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Lecturer - 30
Scattering Matrix

This is thirtieth lecture. And we are going to discuss a new 2 port description; that
means, the scattering matrix; scattering matrix description of a 2 port.

(Refer Slide Time: 00:28)

This descriptions; scattering matrix description is not confined to 2 ports only; it can also
be applied to multi ports. However, our description shall be in the context of 2 ports

only.



(Refer Slide Time: 0:51)
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The scattering matrix description is particularly important in networks in which, the

E’f‘

space variable is to be taken in to consideration. What are such networks called?
Distributed networks as opposed to lumped networks. Therefore, scattering parameters
are important descriptions in networks, which have to be considered in addition to the

other the time variable the space variable also. In other words: in distributed networks.

Nevertheless they are equally applicable, they are quite general parameter. They are
equally applicable to lumped networks also. And it is appropriate that, at this stage we
know about scattering matrix parameters; particularly when you have a course on
electromagnetic theory and its applications and learn about microwaves scattering matrix
shall be the only description, either a field description or a scattering matrix description.
And this scattering matrix description is in terms of incident power, is in terms of power
instead of voltage and or current. It is in terms of incident power and reflected power at a

particular port.

If, you take a network N and at a particular port, as you know at very high frequencies, it
is it is impossible to define even define a voltage. You have to go for field descriptions
that are, electric field and magnetic field. However power which is E cross H is as
fundamental a quantity as the electric field or magnetic field. It is a combination of
electric and magnetic fields. And at those frequencies the only description that, that is
suitable and works is, the power description. And that power description brings in the

parameters called scattering parameters.



Now, it is convenient to think in terms of incident and reflected power at high
frequencies. You could also do that at low frequencies, nobody stops you. But, at low
frequencies it is usually more convenient to describe the network in terms of voltages
and currents. Voltage and current as the variables and therefore, Z parameters, Y

parameters, H and transmission parameters, they describe the network quite well.

But, since scattering matrix parameters are universal, that is, they can be applied to low
frequency as well as high frequency network. We shall deal with them in a very general
manner. Most of our examples will be, with regard to lumped networks. But we would
also like to look at 1 specific form of a distributed network namely; a transmission line.
In fact, we shall do that in order to facilitate the definition of scattering matrix
parameters. And you will understand the physical significance. | could do this
mathematically that is, define the incident variable as this and the reflected variable as

this and so on and so forth.

But, let us go a bit into the physical interpretation, that is, the link of scattering parameter
with power. And this necessitates that we do when, we know a little bit about
transmission line theory. | do not think you have been taught transmission line theory

yet, or you are having it now. We shall there.
(Refer Time: 04:43)

Oh very good, then my job is simplified.

(Refer Slide Time: 04:59)
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The transmission line; the telephone line for example, or the power line that goes
overhead, typically it consists of 2 lines like this, they usually run parallel to each other,
2 lines like this. And any other transmission line can be thought, can be described by a
parallel wire transmission. For example, a coaxial line is also a parallel wire, there is an
inner core and there is an outer shield. Outer shield is at a constant distance with the
inner core, also the length of the cable. And therefore, all most all transmission lines can
be described in terms of a 2 wire line. And you know that, the space variable here is an

important parameter.

If, we consider this as x equal to 0 and x equal to I, then at x that is shown here for
example, an input step voltage does not appear at the output instantaneously, it appears
after some delay and this is why, the space variable becomes important. You also know
that a transmission line like this is described by 4 parameters R, L, G and C where: R and
L are the series resistance and series inductance per unit length and G and C are
respectively the conductance and the capacitance per unit length. These are shunt
parameters whereas, these are series parameters. And you also know if you since, you
have done it that, a transmission line is described in terms of 2, instead of the 4 primary

parameters as they are called a primary constants.

You can have you can have a description in terms of just 2 derived parameters namely;
the propagation constant gamma which is equal to, for sinusoidal excitation it is the
product of R plus j omega L G plus j omega C the product of this and the characteristic
impedance Z 0, this is the propagation constant and this is the characteristic impedance Z
0, which is equal to square root of R plus j omega L divided by G plus j omega C. It is
the ratio of the 2, the impedance. It is impedance per unit length and the shunt
admittance per unit length; it is the ratio of the 2 square root of that. Do the dimensions

agree?

