete only after extensive simulation study.  
 
So what you will do is whatever the design you have carried out you will go to the computer and 
vary the parameters of the model, varying the parameters of the model means going closer to the 
actual physical system because you really do not know how the actual physical system is going 
to behave. The simulation you can do is the best possible tool available in your hand is that you 
vary the parameters of the system and implement the design you have made for the nominal 
parameters. 
 
If your design gives satisfactory performance for all the variations all the reasonable variations in 
the parameters you have made in that particular case you are sure that when the user takes your 
design to the actual application it will give him satisfactory performance and that is the final 
stage of design. So with this background I think now we can enter into the design cycle 
straightaway without wasting time unless there is a question. If there is a question I like to 
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answer otherwise I enter into design cycle straightaway. Fine, I take it positively; no question 
means you have understood me, fine.  
 
The design cycle I start with a standard second-order system. I do not mean that the actual 
systems in industry will be second-order systems I do not mean that. But I definitely can 
guarantee you that if you have understood the design for a second-order system you will be able 
to extend this design cycle to any system you come across and that is why the design of a 
standard second-order system is extremely important. This is my starting point; once I give you 
all the tips for this Standard second-order system the extensions will be very obvious and be it a 
tenth order system the tips we are going to finalize for a standard second-order system will be 
applicable there as well. So do not think that it is a fictitious situation; though it is mathematical 
situation not a real life situation so to capture this mathematical situation I take G(s) as s plus 2 
zeta omega n this is the R input R(s) (Refer Slide Time: 33:31), this is the error E(s) and here is 
the output Y(s) this I consider as a unity-feedback standard second-order system. 
 
(Refer Slide Time: 33:41) 
 

 
 
Now let me carry out everything I have talked of; the transient response specifications, the 
steady-state response specifications as far as the standard second-order system is concerned. I 
first analyze the system, design means what; design means I am going to introduce a controller 
here, let me say that this D is the controller D(s) so that this particular standard second-order 
system meet the specification you impose on the system that is the design exercise but before I 
take up this D(s) into the loop I simply analyze my system first that is I determine those 
measures, those indices for the given system without any design, let me call that this is the 
analysis problem I am going to carry out first and after the analysis I will incorporate this D(s) 
the controller into the forward loop and then see how to get the value of D(s) so that the 
specifications on transient as well steady-state accuracy are met.  
 
So, for me now it is only G(s) in the forward loop I do not take D(s) so G(s) is equal to omega n 
squared over s into s plus two zeta omega n. So what is closed-loop transfer function please? 
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Y(s) over R(s) equal to help me please omega n squared over s squared plus twice zeta omega ns 
plus omega n squared. This is your standard second-order system you are already conversant 
with; zeta and omega and you now their physical meaning, zeta is the damping ratio, omega n is 
the undamped natural frequency. 
 
You now zeta is equal to 0 is an undamped system, zeta between 0 and 1 is an under-damped 
system, zeta is equal to 1 is a critically damped system and zeta greater than 1 is an over damped 
system you now this and you also know that the characteristic equation of the system is del s 
equal to s squared plus 2 zeta omega ns plus omega n squared.  
 
(Refer Slide Time: 35:53) 
 

 
 
Now, from this point onwards please see, any equation I give you any statement I make I tell 
you, you will be using that statement till the end of this particular course. These are very 
important quantitative relations I am going to give you and therefore I want you to absorb these 
relations permanently in your memory in addition to your note book please. The characteristic 
equation is known to you. Help me please, what are the characteristic roots. These are the 
characteristic roots: minus zeta omega n plus minus j omega n 1 minus zeta squared under root 
are the characteristic roots (Refer Slide Time: 36:33) please.  
 
Give me the sketch of these roots as zeta is varied please. Help me please, real s, imaginary s, 
well, zeta is equal to 0 please see is going to give me the roots as plus minus j omega n, j omega 
n here minus j omega n here these are the roots please j omega n minus j omega n are the two 
roots corresponding to zeta is equal to 0. Now how about zeta is equal to 1 please? Zeta is equal 
to 1 is going to give me the double root, please see zeta is equal to 1 you substitute it is going to 
give me the double root at minus omega n. So now it means for the critically damped system the 
two roots are at this particular point and for an undamped systems the two roots are on the j 
omega axis and if I draw this semicircle you will find that this is actually the locus of the roots as 
zeta is varied between zero and one. 
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Take a typical value, come on, take this value please, and at this particular point give me the real 
part the real part is going to be equal to minus zeta omega n and the imaginary part is equal to j 
omega d is equal to j omega n 1 minus zeta squared under the root. This is your j omega d. The 
omega d as you know is the damped frequency. So minus zeta omega n is the real part of the 
root. Please see that this zeta omega n in my discussion is going to have a very important 
meaning and you can see that this zeta omega n magnitude corresponds to the real part of the 
complex conjugate root pair. 
 
