
Digital Communication using GNU Radio 

Prof. Kumar Appaiah 

Department of Electrical Engineering 

Indian Institute of Technology Bombay 

Week-12 

Lecture-60 

Quantisation 

Hello, and welcome to this lecture on Digital Communication using GNU Radio. I’m 

Kumar Apaya from the Department of Electrical Engineering at IIT Bombay. Today, we 

will delve into the concept of quantization. Specifically, we will explore how real-world 

signals, which can take on an infinite number of values, are converted into a finite set of 

values that can be efficiently represented in bits. This conversion is crucial for enabling the 

digital communication techniques you have been learning about. 
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As we've discussed previously, real-life signals are indeed real-valued. For instance, when 



you speak and measure the volume of your voice, it can be represented as a range of real 

numbers. Even if we confine this range to between -1 and 1, there are still infinitely many 

values within this range that your voice can assume. 

However, perfect accuracy in representation is not always necessary. It’s often sufficient 

to create a simpler representation that retains most of the essential information. For 

example, a modern mobile phone converts your voice into a more manageable set of values. 

Similarly, the lecture you are receiving, including both the video and my voice, is 

represented with a limited set of values. Despite this simplification, you can still understand 

the content being conveyed. 
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The practicality of this process arises from the need to transmit data over channels with 

finite bit rates. Channels, in reality, have limited capacities; even with allowances for 

errors, the amount of data that can be transmitted per second is finite. Thus, the challenge 

is to convert real-valued data into a finite number of bits while minimizing the error. 

Minimizing error can take on various forms depending on the context. For instance, in the 



context of speech, the goal might be to reduce errors to the point where the speech remains 

intelligible. In the case of images, the objective could be to capture only the most critical 

colors or details so that when the image is reproduced, it closely resembles the original, 

despite some information loss. 

In the context of this lecture, our primary focus is on how to convert real-valued data into 

finite bits. This is the essence of quantization. Simply put, quantization involves restricting 

the set of values that a particular variable can assume. We will also explore optimal 

quantizers, which are designed to achieve the best possible performance given certain 

constraints. 
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Let's consider a straightforward example. Imagine you have a continuous waveform, a 

smooth, undulating signal. If I ask you to quantize this waveform, it means you need to 

limit the number of possible values it can take. For instance, let’s assume you have only 

one bit available to represent the signal at any given moment. In this case, you might choose 

to represent the values as either -0.5 or +0.5. 



To illustrate, when the waveform's value is close to zero, you would represent it as zero 

because it is nearest to this value. In this example, we're not only using one bit but also 

incorporating zero as a level, so technically, it’s one bit plus zero. As the waveform value 

approaches +0.5, you would set it to +0.5. When the value crosses this limit and moves 

closer to zero, you revert to zero, and so on. 

This process represents the waveform with just three levels of quantization. As you can 

see, this approach provides a relatively poor representation of the original waveform.  

Now, let’s consider increasing the number of quantization levels. For instance, if you use 

two bits, you can represent five levels: 0, 1/4, 1/2, 3/4, and 1. This improved quantization 

provides a better approximation of the waveform. You can more accurately capture the 

sections where the signal rises and falls, although some distortion still occurs at the peaks. 

By further increasing the number of bits, say, to three, four, or five bits, the accuracy of the 

representation improves significantly. With more bits, you get more levels and a more 

precise approximation of the waveform. For example, at eight bits, you have 256 levels, 

and at ten bits, you have 1024 levels. As the number of levels increases, the waveform 

representation becomes much more accurate. If you closely inspect an eight-bit 

quantization, you will see that the waveform is represented with considerable fidelity, 

capturing its features with minimal jaggedness. 

In this context, the more data you are willing to allocate, the better your representation will 

be. While there are various techniques to scale the data to fit this representation more 

effectively, a general principle is that higher bit depths lead to better quality. For instance, 

CD-quality audio, as defined by industry standards, typically uses 16-bit quantization. In 

contrast, less ambitious quantization, such as that used in some mobile phones, might use 

8-bit or 12-bit quantization. Generally, for audio quantization, 8 bits or 12 bits might be 

sufficient for speech, while music often requires 16 bits, and in stereo, this translates to 16 

bits per channel. 