G is 1 by resistance. So, it is impedance squared, square root of impedance squared is

impedance. What about the dimension of gamma?
(Refer Time: 07:56)

Dimension less.

You also know that, gamma is a complex quantity in general; it has a real part alpha and

an imaginary part beta j beta where, the real part alpha is a positive quantity. The voltage



and current at any point of the line, let us say x distant x from the origin from port
number 1, this is port number 2. The voltage and current at any point; if we denote this
by V of x and the current is denoted by | of x, well this voltage and current in general,
are not only functions of time, but also functions of space; space variable, we have

considered only 1 dimensional propagation.

If it was space propagation for example, propagation of a disturbance created by an
antenna in an otherwise still environment well, it travels in all the 3 directions and
therefore, 3 variables would have been needed. Here it is a guided wave, guided along
the transmission lines. So, the propagation is only along 1 direction, which we

conveniently call the x direction.

If, the excitation is considered sinusoidal, then the quantities | and V are phasors. You
can take either the peak value or the root mean squared value depends on your
convenience, these are the phasors. And then time dependence is taken care of, by make
it in to a phasor and only the space dependence x has to be taken care of. And you know

that this is only a review. | am not going into the details.

(Refer Slide Time: 09:58)
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You know that the basic equations for transmission line behavior is dv dx equal to minus
Z | where, Z is R plus j omega L that is the series impedance per unit length. And the
other equation, the current equation is; di dx equal to minus Y times V where Y is equal
to G plus j omega C. And a combination, these are 2 coupled equations: voltage current,
current voltage, they are coupled equations. And if you eliminate 1 of them for example,



if you differentiate this and substitute for I, then you get a second order differential
equation in the voltage d2 V dx 2 would be equal to gamma squared, gamma squared V
where, gamma squared is simply the product Z Y and gamma; obviously, is the

propagation constant.

Therefore, the solution is very easy because, it is a second order differential equation,
without the first order differential coefficient. And the coefficient of V is a constant
gamma squared. And the solution is V of x equal to some constant V i e to the minus
gamma x plus some other constant V r e to the plus gamma x. It will have 2 independent
solutions and gamma can have the value of plus minus, gamma has the value square root
Z Y. And the auxiliary equation for this shall have the roots m equal to plus minus

gamma and that is why this solution comes. You have done this solution earlier.

You know that this term the subscript i stand for the incident wave and subscript r stands

for the reflected wave. Can anyone recall why this is called an incident wave?
(Refer Time: 12:09)

Direction of gamma.

You see the voltage as it reverses the line must decrease with distance because, it is a
passive network. And the real part of gamma is the attenuation constant therefore, as x
increases, the attenuation shall increase and therefore, this is the incident wave; a wave
travelling in the direction of positive x. And this is the reflected wave that is, the wave
travelling in the negative x direction. This is the incident wave and that is the reflected

wave.



(Refer Slide Time: 12:50)

And if you substitute this in the equation | equal to minus 1 over Z dV dx. If you
substitute this solution, then you get the solution for I. And it can be written as V i
divided Z 0 e to the minus gamma x minus V r by Z 0 e to the gamma x, that is, the
incident current, this is the incident current and this is the reflected current. There is a

sign change there is a negative sign here.

Now, these are our basic equations for a transmission line: V equal to V i e to the minus
gamma x plus V r e to the gamma X. These are our basic transmission line equation from
which now, we shall go in to the scattering matrix description. If there is a question at

this point | will be happy to answer.
(Refer Time: 13:48)

That’s right, if you are differentiating by V gamma comes here, but then this is also
divided by Z.

(Refer Time: 14:07)

Gamma by Z is Z naught. That is correct.

Now, gamma by Z is not Z naught.

(Refer Time: 14:16)

One by Z naught that is how this 1 by Z naught comes.

| certify that these 2 equations are correct alright.



