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  Welcome to this lecture on Digital Communication Using GNU Radio.  My name is
Kumar  Appiah.   In  this  lecture,  we will  be  going  through a  quick  recap  of  random
variables and random  processes.  While you may be familiar with this material from the
prerequisites, we will still do a  quick run through so that you have a recap and we will
also  go  through  the  material  with   an  eye  on  the  applications  specific  to  digital
communication.  Random variables and random processes.  As you may recall, a random
variable  is  a  mapping  from  the  probability  space  to  real   or  complex  numbers.

  To be more specific, if you remember, a probability space consists of elementary events
and mapping  these  events  or  subsets  of  these  events  into  real  numbers  or  complex
numbers is what yields  random variables.  A common example will be the role of a die.
If you roll a die, you end up getting a number which is 1, 2, 3 or some number up to 6.
This is an example of a discrete random variable and assuming that you have a fair die,
all   the  numbers  are  equally  likely.

  An example of a continuous random variable is the standard Gaussian.  In the case of a
Gaussian,  you  know that  the  probability  distribution  function  has  a  bell   shape  and
generating a random number from the standard Gaussian essentially yields a  realization
of a random variable that has a probability distribution function corresponding  to the
Gaussian.   Implicitly,  there  are  concepts  such  as  probability  mass  function  and
probability  density  function.   Probability  mass  function  of  course  is  for  discrete  and
probability density function  is for continuous random variables.  Cumulative distribution
functions  and  so  on,  these  are  all  characteristics  that  define   the  random  variable.

  In other words, the probability mass function or probability density function and other
such functions essentially determine the statistics of the random variable, what values  it
can take, with what probability and so on.  Even though the random variable is essentially
random, this gives you a hint of statistics  as to what values are likely, unlikely and so on.
An extension of these random variables to the case where you have a collection of these
that can be indexed with a variable  such as time is essentially  a random process.  A



simple example would be to roll a die multiple times, we can say let us say once per
second  and then tabulate those values and this becomes a nice discrete time random
process.  Therefore, a collection of random variables that are indexed by time in case
time is measured  using a continuous approach 

t∈ℝ,

but if you want to measure it in a discrete  approach then you can choose

n

as  an  integer.

  Both of these are random processes of course, the former one is a continuous time
random  process while the latter one is a discrete time random process.  Since random
processes deal with collections of random variables, we need ways to understand  the
relationship across two random variables that are part of the random process.  As we just
discussed, random processes can either be continuous time that is 

X ( t )

or  discrete time that is 

X [n ].

To  keep  consistent  with  the  common  literature  whenever  we  have  continuous  time
processes  we will be using the parenthesis notation and generally the variable will be 

t

while  whenever we have discrete time processes we will use the square bracket notation
and stick  to 

n

as  our  time  index.   Now just  like  random variables  whenever  we deal  with  random
processes  we  need  some  tools   or  ways  to  analyze  these.

  So, we need to know the statistics such as mean, variance or the relationship between
successive  random  variables  that  are  part  of  the  random  process  so  that  we  can
understand  what this random process is and how we can design around it.  For example,
if you are talking about something like a noise random variable we need to know  how
much noise there is so that we will be able to signal in a way so as to peak that  noise.
Therefore, in practice the statistics of the process needs to be known or you must be able
to  measure  it.   The  ability  to  measure  the  statistics  of  the  random  process  is  very



important for practical  systems for example if you are making a call on your phone your
phone has to learn the  environment and learn the statistics of the environment so that you
can conduct a successfully  conduct a phone call.  Some examples of random processes
are your data streams themselves because let us say  that you are dealing with a voice
communication  system.

  The system does not know in advance the words that you are going to speak.  Therefore,
all  these  systems  model  the  input  that  is  actually  to  be  communicated  as  a  random
process.  Noise as we just discussed is a random process.  You may recall from your
circuits experiments if you connect just a noise source or a source  which has no voltage
to the oscilloscope and then view it in the millivolt or microvolt  range you will start
seeing some oscillations that are unpredictable.  This is called thermal noise or circuit
noise and while it is unpredictable thankfully its  amplitude is generally limited or low
which  is  why  we  are  able  to  communicate  despite   the  presence  of  this  noise.

