
Digital Communication using GNU Radio

Prof. Kumar Appaiah

Department of Electrical Engineering

Indian Institute of Technology Bombay

Week-12

Lecture-61

Visualising Quantisation in GNU Radio

Welcome to this lecture on Digital Communication Using GNU Radio. I’m Kumar Appiah

from the Department of Electrical Engineering at IIT Bombay. In our previous lecture, we

explored scalar quantization in detail. Specifically, we examined how to quantize a uniform

random variable and a Gaussian random variable, analyzing the impact on mean squared

error and how this relates to the choice of boundaries and quantization levels.

(Refer Slide Time: 03:38)

In this lecture, we will implement these concepts in GNU Radio through simulation. We

will write a small Python block that not only calculates the quantized values but also

computes the mean squared error based on the specified quantization levels.

Let's begin by implementing a simple quantization process in Python, which we can later

embed into our GNU Radio block. First, we need to import the necessary library:

import numpy as np

We will perform quantization using Python’s and NumPy’s built-in array features. To start,

let's define our quantization levels. For example:

q_levels = np.array([-0.75, -0.25, 0.25, 0.75])

These levels are optimal for quantizing a uniform random variable ranging between -1 and

1. Next, let’s generate 10 random values uniformly distributed between -1 and 1:

x = np.random.rand(10) * 2 - 1

(Refer Slide Time: 04:27)

The array `x` will contain 10 random values between -1 and 1. Our goal is to quantize each

value to the nearest quantization level from `q_levels`.

For instance, consider the value 0.35. It is closest to 0.25, while –0.98 is obviously closest

to –0.75. One straightforward approach would be to loop through each value and compare

it to each quantization level, selecting the minimum. However, a more efficient method

utilizes NumPy’s array features to accomplish this in one step.

Here’s how we can do it: First, we will repeat the array ̀ x` four times, matching the number

of quantization levels. Simultaneously, we will repeat the quantization levels array ten

times to align with each value in `x`. By performing a subtraction operation and then

finding the minimum value in each row, we can achieve our goal.

(Refer Slide Time: 05:05)

Let’s break this down step-by-step. Suppose `x` is an array with shape (10,). To repeat this

array across four columns, we could use `x.repeat(4)`, but this method repeats the array

linearly, which is not what we want. Instead, we’ll use `np.repeat` with the `axis`

parameter set to 0.

Here’s how:

import numpy as np

x = np.random.rand(10) * 2 - 1 # Example array of random values between -1 and 1

q_levels = np.array([-0.75, -0.25, 0.25, 0.75]) # Quantization levels

x_reps = np.repeat(x[:, np.newaxis], 4, axis=1) # Repeat x across columns

ql_reps = np.repeat(q_levels[np.newaxis, :], 10, axis=0) # Repeat q_levels across rows

(Refer Slide Time: 07:23)

In this code, `x_reps` will have a shape of (10, 4), with each row containing the values of

`x` repeated four times. The `ql_reps` will have a shape of (10, 4), with each column

containing the quantization levels.

Next, subtract each quantization level from the corresponding value in `x_reps`, take the

absolute value, and then find the minimum value across all columns to determine the

closest quantization point:

diff = np.abs(ql_reps - x_reps) # Compute the absolute difference

min_indices = np.argmin(diff, axis=1) # Find the indices of the minimum values

quantized_values = q_levels[min_indices] # Map indices to quantization levels

(Refer Slide Time: 08:22)

The result, `quantized_values`, contains the quantized version of each value in `x`. This

approach efficiently quantizes each value to its nearest quantization level in one go.

To find the index of the minimum value in each row, you can use the ̀ np.argmin` function.

By specifying the axis parameter, you can determine whether you want to find the

minimum across rows or columns. For example, setting the axis to 1 returns the indices of

the minimum elements for each row. Using these indices with your quantization levels

array will yield the corresponding quantized values.