(Refer Time: 14:26)

Reflection at which point? At any point in the transmission line, the voltage component
can be thought of as the superposition of 2 voltages; 1 travelling in the forward direction
and the other travelling in the backward direction. And the 1 travelling in the reverse
direction is called the reflected wave. The reflection can occur throughout the line,
reflection occurs at every point in the line and it is the sum total of that, that you see V r
e to the minus gamma e to the plus gamma x is the reflected wave which, is a sum total

of reflections at all points, for which the coordinate is greater than x.
(Refer Time: 15:23)

Forward direction is consider as positive because, our coordinates where x equal to 0 and
x is equal to L. Now, this is quite arbitrary, it depends on where you connect your source.
Obviously, we have connected our source at port number 1. So, as we go away from the

source, X is positive, this is considered as the origin.
(Refer Time: 15:49)

That means: if | connect the source here, then I will consider x equal to 0, as this point
and the wave travelling in this direction from right to left will be considered as the

incident wave
(Refer Time: 16:02)
That’s right. That is correct.

Our direction will change; x equal to 0 and x equal to L. So, x increases in this direction
it is a matter of convention that, we always take this source at the left, nothing to do with
political inclinations. Source at the left and at the load at the right, this is our convention.
You see in drawing networks, the left2 terminals, we call it port number 1, there is

nothing sacred about exciting at port number 1, you can excite at any other port.

In fact, when you go to microwaves you will see the magic T for example, is a 3 port
networks. There are networks which are 6 ports. Then there is nothing called input port,
output port, you could excite at 3 ports and take the output at any of the other 3 port.
There are ring couplers, in which it could be n number of ports n, can be greater than 6
also, there is nothing sacred.



As far as, 2 port is concerned we stick to the convention that, we excite at the left and
take the output at the right which also, we have broken. You see in stating the reciprocity
theorem for example, we interchanged the source and the load. So, there is nothing
sacred.

We start from these 2 expressions. Let me write these expressions again.

(Refer Slide Time: 17:26)
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I V equals to V i e to the minus gamma X plus V r e to the gamma x. And | equal to Vi
divided by Z naught minus e to the minus gamma x minus V r by Z naught e to the
gamma Xx. Now, | can write this second equation. I do some mathematical manipulations
now. | can write this second equation as | Z 0 equals to V i e to the minus gamma X

minus V r e to the gamma x.

If, I combine this equation with this equation 1 and 3, then I can find out expressions for
V i e to the minus gamma x in terms of V and | Z 0. What | simply do is, V plus 1 Z 0
divided by 2. On the other hand, the reflected wave V r e to the gamma X can be written

as: V minus | Z 0 divided by 2. That is very simple; simple manipulation.

The next thing that I do is | take 1 by square root Z 0. | take square root Z 0 common.
Then what | get is half square root Z 0, out of this expression | take out. Then, I get and
half. So, | get V divided by square root Z 0 plus | square root Z 0. And | write this as
square root Z 0 half V by square root Z 0 minus | square root Z 0, there is a purpose in

doing that. I, before I go in to why | did this manipulation, let me also point out to you



that, if the line if the transmission line is terminated in its characteristic impedance, then

what happens? There is no reflected wave.

The reason is from here you see if V is equal to | Z 0 at X equal to |, what does
termination mean? It means that at the end of the line you have a termination Z 0, this is
V of | and this current is | of I. So, V r e to the power gamma | shall be equal to, V of |
minus | of | Z 0 which is equal to 0 because, this says that V of | is equal to | of I Z 0.

You see this point.

Therefore, V r e to the gamma | would be equal to 0. Now, e to the gamma | cannot be

equal to 0, unless | is infinity.
(Refer Time: 20:47)

One is minus infinity. Therefore, this constant V r must be equal to 0 which means: that
there is no reflected wave. And if there is no reflected wave, then these 2 terms shall be
0, these 2 terms shall be 0 and you see that the ratio of V to | at any point on the line,
shall be exactly equal to Z 0. In other words, characteristic impedance terminated line at
any point inputs an impedance of Z 0. The input impedance of a characteristic impedance
terminated line is equal to Z 0 wherever, the impedance is measured, irrespective of

where the impedance is measured.
Now, let us go back to this manipulation.

(Refer Slide Time: 21:42)
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We have shown that V i e to the minus gamma X, let me write this again equal to Z 0 half
V by square root Z 0 plus I square root Z 0. And V r e to the gamma x equal to square
root Z 0 half V by square root Z 0 minus | square root Z 0. Now, these where done with
reference to a transmission line, we found out expressions for the incident voltage wave

and the reflected voltage wave.