  Yet the statistics of this noise is extremely important for us as the designers of digital
communication  systems.   Finally,  channel  measurements  are  also  random processes.
Practically speaking let us say that you are conducting a call on your phone.  If you walk
the environment around you changes the strength of the signal from the base station  to
your phone changes and therefore the impulse response of the system that connects the
base  station to your phone essentially changes and the characteristics of this particular
channel or the parameters are also examples of random processes.  Therefore, practically
speaking  random  processes  occur  extremely  frequently  in  digital  communication
systems.

  When dealing with random processes like I just mentioned it is essential to know the
statistics  and it  is  also  essential  to  know that  the statistics  do not  change with  time.
Continuing  with  the  same  example  of  your  phone,  your  phone  can  learn  some
characteristics  of the random processes it is dealing with such as your voice, such as the
environment  around it, such as the noise.  But if these parameters themselves undergo
radical  changes  within  short  durations  of   time,  then  you  cannot  successfully
communicate  because  by  the  time  you  have  essentially  designed   the  waveform  to
communicate  your  voice  to  the  base  station,  if  the  parameters  of  the   system  have
changed then your signal will not be able to reach the base station.  Therefore, we must
operate in a regime where some statistics of these random processes  remain constant
with  time.   This  practical  aspect  translates  mathematically  to  the  case of  wide sense
stationarity.

  That is if your random process is said to be wide sense stationary, the second order
statistics, of course first order statistics implicitly and second order statistics do  not vary
with time.  First order statistics are generally, is generally mean.  Second order statistics



are  like  variance  and correlations.   The  reason why  they  are  called  second order  is
because it involves multiplication of a  signal by a signal.  So it is like square of signal.

  If the second order statistics do not vary with time, then you can design your system  to
account for this and successfully communicate despite all the obstacles that it faces in
the  form of  unknown realizations  of  random processes.   Let  us  take  a  very  simple
example of a random process that takes plus or minus one, it is  a discrete time random
process that takes the values plus or minus one with equal probabilities  and for every
instant of time it takes the value plus one or minus one and these are  independent across
time.  That is 

X [0 ]=±1

with probability half each, 

X [1 ]=±1

with  probability half each independent of what 

X [0 ]

was and similarly 

X [2 ]

and so on.  It is very easy for you to check that for the above process the mean is zero.  In
other words 

E [X [n ] ]=0

independent  of  n.

  That is its first order statistics do not vary with time.  But more importantly if we define
the autocorrelation function as 

,

it is very easy to show that this does not depend on n.  It depends only on k.  Why is this?
It is very easy.  If you look at

E [X [n ] X [n−k ] ],

let us choose 

k=1.



  You have 

E [X [n ] X [n−1 ]].

As we just discussed 

X [n ]and X [n−1 ]

are independent.  Therefore, you can separate these and you get

E [X [n ] ]E [X [n−1 ] ]=0

and does not depend on n.  Similarly, if you choose 

k=2 ,3 ,−1 ,−2

and so on, you  will still get 

E [X [n ] X [n−k ] ]=0

and the only exception is if  you take 

E [X [n ] X [n−k ] ]

for the case where 

k=0.

In this case, you are essentially finding the 

E [ ( X [n ])
2 ]

which is the second  order statistic and since mean is zero, this will also be the variance.

  So this is going to be 

1 (1/2 )+ (−1 ) (1 /2 )=1

and this  is still  not dependent on n.  Therefore,  this  process is wide sense stationary
because its second order statistics do not  vary with time.  There is a stronger condition
called strict sense stationarity.  In the case of strict sense stationarity, the distribution or
rather the joint distribution  of the variables in the random process themselves depend
only on k, the lag and not n, but that  is a stronger condition which we do not need for our
design processes in this particular  application.  Nevertheless, it is a useful characteristic
and strict sense stationarity implies wide  sense stationarity, but the converse is not true.



  Finally, as we emphasize, wide sense stationary processes are very convenient for our
design  because once you have an idea of the mean, the variance and the correlations that
a process  exhibits, you can then tune your design in order to handle these and yet be
successful   in  communicating  your  signal.   As  we  discussed  previously,  the  auto
correlation function for a wide sense stationary process  can be defined in this manner.
For a random process 

s ( t ),

the auto correlation function 

In this particular case, it depends only on 

τ

and not 

t ,

that is the 

t

dependence is  not there and this 

τ

is called the lag.  The reason it is called lag is because this corresponds to the difference
between  the   current  time  instant  and  the  next  time  instant  across  which  you  are
performing  the  correlation.