To verify the correctness of this approach, compare the quantized results with the original

values. For instance, you should see that 0.35 is indeed closest to 0.25, –0.98 is closest to

–0.75, and so on. This demonstrates that with just a single line of code, you can effectively

perform quantization. We will apply this method when implementing the quantization

block in GNU Radio.

(Refer Slide Time: 08:48)

Now, let's move on to GNU Radio to put this into practice. To start, we'll review our setup:

• Random variables

• Quantization levels

• `x_reps` and `ql_reps`

• Quantization process

In GNU Radio, we'll first add a noise source. Use Ctrl + F to find it, and label it "uniform."

Set the amplitude to 1 and choose "float" as the data type. To observe the values generated,

add a histogram by searching for it with Ctrl + F.

Next, insert a throttle block (Ctrl + F) to control the data flow, and connect it to the

histogram. Running this flow graph will produce values uniformly distributed between –1

and 1. To confirm the uniform distribution, use a larger number of points and verify that

the histogram remains relatively flat, indicating that values are evenly spread across bins.

To proceed with quantization, add a time sync block (Ctrl + F) and set it to "float" to view

the uniformly distributed values.

(Refer Slide Time: 10:53)

Now, let's implement the quantizer. Add a Python block (Ctrl + F) and configure it to accept

quantization values as an argument. Modify the block's parameters to use a list of

quantization levels, and connect it to the rest of your flow graph. This setup will allow you

to perform quantization on your data within GNU Radio, applying the principles discussed

earlier.

We'll start by opening the editor for modifications. The next step involves removing

comments from the existing code and setting up our quantizer block. This block will accept

a float input and produce two float outputs: one for the quantized value and the other for

the quantization error. Including the error output allows us to histogram it and analyze its

distribution.

Instead of using the placeholder "example_param," we will rename it to "Q_levels" for

clarity. Now, let's proceed to implement the quantizer. To mirror the approach used in the

code, we'll first define `Q_levels` as `self.QLevels`. This alias simplifies our code by

preventing the need to repeatedly type `self.QLevels`.

(Refer Slide Time: 15:21)

Next, we will create `QLReps` by repeating `Q_levels` as many times as there are input

values. This is done using `np.repeat(Q_levels, len(inputs.items[0]), axis=1)`. Similarly,

`xReps` will be created by repeating the input values based on the number of quantization

levels, using `np.repeat(input.items[0], len(Q_levels), axis=0)`.

To ensure that `Q_levels` is properly formatted, we will convert it to a NumPy array. This

avoids potential indexing issues that can arise with standard Python lists. We'll calculate

the quantized values by finding the index of the minimum absolute difference between

`QLReps` and `xReps` using `np.argmin(np.abs(QLReps - xReps), axis=1)`.

The error output will be the difference between the input values and the quantized values.

Thus, `output.items[1]` will be computed as `input.items[0] - output.items[0]`, which

represents `x - x_hat`.

A few final adjustments are necessary: rename `self.qLevels` to `self.QLevels` to match

the code, remove the redundant `self.qLevels_param` comment, and ensure that

`input.items` is within square brackets to correctly replicate the array. With these changes,

the code should be ready. Assuming we set the quantization levels to -0.5 and 0.5,

executing the flow graph will demonstrate the quantization performance.

(Refer Slide Time: 16:36)

To verify the accuracy of our quantization, let's examine the stem plot and temporarily halt

the execution. Zooming in, you will observe that when the blue values are negative (i.e.,

between 0 and -1), the quantized value correctly maps to -0.5. Conversely, when the blue

values are positive (i.e., between 0 and 1), the quantized value appropriately maps to +0.5.

This behavior is consistent with our expectations.

The quantization error ranges between -0.5 and +0.5. For example, if a random value

between 0 and 1 is quantized to +0.5, the maximum possible error is ±0.5. If a value close

to 0 is quantized to +0.5, the resulting error is -0.5. Conversely, if a value near 1 is

quantized to +0.5, the error is +0.5. The error will always be within this range.