Now, let us consider a general 2 port, forget about transmission line; a general 2 port N,
general 1 port. The 1 port has only 2 terminals, where you can connect voltage source
measure the current or connect a current source measure the voltage. Suppose, the
voltage current description we do not want, we want a different kind of description in
terms of power. Then what you do is; you define for every such 1 port, a constant R 0, a
constant R 0, which is called a reference impedance, actually it is a resistance. Resistance
is a special case of an impedance. So, it is a reference resistance. Let us put the term

impedance; reference impedance, all we want is that this should be a 40 percent.

Let R 0 be arbitrary we choose, we define, we call R 0 as an arbitrary reference
impedance. We will show lateral, how to choose R 0. But, given an N given a 1 port N,
we defined N in arbitrary reference impedance R 0, and then we make the following

definitions. We say.
(Refer Time: 23:54)

We are now confining to 1 port only, then while extending to 2 ports, we will have to
define 2 such reference.

(Refer Time: 24:07)

No it is for the present it is arbitrary, we will see how to fix it later for the present it is
arbitrary. Then, we define an incident parameter a and a reflected parameter b as follows.
We define an incident parameter a and the reflected parameter b, not parameter a
variable instead of voltage and current. Now, we will see how a and b are related to
incident power and reflected power later, but at the present time we simply say it is a

variable, we do not know how it is related to power, but we define like this.
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We define a; incident parameter as half V by square root R 0 where, let VV and | be the
voltage and current at this port. Then, what I do is a we define simply as this term that is,
if Z 0 is square root Z 0O is taken out, then whatever this term is this is what we define as
a which means: that we define this as | square root R 0. You see, this is the incident you
can see the relationship between the incident voltage in a transmission line and the
incident variable of the 1 port. And b is called the reflected variable and it is defined as V

by square root R 0 minus I square root R 0.

These are 2 quantities, 2 variables which are defined for the 1 port N in terms of
conventional voltages and currents. Ultimately, we can do wave with voltage and
current. Now, for being applicable to lumped networks in which, you can work in terms
of voltage and current, there must be a relationship and this is the relationship that we
have, that we take care of in the definition. And if you see this 2 expressions and the
definitions of a and b, you see that a and b are very simply related to the incident voltage

wave in a transmission line and the reflected voltage wave in a transmission line.

If, R 0 equal to Z O if the reference impedance is the same as the characteristic
impedance, then in a transmission line a, in a transmission line a is simply equal to the
incident voltage wave divided by square root of Z 0. Therefore, a is indeed connected to
an incident variable. Similarly, b as you can see is V r the reflected wave the reflected

voltage wave divided by square root Z 0.



So, a and b have a physical interpretation. We are not considering the dimensions at the
movement. The dimensions; obviously, are not voltage because, they are voltage divided
by a square root of an impedance. So, it would be volt per Ohm to the power half or volt
Ohm to the minus half. We are not bothering about it now, we should relate ultimately a
and b to power and then we shall see the peculiarity of this definition shall become
obvious because, our main concern is to describe the network in terms of power; power

as the variable.

But as far as a 1 port is concerned, these are the definitions of the incident and the

reflected variables. We are not saying voltage, current or power.
(Refer Time: 28:15)

Pardon, | beg your pardon.

(Refer Time: 28:22)

| can choose R naught anything I like alright, then my V i e to the for a transmission line,
it will not be as simple as this it would be a different kind of a relationship. But, why
should 1 do that? Because after all, our purpose is to describe the multiport, describe the

2 port in terms of variables and parameters, so it is convenient.

Similarly, here also in the case of 1 port you will see how to choose R naught to make
life simple. Instead of going in to complicated calculations, we can bring out things very
easily by particular choice of the characteristics impedance and you will see how to do
that. For a transmission line you are quite right, it is chosen as equal to the characteristic

impedance at, in fact, in both ports.
(Refer Time: 29:24)

In transmission lines we do not concern ourselves yes, that is true because it simplifies
things, it simplifies matters. And it also fits in physically, the interpretation of incident
power, reflected power the pointing vector and so on and so forth. But let us go back to a
1 port. In order to understand the physical meaning of a and b a little better, let us

consider power.



