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  Welcome to this lecture on Digital Communication Using GNU radio.  My name is
Kumar Appiah and I belong to the department of Electrical Engineering at IIT  Bombay.
In this lecture, we are going to take a look at modulation, specifically digital modulation.
Modulation can largely be considered as the means by which we map bits and symbols to
waveforms.  As we have been seeing, to perform practical communication, you need to
be able to transmit  and receive waveforms, but the task of converting your discrete bits
or  symbols  into  waveforms   that  can  be  deciphered  at  the  receiver  is  achieved  by
modulation.   Naturally,  as in any communication system, we have constraints to deal
with,  the  most   common  ones  being  bandwidth  and  power.

  Bandwidth is something you have already heard of in the form of spectral constraints.
Power as well because there are limits as to how much you can radiate into the air or
transmit into a media and so on.  One concept that we will be discussing in this lecture is
the concept of degrees of  freedom that concerns itself with the flexibility as to how much
data you can send per unit  time or with these constraints.  Finally, we will be looking at
the  very  basic  aspects  of  signalling  for  digital  communication.

  When it comes to modulation degrees of freedom, an intuition is that this corresponds to
the  flexibility or the constraints on flexibility of modulation.  At a very simple level, how
much data can you send, let us say per unit time?  This can be decided by the number of
modulation levels that you can use.  For example, within an interval of 

0to T ,

you could use only two levels, 0 and 1 or  you could use four levels, five levels or as
many levels as you want.  That corresponds with the vertical dimension and what values
of amplitude you can use.  But another aspect which the modulation degrees of freedom
concerns itself with is the flexibility  that you get in terms of given a time constraint, let
us say a symbol duration of 



T ,

then 

0to T

you can send a symbol, 

T to 2T

you  can  send  a  symbol.

  Let us say that you fix 

T ,

what is the maximum rate at which you can send symbols?  That is how many symbols
can you send per unit time?  How small can you make this T so that you can send faster?
These aspects are governed by the digital modulation degrees of freedom.  So let us take
a simple example.  We have a band limited channel between 

f c+W /2and f c−W /2.

As you have seen in the context of the complex baseband equivalent, this can be looked
upon  as a baseband channel between 

−W /2to W /2.

Of course, you can keep 

f c

in  the  background,  it  is  there.

  But for analysing the system, you just need to look at a signal which is between

−W /2to W /2.

Now the point is that if you look at all signals that are between 

−W /2to W /2,

you can vary this particular amplitude and get a different class of signals.  But these are
fundamentally band limited.  The maximum frequency that you can have in your signal is
bounded above by 

W /2.



This means that you are limiting the range of waveforms and limiting the rate of data
symbols  that  can  be  sent.

  How?  Intuitively, let us say that you have this particular region and you want to signal
at  the fastest rate possible or you want to send the maximum amount of data that you can
send.  If you look at this particular waveform which goes up like this, it has a slope which
is  reasonably fast  rising.   This particular  waveform has a slope that is quite slower.
Intuitively, the faster and faster you go up, the more kind of abrupt jumps that you  have,
the higher the frequency content that you have.  In the limit, if you take something like an
impulse or the unit step function, these have  a large amount of frequency content in them
and  are  not  band  limited.

  So what do you want to conclude?  Because of the fact that you are looking for band
limited signals, the rate at which you  can rise and fall is limited by the bandwidth of the
system.  In the context of electronics, you would have heard of something like slew rate
for an op-amp  or frequency limits  of an op-amp.   This is  the similar  concept.   The
moment you have a bandwidth limitation, you cannot change the amplitude very quickly.
This  is  what  is  defined  by  the  modulation  degrees  of  freedom.

  How do we make this more formal?  To make this more formal, we will recall the
Nyquist sampling theorem from the digital  signal processing that you have already seen.
Put using terminology that we have been using so far, if 

s ( t )

is a signal that is band  limited to be between 

−W /2to W /2,

then  the  Nyquist  criterion  says  that   this  signal  can  be  completely  described  by the
samples 

s (n/W ).

In other words, if you sample the signal 

s ( t )

at W samples per second, those samples  can be used to reconstruct 

s ( t )

without any loss of information.  This is the same concept that you have come across in
the context of digital signal processing.  To make this more formal, we will recall the



Nyquist  sampling  theorem  that  you  have  studied   in  the  context  of  digital  signal
processing.

  That is, if 

s ( t )

is a signal that is band limited to between

−W /2to W /2,

then this signal can be completely described or captured by the discrete samples 

s [n ]

obtained as 

s (n/W ).