These standards provide a rough guide to understanding quantization decisions. When you 

inspect the specifications for these audio formats, you can better grasp the rationale behind 



the chosen bit depths. 
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Now, let’s discuss how a quantizer is conceptualized. We aim to represent a scalar source, 

often modeled as a random variable, essentially, my speech is considered a random 

variable. While modeling speech as a random variable might seem complex, it’s based on 

the idea that what I will say is not predetermined. Thus, it's modeled as a random variable. 

A more contentious assumption is that these random variables are independent and 

identically distributed (IID).  

In reality, this assumption can be problematic. For instance, the sounds I produce from one 

millisecond to the next are highly correlated. The speech signal exhibits significant 

similarity over short intervals. However, to address this, techniques are used to remove the 

correlation. Essentially, you model the correlations, subtract them, and then reintroduce 

them at the receiver or reconstruction stage. This approach helps in approximating the IID 

assumption. 

In practice, speech quantization and compression, as well as image quantization, frequently 



utilize these techniques. The idea is to process the source signal by first removing 

correlations, sampling the data, and then reintroducing correlations during reconstruction. 

The rate at which you sample depends on the type of signal being sampled. For instance, 

if you're sampling a signal with a frequency in the tens of hertz, such as machine vibrations, 

you can sample at hundreds of hertz. 
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If you are sampling a signal like speech, the sampling rate depends on the quality you 

desire. For standard quality, you might sample at around 8,000 samples per second (8 kHz), 

whereas for CD-quality audio, you need to sample at 40,000 or 44,000 samples per second 

(40 kHz or 44 kHz). This higher sampling rate ensures that you get a sufficiently accurate 

representation of the signal over time. Remember, quantization needs to address both time 

and amplitude. The sampling rate handles the time aspect, which is a key component of 

digital signal processing. 

Now, let's discuss amplitude quantization. Here, we restrict the set of values that the 

vertical axis can take to a finite set of values, similar to what you saw in the previous 



waveform example. If the signal's amplitude falls between these predefined values, it is 

mapped to the nearest available value. For instance, with an 8-bit quantizer, you have 256 

possible amplitude values. The encoder then converts these values into a binary format, 

zeros and ones. 

Although we’re not covering modulation and other aspects in detail here, it’s important to 

note that the quantized data is transmitted over a channel. After transmission, the data 

undergoes equalization and error correction processes, which are handled by the decoder. 

The decoder receives the binary data (e.g., 0, 1, 0, 0, 1) and performs a table lookup to map 

these binary sequences back to their corresponding amplitude values. 

Finally, an analog filter is used to convert these sampled, quantized values back into a 

continuous waveform. For instance, if you have samples like 0, 1, 2, etc., the filter smooths 

out these quantized values and reconstructs a continuous time waveform, such as the 

original speech. 

In practice, when I speak, my voice is captured by a microphone, sampled, and then 

quantized by the system. The quantized data is transmitted, for example, over the internet 

or stored on a disk. Upon reception, this quantized data is converted back to its amplitude 

values using the reverse process, and the analog filter reconstructs the continuous 

waveform from these discrete samples. 

These quantized values are then converted into a waveform. In digital signal processing 

(DSP), this involves interpolating these values using an analog filter, which results in the 

speech you hear. While it is guaranteed that the speech you are listening to is not identical 

to the speech I am currently speaking, it is extremely close, so close that you can understand 

what I’m saying without missing nearly any words. The quantization is sufficiently 

accurate to ensure that every word I speak is comprehensible. 

Now, let’s delve into the specifics of scale and quantization. Suppose we want to quantize 

a random variable X with a probability density function (PDF) fX(x). Typically, the process 

involves determining quantization levels and corresponding quantized values.  

Quantization values are denoted as A1, A2, …, Am+1, where these are the discrete values to 



which the continuous signal will be mapped. Quantization levels are represented by 

decision regions B1, B2, B3, …, Bm.  

For example, if your signal falls to the left of B1 (say, B1 = 0.5), and the value you obtain 

is 0.4, which is less than 0.5, you would quantize this value to A1. Conversely, if the value 

is 0.6, which is greater than 0.5, you would quantize it to A2.  
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In this setup, B1, B2, B3 are decision boundaries, and A1, A2, A3, A4 are the quantized levels. 