(Refer Slide Time: 29:56)

\I,;a*"'
kel L SRR
AR q N
e i l

— |
a= s [ L +T (@& |
:Lm.‘
b- ‘5’[ v “1

As you know, the power absorbed by a network N, when it is excited by a sinusoid V
and the current is I, the power as you know is given by real part of VI star. Do you know
this complex conjugate? Alright, Can you derive this? Well for historical reasons | will
use the factor half which means that, I am considering V as the peak vector not the RMS

vector. The phasor is considered with the peak value.

For example: if I have Vm sine omega t, then my voltage vector is Vm; the peak value
the maximum value not the RMS value. And this is historical, you can do with half, then
it is implied that V and | are RMS vectors. Now, the derivation of this; can there be, can
you give me a very simple way of deriving this? | what | am interested in is, whether you

know how to derive this, if you know we will skip it alright.

Now V and I, you know that a is equal to by definition a is equal to half V by R square
root R naught plus I square root R naught. My intension now is to express P in terms of a
and b, to get an interpretation of a and b in terms of incident and reflected power. So, this

is half this minus this. Now, if | eliminate, now if | find VV and | in terms of a and b.
Do you have a question?
(Refer Time: 32:00)

That’s right. That is correct, that is why | took the factor half here.



(Refer Slide Time: 32:13)

a+5) Ry =V
_b —pos B
P= £ f a+b)(a-b )
: g(aa' - bb")'/(.t\"'{\_;\'f

o ko - 5=l
R acidaed povt? 4

So, you can easily see that a plus b times square root of R naught is simply equal to V is
it not? That right. And similarly, a minus b this factor of half because twice into half
becomes equal to 1, a minus b square root R naught becomes equal to I. So, the power
absorbed by the network.

(Refer Time: 32:43)
a minus b divided by R naught. Yes, thank you.

So, the power absorbed by the network is half real part of V, that is, a plus b multiplied
by R naught and R naught will cancel square root R naught and therefore, multiplied by a
star minus b star. And the real part of this is simply aa star minus bb star. The rest of it
will be the imaginary part, aa star minus bb star which | can write as half mod a squared
minus half mod b squared. And you can see that, the power absorbed by the network has
been expressed in terms of 2 quantities: a positive quantity and a negative quantity.

Therefore, this can be interpreted as the incident power; that is the power that is tried to
be fed to the network by the source. And this power half mod b squared is the reflected
power or the power that is rejected by the network and sent back to the source. The total
power absorbed by the network is the power that is fed in and the power that goes out.

Rest of the power remains inside the network and is dissipated.

If, this was a lossless network, then mod b squared would have been equal to mod s

squared because; no power would have been absorbed. But in a passive network, this



shall be greater than or equal to 0, because of passivity. If it is 0, then it is passive and

lossless, if it is greater than O then it is passive and...
(Refer Time: 34:54)

Passive or dissipative passive and dissipative. And therefore, from this we get an
interpretation of the incident variable a and the reflected variable b in terms of power,
that is, aa star divided by 2 is the incident power, bb star divided by 2 is the reflected
power alright. And this is how the 2 variables are related to physical quantity like power.
First we related to voltage and current, but that as | said holds only if you can measure
the voltage and current. In a microwave network, cannot have a, you cannot put a volt
meter across a wave guide for example, and measure the voltage no it is not possible, it’s

a single metal and therefore, you have to measure the power.

(Refer Slide Time: 35:58)
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Now, let us go back to a and b. a is the incident variable, yes was there a question? a is
the incident variable and b is the reflected variable. And 1 defines a relationship between
b and a of a 1 port like this. The reflected variable is put as some constant S multiplied
by the incident variable a. And S is called the scattering parameter of the 1 port N. Ina 1
port, if we had the impedance description Z parameter description, all that you can define
is the input impedance. In a 1 port, if you want to have a admittance description, all that

you have is the input admittance.

Similarly, in a 1 port there are only 2 variables and therefore, you can express 1 in terms
of the other. And S is a scattering parameter and is a constant for the 1 port. S is also



called for a 1 port; it is also called the reflection coefficient. And to see why it is called a
reflection coefficient, you see that if, you look at the definitions of b and a, S is the ratio
of b to a and if we cancel out the factors half, then we get this as V minus IR naught
divided by V plus IR naught.