Now, let’s observe how performance improves with more quantization levels. We can

duplicate this quantizer by copying and pasting it, connecting the same input to this new

quantizer. We'll add another time sink and histogram to analyze the output. In this setup,

we'll configure the quantizer with levels of -0.75, -0.25, +0.25, and +0.75. These levels are

optimal for a 2-bit quantizer applied to a uniform random variable ranging from -1 to 1.

By connecting the original output to the time sink and examining the error, you'll notice

that the quantization error narrows significantly, now ranging between -0.25 and +0.25.

Zooming in on the waveforms, if you hide the red trace, you'll see that the green trace offers

a more accurate representation of the original waveform, with noticeably reduced error.

Next, let’s add one more bit to further refine the quantization. The new levels will be -

0.875, -0.625, -0.375, -0.125, +0.125, +0.375, +0.625, and +0.875. This additional bit

narrows the error range further to between -0.125 and +0.125. As you verify this, you’ll

see that the green trace is even closer to the blue trace, and the error is minimized. You can

plot this error by subtracting and visualizing it as an exercise.

(Refer Slide Time: 17:32)

Lastly, let’s investigate how the quantization performs with Gaussian noise. To do this,

add a parallel noise source and replicate the previous setup. Change the noise source to

Gaussian and update the quantizer levels to the optimal values for Gaussian noise, which

are approximately ±0.798. This value is close to �2/π, as discussed in the lecture. Set the

quantizer levels accordingly and observe how the performance and error compare.

Now, let's connect the time sink to the original source and execute the flow graph. To make

things clearer, let's add some labels. We’ll label one part as "Uniform" and the other as

"Gaussian" for easy identification.

(Refer Slide Time: 19:03)

Upon running the flow graph for the Gaussian case, you will notice that the performance

is as shown, and the histogram for the Gaussian source will look like this. Interestingly, the

error distribution starts to resemble a uniform distribution, and the original error profile

also begins to flatten out.

Let's experiment by setting the quantization levels to 0.1 just for demonstration. Although

this is not an optimal quantizer, it’s useful to observe its impact. You’ll see that the

quantization error is quite substantial, with the quantized values being significantly

different from the actual values. This results in a much wider blue curve, indicating a high

error range. The amplitude of the error is notably larger, making the quantizer less effective

compared to the uniform quantizer, which still performs better.

If we adjust the quantization range to -1 and 1 and use an optimal 1-bit quantizer with

levels of -0.79, the performance improves significantly. The second quantizer shows a

much lower error footprint, effectively reducing the quantization error compared to the first

one. Although the green and red curves appear close, the green curve better tracks the blue

curve, indicating a more precise quantization with lower amplitude errors.

For an even clearer comparison, set the range to -2 and 2. This results in a very poor

quantizer, with the blue histogram showing a wide error range and noticeable overshoot in

the red curve. Conversely, the green and blue curves perform much better in comparison.

(Refer Slide Time: 21:12)

By using this approach, you can evaluate the performance of different quantizers. As you

increase the number of bits, the performance improves, providing a more accurate

representation of the signal. Even with Gaussian noise, adding more bits will enhance the

performance of the quantizer. A uniform quantizer, despite its simplicity, still performs

reasonably well for Gaussian distributions, although it might not be the most efficient as it

does not account for the distribution's characteristics.

(Refer Slide Time: 24:00)

In this manner, you can effectively assess the performance of various quantization

algorithms. In this lecture, we demonstrated how GNU Radio can be used to perform

quantization efficiently. We created a straightforward quantization block where you

specify the quantization levels. This block in GNU Radio performs mapping to these levels

using minimum distance mapping and allows you to observe the associated error.

We examined the performance for both uniform and Gaussian sources. It became evident

that deviating from the optimal quantization points significantly worsens the error

performance. Therefore, selecting the correct quantization levels is crucial for improving

quantization performance by minimizing the quantization error. Thank you.