Note that the quantized levels do not have to be uniform, and the decision boundaries B1, 

B2, …, Bm need not be equally spaced. For instance, in voice quantization, certain values 

are more probable than others, so voice quantizers often have non-uniform gaps between 

quantization levels. 

To minimize the quantization error, which is typically measured as the squared error, you 

need to carefully select both the quantization levels Ai and the boundaries Bj. 

Minimizing squared error is a sensible approach because it relates to minimizing the power 



or energy difference between the original signal and the quantized signal. Essentially, you 

aim to minimize the mean squared error between these two signals. Conventionally, the 

quantization boundaries are set at B0 and Bm+1 as -∞ and +∞ respectively. This ensures that 

the quantization boundaries B1 through Bm are finite and properly enclose all possible 

values. 

The objective is to minimize the expectation of the squared difference between the original 

signal X and its quantized version Q(X). The function Q(X) maps X to one of the 

quantization levels A1, A2, …, Am, depending on the boundaries B1, B2, …, Bm. For 

example, if you choose A1 = 0 and B1 = 0.5, then Q(0.4) would be A1, which is 0, while 

Q(0.6) would be A2.  

To minimize the squared error, you need to evaluate the integral: 
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You can break this integral into segments defined by the quantization boundaries: 
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This involves minimizing the error within each boundary segment by adjusting the 

quantization levels Aj and boundaries Bj. This is the optimal quantization problem for the 

scalar case. 

Let’s consider a practical example with a uniform random variable, say from -1 to 1. The 

PDF, fX(x), is uniform in this range. To minimize the squared error with a one-bit quantizer 

(two levels), you need to choose the levels wisely.  

For instance, if you choose levels only on the positive side or only on the negative side, 

you will incur significant error for values falling in the opposite range. Similarly, if the 

levels are not symmetrically placed, it will also lead to issues. Given the symmetry of the 

problem, choosing levels at -a and a is optimal. This is because the PDF is symmetric 



around zero, and the random variable is equally likely to be positive or negative. Thus, the 

optimal strategy is to set the quantization levels at -a and a. 
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Verifying this mathematically is an exercise left for you, but intuitively, this approach 

minimizes the error effectively. 

What I want to emphasize is that for a symmetric distribution, such as a uniform 

distribution over [-1, 1] or a Gaussian distribution, the optimal quantization levels must 

also be symmetric around the y-axis. Our goal now is to find the optimal quantization level, 

denoted as a, to minimize the expectation of (X - Q(X))2. 

To do this, we need to compute the integral: 
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For our uniform distribution between -1 and 1, this integral simplifies to: 
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Given fX(x) is uniform, it is 1
2
 over this range. Therefore: 
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To simplify, let's substitute y = -x in the integral from -1 to 0. This transforms it into: 
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Combining both integrals: 
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To find the optimal a, we need to minimize this expression. Let J(a) denote the integral: 
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Differentiating J(a) with respect to a: 
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Solving this, we find: 
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Setting 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0: 
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Thus, the optimal quantization levels are −1
2
 and 1

2
. This result can be verified in GNU 

Radio, where choosing different levels would lead to higher errors. 

For a two-bit quantization, the optimal levels are −3
4

,−1
4

, 1
4
, and 3

4
. For m bits, the levels 

are: 

Levels = −
2𝑚𝑚−1 − 1

2𝑚𝑚−1 , … ,
2𝑚𝑚−1 − 1

2𝑚𝑚−1  

You can verify this pattern by considering the symmetry of the distribution and applying 

the principle of optimality. The mean squared error for this quantization is δ
2

12
, where δ is 

the difference between adjacent quantization boundaries or levels. 

Let's review the results of our previous calculations. Evaluating the integral for the squared 



error between x and 1
2
, we find: 

� �𝑥𝑥 −
1
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0
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Substituting the limits into this integral, when x = 1, we get �1
2
�
3
, and when x = 0, we get 

−�1
2
�
3
 divided by 3. Adding these, we obtain: 

1
8

+
1
8

=
1

12
 

This value, 1
12

, represents the minimum mean squared error for scalar quantization of a 

uniform [-1, 1] random variable. The term δ, which is the difference between adjacent 

quantization boundaries or levels, contributes to this error calculation. 