If we apply the definition and cancel out the factors half multiply by square root R
naught, then this is what | get. And you can see that, if | divide both numerator and
denominator by I, then I can write this as Z minus R naught divided by Z plus R naught
where, Z is the input impedance, that is, it is the ratio or VV by I. And as you know from
transmission line theory; this is called the reflection coefficient or the miss match
coefficient, that is, how much Z the input impedance is away from the reference

impedance. So, this is also called the reflection coefficient.

You can see that if the reference impedance R naught is chosen equal to Z, then the
reflection then the scattering parameter is 0. This has something to do it with the choice
of R naught at a slightly later stage. But, let us look at a situation in which we have a real
source and a real source is a voltage source with internal impedance in series or a current

source with a internal admittance in parallel.
Let us take the voltage description of the real source.

(Refer Slide Time: 39:25)

Vg and an R sub g.

(Refer Time: 39:33)



If it is lossless all that it means is, mod b squared equal to mod a squared, does that mean
that b is equal to a? No, not necessarily. Magnitude squared may be equal, but the
complex quantities may be quite unequal. For example, x minus jy and x plus jy they are
the same mod, but the quantities are different. We will come to this when, when is this

scattering parameter equal to 1? We will come to this a little later.

Let’s have a network N. Let us have a network N which is driven by a real source Vg
and Rg. And let the voltage V and the current | be defined like this. And at this point let
us define an incident parameter a and a reflected parameter b at the input of the network.
We have defined voltage, current, incident parameter, reflected parameter. Now, we also
choose R 0 as equal to Rg. We choose the reference impedance with is sam as the input
impedance, as the internal impedance of the source. This was arbitrary, so we can choose
it. Let us choose it to be equal to Rg.

Then, let us see what is V? This is the choice, V is Vg minus IRj or | let us also suppose,
the input impedance is equal to C, input impedance of the 1 port. We have defined VI.
So, the ratio of V by | is Z. Then do not you see that I is simply equal to Vg by Rg plus
Z. Vg by Rg plus Z this is perfectly alright. Now, let us look at what happens to a and b.

The current here is simply voltage divided by Rg plus the impedance.
Let us see what happens to a and b.

(Refer Slide Time: 42:47)

ais equal to 1 by 2 V by square root R 0 plus I square root R 0. Let us not impose R 0 at
the present stage; we will see what happens when R 0 equal to Rg a little later. Let us



keep the identity over O for the present. I can write this as 1 by 2 square root R 0, if | take
square root R 0 out, then I get V plus I times R 0. And V is Vg minus | Rg Rg multiplied
by Vg divided by Rg plus Z. I substitute for I plus I times R 0. So, it would be Vg R 0
divided by Rg plus Z is that is this equation. What | did was; skipped a couple of steps,
but let me introduce that this is 1 by 2 square root R 0 V plus IR 0. For V, | write Vg

minus I times Rg plus I times R 0.

So, this | can now simplify to Vg, Vg | can take common for all the 3 divided by twice
square root R 0 1 plus R 0 minus Rg divided by Rg plus Z. Now, what will happen if R 0
is equal to Rg? The second term obviously becomes 0 isn’t that right? If, the reference
impedance is chosen as equal to the internal impedance of a source; reference impedance
so far was arbitrary. If this is chosen to be equal to this, then my a simply becomes Vg
divided by twice square root R 0 not R 0 no longer R 0 Rg.

Now, let us look at the power P.

(Refer Slide Time: 45:32)
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As you know the power is half mod a squared minus mod b squared, which is equal to

half a squared. If I take this out, what shall I get in the bracket? 1 minus mod S squared
because, S is b by a alright mod S squared. You also know that S is equal to reflection
coefficient, that is, Z minus Ro divided by Z plus R 0 and Ro Rg, Ro has already been

chosen to be Rg.

Therefore, if Rg if Z equal to Rg, if the input impedance, if the network is so designed
that, the input impedance is equal to the internal impedance of a source, then S is equal



to 0 identically. And therefore, the power simply becomes the incident power, there is no
reflected power and all the power that is fed to the network is absorbed by the network.
So, the power becomes equal to half mod a squared. And if you substitute the value of a,
then you get Vg squared divided by 8 times Rg. Vg squared divided by a eight times Rg.