  In other words, 

s (0 )

and 

s (3 )

have the same auto correlation or same correlation  as 

s (1 )

and 



s (4 )

and 

s (10 )

and 

s (13 )

because all of them have the same gap of  3 or lag of 3 or -3 depending on the definition.
For a discrete time random process similarly 

x [n ],

the definition can be written as 

E [ x [n ] x∗ [n−k ] ].

In  this  case  again,  there  is  no n  dependence,   the  dependence  is  only  on  the  lag  k.
Therefore, 

x [0 ]and x [10 ]

are correlated in the same way  as 

x [1 ]and x [11 ], and x [2 ]and x [12 ]

because they have a gap of 10 samples each.  Intuitively the auto correlation function
specifies the temporal correlation of the  random process, that is you get an idea of how
much correlation there is between the  realization of the random variable, the current time
instant  with  some  other  time  instant   let  us  say  at  some  number  of  seconds  apart.

  Let us look at a practical example. If we take 

where 

z [n ]

is an iid random variable independent  of 

x [n ].

In fact, we can also say it is Gaussian with mean 0 and variance 1. Then, we can write  



R x [k ]=α|k|.

This  is  something  which  you   can  refer  to  some  text  books  and  find  out.

 This is called an AR(1)  random process. The reason is because the random process
depends on itself, that is  

x [n ]

depends only on 

x [n−1 ]

and it depends on only one past time instant. So, if you  have dependence on 

and x [n−2 ]

you will call it an AR(2) process and so  on. Let us assume that 

α∈ [0,1 ].

Then, the auto  correlation function is 

α|k|

will  look  like  this.

 Let us say I draw it  continuously it will look like this. That is it will have some amount
of decay as you  keep going further and further. Of course, if you substitute k equal to 0
you will get  1. Therefore, the variance of the process 

x [n ]

is going to be 1. In fact, for this particular  model it is going to be Gaussian as well.

 However, unlike 

z [n ]

which is an iid Gaussian  

x [n ]

is going to be correlated and the correlation is 

α|k|



is going to be reasonably  higher for smaller values. As you can see 

x [n ]=α x [n−1 ]

which means 

x [n ]

is  going to be correlated with 

x [n−1 ]

to the tune of 

α .

Similarly,

x [n ]

is going  to be correlated with 

x [n−2 ]

to the tune of 

α 2

and so on. But as 

α∈ [0,1 ]

as k becomes larger let us say 10, 12, 13 the correlation goes  to a very small value. In
fact, the higher the value of alpha the more 

x [n ]and x [n−1 ]

are  correlated.

 But if you choose 

α

to be a number much closer to 0 like 0.01  then 

x [n ]



is  also  close  to  an  iid  process.  It  is  not  specifically  an  iid  process  because   of  the
correlation. In the limit where 

α=0

then 

x [n ]=z [n ]

it will be an  iid process. Therefore, 

R x [k ]

gives you an idea of the correlation properties of 

x [n ].

 In a similar manner we can define cross correlation. I am implementing the correlation
implicitly defining what a jointly white sense stationary process is. Jointly white  sense
stationary processes or pairs of processes are those where the joint second order statistics
do not vary with time. In other words, if you define 

E [ s1 ( t ) s2
∗ (t − τ ) ]

this should depend only on

τ

and  not  on  t  then  you  can  call  such   pairs  of  random processes  jointly  wide  sense
stationary. In the case of discrete processes  as well if their joint statistics depends only
on  the  lag  then  they  are  said  to  be  jointly   white  sense  stationary.

 This  tracks  the  temporal  correlation  across  a  pair  of  random processes.   Here  this
becomes significant because if you have joint statistics across let us say  your data and
the  channel  that  are  both  random  processes  then  it  is  very  easy  to  design  your
communication to handle that. If however there are some properties that get affected and
your channel statistics vary differently from the actual data and they are not jointly white
sense  stationary  the  design  process  becomes  more  complex.  We  will  restrict  our
consideration   to  the  scenarios  where  the  processes  are  indeed  jointly  white  sense
stationary.  The  next  thing   we  must  be  aware  of  is  power  spectral  density.

 So,  how  can  we  have  a  Fourier  transform  for   random  processes?  If  you  have  a
realization of a random process and take its Fourier transform  that does not make much
sense directly because a realization has a Fourier transform a different  realization may



have a different Fourier transform and this analysis may not make much sense  especially
because it is a random process. A better approach would be for us to have  a notion of
second order statistics or expectations of power over frequency content. So, how does
this translate? The power spectral density can be considered like the energy within the
random process at a particular frequency. In other words if we assume that the random
process is constituted by addition of several sinusoids the power spectral density gives
you the statistics of how much power a particular frequency contributes to the random
process.  In other words you can consider it to be the amount of power that a particular
frequency  contributes if you assume that the frequency is part of the random process.