(Refer Slide Time: 24:14) 

 

Now, let's consider a Gaussian random variable, specifically 𝑋𝑋 ∼ 𝑁𝑁(0,1) . While the 



derivation can be generalized, we'll focus on the standard normal distribution for 

simplicity. For a symmetric distribution, the optimal quantization points for one-bit 

quantization are ± a, and the optimal boundary is zero, as discussed previously. 

To minimize the squared error: 

� (𝑥𝑥 − 𝑎𝑎)2𝑒𝑒−
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we can simplify by removing the 1
√2π

 factor. Differentiating the integral with respect to a, 

we get: 
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Setting this derivative to zero: 
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Given that the integral of 𝑥𝑥𝑒𝑒−
𝑥𝑥2

2  over [0,∞) is 1
2
, we find: 
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This result represents the optimal quantization level for a Gaussian distribution. In practice, 

using GNU Radio, we can set this optimal value and verify that it indeed minimizes the 

error. 

For more complex optimal quantization, we use the Lloyd-Max algorithm, which provides 

a systematic approach to finding optimal quantization levels. 

Let's briefly explore the Lloyd-Max algorithm, an iterative method used to determine both 

the optimal quantization levels and boundaries. The process starts with an initial set of 

quantization levels, say a1, a2, …, am+1, and initial boundaries bj, which are typically set as 



the midpoints between consecutive quantization levels, 𝑏𝑏𝑗𝑗 = 𝑑𝑑𝑗𝑗+𝑑𝑑𝑗𝑗+1
2

. 
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The next step is to update the quantization levels aj. These new levels are set as the 

conditional means of the input values x that fall within the respective quantization intervals 

�𝑏𝑏𝑗𝑗 ,𝑏𝑏𝑗𝑗+1�. The reason we use the conditional mean is rooted in probability theory: the 

conditional mean minimizes the mean squared error. By setting aj to this conditional mean, 

we ensure that each quantization level is optimally placed to reduce the error. 

Once new aj values are computed, we recalculate the boundaries bj as the midpoints of the 

updated quantization levels. This process of updating aj and bj is repeated iteratively. Over 

time, the changes in aj and bj become minimal, and the mean squared error stabilizes, 

indicating that an optimal quantizer has been found. 

The Lloyd-Max algorithm, developed over 30 to 40 years ago, has proven to be effective 

in various scenarios by progressively minimizing mean squared error. It captures the 

distribution of the random variable by repeatedly adjusting the quantization levels to 



achieve the best possible MSE. 
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Interestingly, the Lloyd-Max algorithm is closely related to k-means clustering, a popular 

technique in pattern recognition and machine learning. In k-means clustering, the algorithm 

also involves finding centroids that minimize the distance to points in clusters, which 

parallels the Lloyd-Max method's use of conditional means. 

Additionally, instead of quantizing individual scalars, you can extend the approach to 

quantize tuples or groups of random variables, x1, x2, …, xn, jointly. This method takes 

advantage of correlations among the variables. For instance, in image processing, after 

transforming an image into vectors, quantizing these vectors as a whole, rather than 

individually, preserves the inherent correlations and leads to more efficient quantization. 

This approach results in what are known as Voronoi regions: areas within which all points 

are mapped to a single quantization point. 

Voronoi regions play a crucial role in determining where to quantize, ensuring that at the 

optimal point, errors such as squared error are minimized. Vector quantization is widely 



utilized in scenarios involving large datasets with inherent correlations. This method 

effectively captures and leverages those correlations to improve quantization accuracy. 
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In summary, quantization is a fundamental process for converting continuous values into 

finite precision representations. However, it's important to remember that quantization 

error is an inherent aspect of practical signals. An optimal quantizer is designed to 

minimize this quantization error. While scalar quantization is suitable for many 

applications, vector quantization is preferred when dealing with groups of correlated data. 

This approach allows for quantization in higher-dimensional spaces, enhancing overall 

efficiency and accuracy. 

For those interested in exploring this topic further, there are advanced areas such as block 

quantization, rate distortion theory, and entropy-coded quantization. These topics are 

extensively covered in sources related to compression, information theory, and related 

fields. In our next lecture, we will simulate these operations using GNU Radio and analyze 

how quantization errors appear in histograms. Thank you. 