Help me please, if I draw a line here and take this angle as theta (Refer Slide Time: 38:49) could 
you give me the value of theta please; I want you to give me the value of theta. This value theta 
is going to be obtained from this particular triangle, yes, what is cos theta is equal to? Cos theta 
is going to be equal to this value, this is omega n this value divided by this value, what is the 
radius? The radius of the semicircle is omega n, is it okay? The radius of the semicircle, you can 
see that the radius of the semicircle……… you can see this point also that this is minus zeta 
omega n, this is omega n 1 minus zeta squared under the root (Refer Slide Time: 39:30) take the 
magnitude, the magnitude of this is going to be omega n and therefore cos theta is going to be 
equal to zeta. If you need explanation to this well tell me please; cos theta this theta I am going 
to call it as the damping angle because this theta is not a function of omega n it is a function of 
zeta only. 
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(Refer Slide Time: 39:50) 
 

 
 
I repeat this diagram; you see that this is corresponding to zeta is equal to 0, the locus is a 
semicircle with the radius equal to omega n, the locus is a semicircle with the radius equal to 
omega n, this particular root (Refer Slide Time: 40:14) is minus zeta omega n this particular part 
and this is j omega d is equal to j omega n 1 minus zeta squared and this I have taken as theta. So 
I hope this is very clear from this particular diagram that this line is a zeta line as it is called or 
damping line because this angle is a function of damping only so the damping angle theta is 
equal to cos inverse zeta. So it means, if I give you the value of zeta the root the corresponding 
root is definitely going to lie on this angle so how to draw it.  
 
(Refer Slide Time: 40:50) 
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 (Refer Slide Time: 00:41:02min) 
 

 
 
Suppose I give you zeta and omega n, say zeta and omega n are the two parameters which 
describe the personality of a standard second-order system. How do I get the roots? The roots 
graphically I can get this way: draw a line here at an angle theta is equal to cos inverse zeta, this 
is your zeta line, cut a magnitude equal to omega n these are the roots of the corresponding 
system, these are the closed-loop poles of the system or the roots of the characteristic equation. 
 
The real part is obviously minus zeta omega n and the imaginary part is j omega n 1 minus zeta 
squared 1 minus zeta squared under the root; the damped frequency is coming over here. So this 
way we have the relationship, please see. What I want……. this point is very important here as I 
said, what I have told you that, if I give you the values of zeta and omega n you can translate 
these values into closed-loop poles, so is it not equivalent that the zeta and omega n of a standard 
second-order system are specified or the closed-loop poles of the system are specified.  
 
The statement, though at this particular point does not look to be very important is going to be 
the basis of root locus design. The zeta and omega n are the characteristics of the transient 
response of the system. If I specify zeta and omega n to you I can translate this into the desired 
locations of the closed-loop pole and the design procedure then will be to force the closed-loop 
poles of the system on the desired location, equivalently will mean satisfying the transient 
performance specifications. So it means the required zeta and omega n and have been translated 
into these locations for the closed-loop poles. 
 
As I said, primarily we are interested in an under-damped system. So look at the under-damped 
system please, under-damped second-order system omega n squared over s (s squared plus 2 zeta 
omega ns plus omega n squared) this is the response function. You will note that I have taken 
r(s) is equal to 1 by s a unit-step function. So this is the response function for me you see and I 
want to analyze this particular response function. We have already done in this particular course. 
You can otherwise independently try it again, the inverse Laplace transform of this. This is such 
a standard function that almost all control engineers will remember it you see, so I do also 
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remember. this is (Refer Slide Time: 43:44) sin omega n 1 minus zeta squared t plus theta where 
theta equal to cos inverse zeta, this is the function I get please; y(t) the response of an under-
damped system between zeta is equal to 0 to 1 that is your closed-loop poles are complex 
conjugate poles. This is the response function. This is, as you see now, is the damped natural 
frequency and theta is the damping angle coming over here. 
 