 A more direct  definition is that the power spectral density is the Fourier transform of the
auto correlation  function. We will give a quick justification of why that is the case.  So
as I try to give you an intuition if you say 

S ( f )

is  the power spectral  density  of   a  random process  in  this  case we are  looking at  a
continuous time random process you can  get it by taking the auto correlation of sorry the
Fourier transform of the auto correlation  of a random process. An intuition of how to
interpret this is this take a very narrow  window of delta f of course we will take it at both
sides because the auto correlation  will always have a symmetric power spectral density.
There is a spectral content in a small frequency range if you now measure the power or
let  us say the exact contribution of this particular frequency range by placing a filter a
narrow  filter which is centered around this frequency and has a narrow band that power
essentially   corresponds  to  the  power  of  that  frequency  in  your  random  process.

  How does this translate to as the Fourier transform of the auto correlation function?  If
in the auto correlation function you have a repeated pattern of statistics where a particular
random variable is correlated highly with something else at another gap and something
else at the similar gap and so on. This repeated correlation statistics essentially means
that  you can detect a particular sinusoid at that frequency that is present in the random
process   with  a  reasonably  high  power.  The  exact  proof  of  the  fact  that  the  auto
correlation functions  Fourier transform is the power spectral density is out of the scope
of this but you can easily  find it in the references.  The final thing which we will deal
with is  Ergodicity.  Ergodicity  essentially  implies  that time averages are the same as
ensemble  averages.

 These are practically very useful  for probabilistic systems. Let us take an example of
two scenarios. In scenario one  if we toss a coin and then we are just going to output a
string of zeros if we get heads  and a string of ones if we get tails and let us define this to
be  our  random  process.  In   this  particular  case  you  are  only  going  to  have  two



realizations. The first realization  is where the random process essentially looks like 0 0 0
0  0  0  and  so  on.

 The alternate  realization is where it just looks like 1 1 1 1 1 1 and so on. Let us suppose
that you  wanted to find whether the coin is fair or not. If I give you this realization of 0 0
0 and so on and average it you will end up getting 0 and you will say that the coin is
heads all the time. Similarly for the other case you will end up saying that the coin  is tail
all the time. So in this particular example the random process defined in this  way will not
be ergodic because if I take the average of the realizations that does  not correspond to
the  true  average  even  if  the  coin  were  a  fair  coin.

 But if you now  toss the coin multiple times and each time you toss you get a head you
write 0 you get  a tail you write 1 you get a head you write 0 you get another head you
write  0  you get   a  tail  you write  1  and so  on.  In  this  particular  scenario  you have
reasonably fair realizations  and if you take an average over a large enough realization
string you will end up getting  close to half that reflects the true fairness of the coin in
that the coin gives you a head  or tail with equal probability. In practical situations in
digital communication we need  ergodicity because only then can we measure a particular
statistic  in time and then take  its  average and conclude that that average is also the
ensemble average. If you do not  have ergodicity practical design becomes complicated.
So how do we use these in digital communication systems? So the bits or symbols that
you  communicate   are  essentially  discrete  time  random  processes.

 Then  as  we  discussed  uncertainty  in  the  environment   or  continuous  time  random
processes because as you move the environment changes impulse  response can change
and this is also modeled as a random process. There is of course noise  and other forms of
degradation that is also not known a priori and that also changes in  unexpected ways and
several other scenarios that can occur in your design which are all  treated as random
processes. For the purposes of our discussion we will be handling many  of these and
how to  overcome  them using  our  practical  design.   To  summarize  joint  wide  sense
stationary processes are those where the second order statistics  remain constant that is
auto and cross correlations depend only on lag. The power spectral density  is the Fourier
transform  of  the  auto  correlation  function.

 It is a measure of the power per  frequency of a random process and this also gives you
an idea of what frequency content  is present significantly in a random process. Finally
ergodicity is where time average of  a random process statistics correspond to ensemble
averages and this is extremely useful  in several practical scenarios where you can use
samples of a random process in order  to estimate statistics by taking time averages. In
future lectures we will be using these  tools to aid our design and analysis. Thank you.