In other words, if you sample the signal 

s ( t )

at W samples per second, then those samples  completely capture all the information
about the signal 

s ( t )

even in the  missing portions   in  between.   This  is  just  a  restatement  of  the  Nyquist
sampling theorem that you have seen in DSP  using the notation that we have been using
so far in these lectures.  The interesting part is that you can reconstruct the complete 

s ( t )

without any loss of information  from 

s [n ]

by using this reconstruction formula which is basically the sinc interpolation  formula.
That is, 

s (t )= ∑
n=−∞

∞

s (n/W ) sinc ( t −n/W ).

  Now, why are we looking at this?  The intuition is that over a time duration of let us say 



T 0,

the number of complex samples that need to be specified is 

WT 0

and  thus the modulation degrees of freedom is 

WT 0.

What does this mean?  This means that suppose that you have an interval of time, let us
say 

0to T 0,

the question  which we are asking is how many symbols can be sent within this time?
Now because we are forced to be band limited to between 

−W /2to W /2,

Nyquist   sampling  theorem says if  you want  to reconstruct  the signal,  the maximum
number of symbols  that you can send in this interval is 

WT 0.

Why?  If you signal something like this, let us say that this is some wave form where you
are putting these symbols, this is a symbol, this is a symbol, this is a symbol, this is  a
symbol, this is a symbol, this is a symbol, this is a symbol, this is the best you can  do.  If
you try to go any faster, then you are violating the Nyquist criterion that your  bandwidth
is between 

−W /2to W /2.

The moment you try to signal any faster, you are going to go out of that bandwidth.

  So in other words, because you are constrained in bandwidth, this signal cannot rise and
fall very quickly, so the maximum number of symbols or complex symbols that you can
send  in a duration of

T 0is WT 0.

Intuitively, that means that if you have a channel whose bandwidth is 

W ,

you can send  data only at 



W

samples per second based on this criterion.  The next thing we must recall is the signal
space description that we have already seen  in the previous lectures.  Suppose that you
want to send one of m possible messages, m possible, let us say it is a bit  sequence or
symbol.  As we just discussed in the context of modulation, you are going to send this
message  by  sending   a  signal,  a  wave  form.

  Let us say that these 

M

wave forms are titled 

s1 ( t ), s2 ( t )up to sM ( t ).

It turns out  that you can often have a more compact description of these wave forms
using vectors.  That is, if you have any M  wave forms, then you can express these 

M

wave forms as the  linear combination of some 

n

basis signals, which of course 

n

is at most 

M

and each signal  can be represented therefore as an 

n

dimensional vector.  To recall, let us say that if you have this example which we looked
at previously, 

ψ1 (t )

is basically 1 between 0 and half, 

ψ2 (t )



is 1 between half and 1, then let  us say that you have this particular wave form which is
half  from  0  to  half,  1  from   0  to  1.   Let  us  say  this  is  half,  1,  half  and  1.

  This particular wave form is actually

1/2ψ1 (t )+1 /2ψ2 (t ).

In other  words, we can express this wave form, oh this should not be half, it should be

ψ2 (t ).

We can express this wave form as the 

[1/21 ].

Of course, there is an amplitude change that I am ignoring, but this is basically a way  by
which  you  can  express  these  signals  as  a  linear  combination  of  some  basis  signals.
Therefore, it is more convenient for us to look at the signal space description because  if
you have an orthonormal basis of 

ψ1 (t ), ψ2 (t ) up to ψn ( t ),

which are orthonormal  implies that the 

∫ψk ( t )ψ l
∗

( t )dt=1

only when 

k=l

and 0 otherwise, which is what this 

δ kl

stands  for.

  Then all our signals can be replaced with this kind of vectors. These vectors capture  the
full  signals.  So,  the  pair  of  these  vectors  along  with  the  basis  signals  give  you  the
complete descriptions of the actual 

s1up to sM.

This is very convenient and we will  do this often as we shall see.  The signal space
description emphasizes the separability of the vectors as 



ψ

and the  basis signals 

ψ l.

 That is, the vectors themselves are something, the basis functions  are something. What
does this mean? You have the flexibility to now take the same vectors  corresponding to
signals that you design and you can change the basis to some other basis.  For example,
instead of using the same 

ψ1 (t ), ψ2 (t ) up to ψn ( t ),

you can choose some  

ψ l 'up to ψn '

which are different. Yet, you can get similar performance and all  those things, all those
benefits will prevail. In other words, the signal space description  says let us design our
vectors  separately  and  then  use  the  basis  signals  and  combine   them.

 So, you have flexibility because if during the design you need to change the basis,  still
your vector design remains the same. How? Because the vector geometry is preserved
when you go to signals, that is, overlap of 

sk ( t )and sl ( t )

is the same as 

sk
H sl.