Now, if you recall the theorem of maximum power transfer, you know that maximum
power is transferred to a network if the internal impedance of the source is the complex
conjugate of the network impedance. You know this do not you? Here the internal
impedance is resistive Rg. Therefore, if Z equal to Rg, then maximum power is
transferred and therefore, this power we can call the maximum available power, that is, |

am going very slow because this terms are new.

Maximum available power is the power; that is the maximum power that can be drawn
from a source, generating an open circuit voltage Vg and having an internal impedance

Rg. You cannot draw a power more than this.

(Refer Slide Time: 48:33)
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If you have a source which generates a peak voltage of V sub g peak phasor V sub g and
a resist internal resistance Rg, you cannot draw from this source a power greater than this
because, by the maximum power transfer theorem; maximum power is can be transferred
from this source only to an impedance which is exactly to Rg. And if you terminate this
in Rg, the power that is transferred to Rg is exactly equal to this. Therefore, this power is

called the name for this is maximum available power.
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Our final conclusion is that if you have a 1 port which is supplied from a voltage source
Vg and internal impedance Rg, then maximum available power will be transferred to the
load Va P A equal to Vg squared by 8 Rg when, the reference impedance R 0 is chosen
to be equal to Rg. Not only that, the network is such that it is input impedance is equal to

Z; Z no more transmission line, it’s a simple 1 port which is equal to V by R.

So, given a 1 port; given a 1 port, 1 first identifies what is the internal impedance of the
source and chooses that as the reference impedance. And, then if the 1 port is to be as
effective as possible, you should design the 1 port so that, its input impedance is equal to
the internal impedance of the source. And in the context, we go back to the definition as
S is Z minus now Rg which is the same as R naught divided by Z plus R naught and you
can write this as z minus 1 divided by z plus 1. | divide by, where z is equal to Z divided
by R naught; obviously, z is a normalized input impedance of the network, normalized

input impedance of the network and we decide to work is S normalized.

The scattering parameter is as usual, it does not change it is not normalized. What is
normalized is, the input impedance of the network normalized with respect to the
reference impedance. Now, follow me carefully. If we decide to work with z, if we
decide to work with z the normalized input impedance then; obviously, our reference
impedance is now 1 Ohm and this is the convention. You will see if you study

microwaves later, that 1 always takes of 1 Ohm normalized impedance normalized 1



Ohm reference impedance for the scattering parameter, which simply means that all
impedances are divided by the actual source impedance.

(Refer Time: 52:30)

Source impedance has to be the characteristic impedance if, it is to give maximum power

to the transmission line.

(Refer Slide Time: 52:45)

Now, so we would like to make a few comments about this relationship. z minus 1
divided b z plus 1, and then close the class. A few comments about this; there was a
question about b equal to a b equal a then S equals to 1? Alright; that means, no power is
absorbed. There is another way that S can be equal to 1. Suppose, the network the 1 port
is an open circuit; that means, z equal to infinity, do not see that S is equal to 1? S is

equal to 1.

Similarly, if the network itself is a short circuit, then S is equal to minus 1. These are 2
special values for open circuit and short circuit S equal to 1 for open circuit, S equal to

minus 1 for a short circuit.
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Another characteristic or property of S comes into transparency if you look at this
expression. Half a squared 1 minus mod S squared. This is was the expression for the
power absorbed by the network. And you know that this is greater than or equal to O for a
passive network. What can you say about mod s squared then?

(Refer Time: 54:29)

So, mod S squared must be less than or equal to 1, it can also be equal to 1. So, for a
passive network, the scattering parameter, now it’s a parameter this scattering parameter
or the reflection coefficient, magnitude squared must be bounded to unity, bounded by
unity, it cannot exceed unity for a reactive network. What is a reactive network? A
reactive network is composed of only reactances; reactive network, reactance’s means:
inductances and capacitances which do not dissipate energy. In other words, a reactive
network is also a lossless network. For a reactive network magnitude S squared shall be

equal to 1.

The third property of S shall be proved next time, after defining a couple of important
complex variable function. We require a bit of mathematics, but it is not much, there is

nothing to be afraid of it. This is what we will do on Thursday.

Thank you.