(Refer Slide Time: 44:17) 
 

 
 
Now if I make a sketch of this function a typical sketch something we have already done, this is 
your unit-step function, a typical sketch is like this: now the two curves the envelop curves we 
have already discussed you see if you look at your notes, these are two envelop curves and let me 
write the functions for these envelop curves it is 1 minus e to the power of minus zeta omega nt 
divided by 1 minus zeta square under the root and this curve is equal to 1 plus e to the power of 
minus zeta omega and t 1 minus zeta squared under the root, these are the two envelop curves 
please. 
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(Refer Slide Time: 45:10) 
 

 
 
Now you see that these envelop curves has an important role to play as far as the transient decay 
of this system is concerned. you can note that the faster these envelops decay faster is the decay 
of the actual response because the response always stays within these two envelops and the time 
constant of this envelop, help me please, what is the time constant of the envelop which is an 
exponential curve the time constant tau I want to get answer from you [Conversation between 
Student and Professor – Not audible ((00:45:41 min))] 1 over zeta omega n that is why I said that 
zeta omega n product plays a very important role; zeta omega n, inverse of zeta omega n gives 
you the time constant of the envelop of the standard response and you know that the lower the 
value of the time constant the faster is the response, that is, faster is the decay of the system. So 
the decay of the envelop curves is a guideline to the decay of the actual response of the system, 
this will come in our discussion later. 
 
Come on, couple of equations, I have some 10 minutes available and with your help I hope I will 
be able to derive these equations quickly. I write y(t) equal to 1 minus e to the power of minus 
zeta omega nt divided by 1 minus zeta squared under the root sin omega n 1 minus zeta squared t 
plus theta this is the response please. You note one point you see; the t is appearing with omega n 
in this particular expression, this is omega nt here, this is omega nt here so it is more convenient 
for me to make a plot with respect to normalized time omega nt rather than time t. I can make a 
plot you see for various value is of y, I am taking on horizontal axis the normalized time omega 
nt. 
 
 
 
 
 
 
 
(Refer Slide Time: 47:16) 
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So if I take this normalized time omega nt zeta is the only parameter left you see. So y is the 
response and this 1 is the input, I can take now the response with respect to zeta. As you will 
visualize, for lower values of zeta the response is going to be more oscillatory. So let us say that 
this is the typical response for zeta equal to 0.1. Now you increase the value of zeta, increasing 
the value of zeta your response may look like this (Refer Slide Time: 47:53). Let us say that this 
is for zeta equal to 0.5, these are the rough sketches I am making. If you increase it further you 
can go to zeta equal to 1 and zeta equal to 1 you know that it is a critically damped system, this is 
zeta is equal to 1 is the response curve where the oscillations just vanish. For a value of for the 
value of zeta just lower than this there will be an oscillation.  
 
Now, if you increase the value of zeta it is very well known to you that the system becomes 
sluggish though there is no overshoot but the system responds to settle to the value will also be 
very large and normally this response for zeta greater than 1 is not acceptable unless there is a 
very specific application. 
 
Normally zeta greater than 1 in a control system situation is not acceptable to us because the 
response become very sluggish. Now you find, in this particular case you see, observations, 
qualitative observations, lower the value of zeta lower the value of t r please. So it means your 
rise time is lower for lower values of zeta but lower the value of zeta larger is the peak 
overshoot. You can see that, at this juncture, qualitatively, without even going to the quantitative 
expression, you find that the peak overshoot and the raised to time conflicting each other. Well, a 
lower peaked overshoot and a lower rise time are the requirements of design. 
 
Rise time will mean the speed of response and peak overshoot corresponds to relative stability. 
Say, large peak overshoot means there is a tendency to go towards oscillation and the system 
becoming unstable. After all this is your nominal system keep in mind, the actual system 
parameters will be different than the nominal system and therefore there is a possibility that the 
actual system parameters may drive the system to instability. So it means a very large peak 
overshoot is not acceptable to you and similarly a large rise time is not acceptable to you and 
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these two are conflicting requirements as you say and similar situations you are going to get as 
far as settling time and the peak time is concerned. 
 
(Refer Slide Time: 49:29) 
 

 
 
Let me go to the quantitative situation please, help me please. From the response y(t) equal to 
this expression which we have written zeta omega nt give me the value of t r please, come on 
independently do it and then compare with the result I am going to write. I want the value of all 
the four indices for this particular expression please. The first index is t r. So it means the 
equation to get the t r is going to be y(t r) equal to 1 for the first time that is going to be the value 
of t r y(t r) equal to 1. So in this particular case please see; e to the power of minus zeta omega nt 
r divided by 1 minus zeta squared sin of omega dt plus theta should be equal to 0 this is what I 
want for the first time. This will become zero only when this sin term become 0 and sin term will 
become 0 only when this is equal to pi (Refer Slide Time: 51:24). The other values will also give 
you but for the first time if you are considering so I will take it pi. 
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(Refer Slide Time: 51:30) 
 

 
 
So, in that particular case please see, I am getting t r equal to pi minus theta divided by omega ds 
the expression; t r equal phi minus cos inverse zeta over omega n 1 minus zeta squared under the 
root is the expression for the rise time. You have to keep that in mind because I will be using this 
quite often in my discussion throughout. You can see that rise time is a function of both zeta and 
omega n and I will resolve this conflict of conflicting specifications, conflicting design 
requirements this will be resolved later. At this particular point you can just see that t r is a 
function of both zeta and omega n.  
 