In other words, the inner products are preserved when you look at, go from vectors  to
signals.  Therefore,  as  we just  mentioned,  different  modulation  formats  can be paired
with different basis signals depending on application which is why often you shall see
that the most common modulation formats are repeated depending on which application
you  use. For example, the same format may be very useful in wireless systems, in wired
systems,  in underwater systems, in acoustic systems because all you need to do is to
change  the   appropriate  basis  signals.

 So, you have reusable design and as we shall see, predictable noise  performance and
you can use the same design across a large number of scenarios.  The next concept that
we are dealing with is the concept of linear modulation. We will initially  look at linear
modulation  because linear  modulation is  very convenient  and easy to  understand and



design and analyze especially because when you perform signaling and you have a linear
time invariant system, your design and analysis becomes very convenient and in fact, in
many  practical  systems, this assumption actually holds true.  So, the way we will  go
about this  is that at every symbol interval, we will be considering a symbol

b [n ],

a complex signal  

b [n ]

and we will have a transmit pulse 

gTX (t ).

For a simplified analysis, we will say  the same 

gTX (t )

is  being  used  and  we  are  transmitting  at  one  symbol  per  T  seconds.

  We will assume that this 

T>1/W ,

that is you are satisfying the bandwidth criterion. So, the transmit signal is you basically
take  your 

b [n ]

and multiply them by 

gTX (t −nT )

and you get the resulting waveform. What  is the way to visualize this? Let us say that
you have this 

−2T ,−T ,0 ,T ,2T ,3T

and so on. How have you chosen T? You have chosen T  so that you satisfy the constraint
given by the modulation degrees of freedom, that is in general your

T>1/W ,

greater than or equal to greater than 1 upon w, that is you cannot signal any  faster than
W  symbols  per  second.  So,  your  T  must  be  more  than  1/W .



 In the interval  

[0 , T ],

you are sending 

b [0 ].

In the interval 

[T ,2T ],

you are sending 

b [1 ].

So, how are you  sending them? You are basically saying, let us say I choose

gTX (t )

to be a rectangular signal,  let us say from 0 to T and let us say that my 

b [0 ]=1, b [1 ]=3.

That  means  you  are  sending   1  here  from  0  to  T  and  3  from  T  to  2T.

 So, I chose a rectangular signal. I need not choose  rectangular 

gTX (t ).

I can choose 

gTX (t )

to be something else which is like, which goes even beyond  0 to T and so on, but in a
sense I have to choose 

gTX (t )

such that my bandwidth constraints  and modulation degrees of freedom constraints are
honored. In general, 

b [n ]

is complex and  said to belong to a constellation. In other words, if you take B to be a
complex constellation,  suppose if you take 



b [n ]

to be a complex number, typically we lay out 

b [n ]

on the complex plane  and mark where the real part and imaginary part are and call it a
constellation. There  are many examples of constellations that we will see subsequently.

  To have a visual picture of the, similar to what we saw in the previous step, if you use  

gTX (t )

to be a rectangular pulse and in fact precisely you are using 

gTX (t )

to be this  particular pulse 

−T /2 to T /2

and let us say that you are sending values  let us say 0, 1 and 2. What you are sending
over here, though I have not marked it, this  is 1, this is 2. So, this is essentially 1, 2, 2, 1,
1 and you have 2, 2, 2, 1, 2, 2,  1, 1, 2, 0. This is the data that you are sending. See our
discrete  data  was  1,  2,  2,   1,  1,  2,  2,  1,  1,  2,  0.

 So, if you look at this 

gTX (t ),

1 multiplies this 

gTX (t )

and is placed  over here. It is actually 

gTX (t )

shifted 5T to the left. Then 2 multiplied by 

gTX (t )

shifted  4T to the left and the next will be 2 and so on. Now, as you remember we have
been discussing  band limited and you know you need to be,  you need to honor the
constraint  that  you   have  to  be  within  the  bandwidth  minus  w  to  w  and  so  on.
Unfortunately, if you choose  



gTX (t )

to be a rectangular signal, you are definitely violating the bandwidth constraint  because 

gTX (t )

is  band  unlimited.

 So, as we have been discussing in the past, let's actually  use a band limited signal. The
band limited signal that we will use is 

sinc (t /T ).

That is we choose 

gTX (t )=sinc ( t /T ).

Let's actually not do the complete  waveform but just place a sinc instead of the rectangle
at those locations. So, if you  now just place the syncs and just in the individual pulses,
let's  see  what  is  happening.

  This amplitude is 2. So, this sinc is essentially let's say appearing first over here it's 1,
over here it is 2. The observation which you must make is that since we have chosen our
sinc carefully, the amplitude of the sinc is 1 at 5T and this sinc contributes 0 at  every
integer  multiple  of  T.  Similarly,  the  amplitude  of  this  sinc  is  2  at  -4T  and   the
contribution of this sinc at any other integer multiple of T is 0. You can similarly  see that
1, 1, 2, 2, 1, 1, 2. So, this essentially has the same form as the rectangular pulse,  but it
uses  the  sinc.