(Refer Slide Time: 52:14) 
 

 
 
Come on, help me please for t p. t p the time to peak how do I get that please? 
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You see the response, the response is of this nature and t p means this time so it means actually it 
is nothing but a point of extrema of the response. It is a point of extrema and I want to get the 
value of t p where the derivative of y is equal to 0. So set the derivate of y equal to 0 please you 
see that y again 1 minus e to the power of  omega n 1minus zeta squared t plus theta this is your 
y please, yes give me the derivative please dy by dt equal to and then I manipulate that derivate 
and give you the expression. This is zeta omega n e to the power minus zeta omega nt (Refer 
Slide Time: 53:20) the derivative of this divided by 1 minus zeta squared sin of omega dt plus 
theta, what is next please minus taking the derivate of this now e to the power of minus zeta 
omega and t divided by 1 minus zeta squared cos of omega dt plus theta into what into omega d. 
 
(Refer Slide Time: 53:55) 
 

 
 
Please see this expression; all of you please satisfy yourselves that this expression is okay. This 
is the derivative I have taken of the value of y and naturally this equal to 0 at the extrema so 
Conversation between Student and Professor – Not audible ((00:54:07 min))] the negative of….. 
dy by dt expression at this particular this I am taking equal to 0 why negative of this please help 
me? So now in this case you see I have to take this value equal to 0 and from there I get the value 
of time t which I call as the t p time.  
 
Help me please, the manipulation of this. What I am doing is this way: omega n e to the power of 
minus zeta omega nt divided by 1 minus zeta squared under the root out zeta sin omega dt plus 
theta minus…. help me please what shall I write here? What shall I write here with me? 1 minus 
zeta under root cos omega dt plus theta this should be equal to 0. 
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(Refer Slide Time: 55:04) 
 

 
 
Now give me the manipulation of this equation please. I make you recall that diagram I had 
given you regarding the damping angle. You see that this was your damping angle theta and here 
is a typical point which corresponds to complex conjugate roots. This is minus zeta omega n and 
here I have omega n 1 minus zeta squared under the root j of course the magnitude is this (Refer 
Slide Time: 55:33). Help me what is zeta equal to? Zeta equal to sin theta and 1 minus zeta 
squared under the root is equal to cos theta. You can see it very clearly from this particular 
triangle that zeta is equal to zeta is equal to cos theta and 1 minus zeta square under the root 
equal to sin theta therefore the expression cos theta sin omega dt plus theta minus sin theta cos 
omega dt plus theta equal 0. 
 
(Refer Slide Time: 56:07) 
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Now simplify this; this is going to be sin a minus b; sin a minus b it means sin of omega dt equal 
to 0, theta goes away, sin of omega dt is equal to 0 and this will occur, you see that, now see the 
expression sin omega dt equal to 0 will occur at many points but you are interested in the peak 
overshoot, the peak will occur at the point corresponding to phi it cannot accurate 0 because that 
cannot be the peak it occur at phi. So t p is going to be equal to pi over omega d equal to pi over 
omega n 1minus zeta squared under the root; another important expression I want you to 
remember.  
 
Now if I want you to find the time to first undershoot please you take here 2 pi. The time taken to 
first undershoot will become 2 pi by omega d, the time taken to second overshoot will become 3 
pi by omega d and so on. However, in my design cycle I will really not be interested in that I will 
be interested in peak overshoot and the peak overshoot is given by this expression t p is equal to 
pi over omega d. 
  
Once you have taken this value since it is just…. yes please, just a minute oh just a minute please 
just this expression I wanted to complete; what is M p? I think you can go quickly once you 
derive M p for me. What is M p? M p is going to be equal to the overshoot over and above 1. So 
can I write; this is y(t p) minus 1 so y(t p) minus 1, since the time is already over so I give this 
result to you a simple manipulation. in the expression for y you substitute t p and manipulate, M 
p you are going to get this as e to the power of minus pi zeta over 1 minus zeta squared under the 
root it is a simple manipulation. In the y expression which we have derived substitute t p is equal 
to pi by omega d and simplify, your peak overshoot turns out be e to the minus pi zeta over 1 
minus zeta squared under the root. 
 
(Refer Slide Time: 58:30) 
 

 
 
Thank you, I will continue with discussion on the transient performance specifications. 