 So, as you can see it's essentially the same thing, same values  except that the waveform
is different and these waveforms are individually band limited  to be between 

−1
2T

and 
1
2T

.

So, if you  are minus 

−W to W

is basically just slightly above that you are safe. Now, but this is  not the actual waveform
because what we are essentially plotting is something like 

b [4 ] gTX (t −4T ).

We are plotting this 



b [−3 ] gTX (t+3T )

and  etcetera,  but  we   should  actually  be  plotting  the  sum  of  these.

 That is what we should be plotting. So, let  us actually plot the correct pulse which you
should get upon doing this correctly.  So, the addition of those syncs essentially gives you
this. Now, let us first check whether  we are safe. How do we check whether we are
correct? We have to check at integer multiples  of T whether the correct data is obtained.
What  is  the  value  of  this  signal  at  -5T?  It  is  1.

 What is the value at -4T? It is 2. What is the value at -3T? It  is 3. At other locations it is
slightly  different.  Unlike  in  the  rectangular  pulse  which  you   see  faintly  in  the
background, the information is actually held the same, but in the sinc  case in between the
amplitude is quite different, but at the sampling points say -3T at -2T, sorry this should be
actually  2,  sorry  it  should  be  2.

 At -2T it is 1.  At -T it is 1. At 0 it is 2 again. At T it is 2 again and so on. If you now
compare  with the previous, the amplitudes remain the same, but what you see in this
waveform that  is very striking. The first thing that you see is that you exactly hit the
correct values  at integer values of T and the second thing that you see is that in between
it moves gradually.  You don't have, let's say for example between 1 and 2 you have some
number between 1 and  2, but it is risky to take this particular value let's say, but exactly
when  you  reach   -4T  you  get  2  again.

 The waveform moves gradually. There are no abrupt jumps like  in the rectangular case.
This is a side effect of the fact that we are using a band limited  waveform and a band
limited waveform cannot contain abrupt jumps. It has to have only  gradual transitions.
So, in this manner you can actually signal using various different  pulses and this also
emphasizes the fact that 

gTX (t )

need not be limited to be between  0 and T or 

−T /2to T /2.

 It can be time unlimited at least in theory.  Of course, in practice we have to make some
compromises and we will see that eventually.  So, the summary of this discussion is that
whenever you have a combined waveform in this  fashion that satisfies the modulation
degrees of freedom by choosing a waveform that you  have that is band limited to be
within the bandwidth constraint, you will hit these values  and trying to signal any faster



will  violate  the bandwidth constraint.  That  is if  you try  to make your t smaller  and
smaller to increase the data rate, you can make it only just so  small that it doesn't exceed
minus w to w. That is a key thing that you should remember.  Therefore, often times sinc
and other  such waveforms are very good candidates  for  signaling   in  a band limited
manner and discussing the family of such band limited waveforms is something  we will
do  in  the  next  few  lectures.

  Let us now summarize what we have seen. In the context of digital modulation, you
must  remember that digital modulation essentially means that you have a discrete set of
values  that you want to communicate but like in any realistic system, you can only send
continuous   waveforms.  So,  the  mapping  between  these  discrete  set  of  values  to
waveforms is called digital  modulation and thus the task of modulation is you have some
set  of  symbols.  For  each   symbol  what  waveform do  you  send?  That  is  essentially
modulation.  There are more complicated  versions where you can take collections  of
symbols to represent waveforms and so on but  at a very simple level, taking the symbols,
converting them to waveforms is modulation.   So, one task for us is  to establish the
correspondence  between  symbols  and  waveforms.

 So, the mapping  between symbols and waveforms is one thing. Another thing that we
have seen is that when  we have waveforms, these waveforms can be many in number but
expressing them in  the  form of  suitable  basis  signals  is  something that  makes  your
design and analysis much simpler  and reusable across multiple scenarios.  Going ahead,
what we will see is to see the most common digital modulation approaches  that is what
kind of digital modulation you have. For example, we can change the amplitude,  we can
change the frequency, we can change a combination, we can change the phase and  we
can look at  all  those kinds  of  modulation  techniques  and study their  advantages  and
disadvantages and we will be looking at what are the practical baseband and passband
waveforms  for digital  modulation.  That is at a very abstract level, there are symbols
which  become   waveforms.

 How do these waveforms look and do these waveforms implicitly have the characteristic
of the symbol? By looking at the waveform, can you tell what symbol it was and so on?
These are some questions that we will answer in subsequent lectures.  Thank you.


