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  Hello, welcome to this lecture on Digital Communication using GNU radio.  In this
lecture, we are going to take a look at the complex baseband representation of  signals.
In terms of complex baseband equivalent, we will be defining what are baseband and
passband signals.  We will then distinguish between real and complex baseband signals.
We will then see what the complex baseband equivalent signal is, its significance and
how to construct it and finally, up conversion of the complex signal to passband and how
you can recover the complex signal from the real passband signal by down conversion.
So, what are baseband and passband signals?  Roughly speaking, baseband signals are
those that occupy frequencies near DC, that is they  generally contain lower frequency
components.

  Passband signals on the other hand occupy a narrow band of frequencies closer to the
so called carrier  frequency.  The carrier frequency is generally much greater than the
bandwidth of the actual signal.  As an example, 2.4 GHz may be the carrier frequency
that  may  be  carrying  data  signals   of  10  MHz  bandwidth.

  In this situation, the 10 MHz signal is the baseband signal and the carrier frequency  is
2.4 GHz.  On what basis  are these values chosen?  So, this  is  dependent on various
parameters  and  of  course,  how the  standard  is  designed.   So,  there  are  propagation
characteristics,  licenses  available  for  transmission  and  several   other  factors  that
determine the passband signals characteristics both in terms of the  carrier frequency as
well as the bandwidth.  Visually if we inspect the spectrum, the baseband and passband
signals  can  be  very  distinctly   characterized.

  In this example, let us say that 

s1(t)



is a baseband signal and its spectrum or Fourier transform  is 

S1(f ) .

S1(f )

is available over here and as you can see, it occupies a frequency between 

−W and W

generally closer to the lower frequency range.  If you now consider the signal 

s2(t)

that is constructed as 

s1(t)cos(2π f c t)

where 

f c

is chosen to be larger, generally much larger than 

W ,

we obtain the  passband signal 

S2( f ) .

In this  particular  situation,  if  you remember the Fourier transform of cos,  it  has two
impulses,  one at 

f c

and one at 

−f c .

Therefore, the convolution of the spectrum of 

S1(f )

will give two copies, one around 

f c ,

one around 



−f c

which is why this passband signal 

S2( f )

occupies the frequencies between  

f c−W and f c+W

and  the  corresponding  negative  frequencies.

  One issue however is in this particular picture is that if 

s1(t)

is a real signal, you will  recall that its spectrum has the conjugate even property.  That is 

S1(f )

is the same as 

S1
∗

(− f ) .

This means that the information contained in the positive frequencies of 

S1(f )

allows you  to directly infer the information contained in the negative frequencies of 

S1(f )

which means  that keeping only one of them is enough.  Of course, you may argue that
for a real signal, the conjugate even property has to be satisfied.  However at passband,
you can see that there are two copies and having only one of these  and the corresponding
negative is sufficient for you to obtain a real signal that has all  the information needed to
reconstruct 

S1(f ) .

  In other words, this particular approach of multiplying the real baseband signal by a
cosine  is  inefficient  because  the  information  is  duplicated  in  the  passband.   So  for
efficient  usage of the spectrum,  how do we remove this  redundancy and how do we
actually use the bandwidth between or the frequency range between 



f c−W and f c+W

to maximize the information transmission.  This is what motivates the so-called complex
baseband representation of signals.  The key idea here is to take two real valued baseband
signals for reasons that will be  clear shortly.  We will call these signals 

sc (t) and ss(t ) .

  Remember both are real baseband signals that occupy the same frequency range of 

−W to W

and we call that a bandwidth of 

W .

As  these  signals  are  real,  both  of  these  signals  have  conjugate  symmetric  Fourier
transforms  that is 

Sc (f )=Sc
∗

(−f ) ,

Ss( f )=Ss
∗
(−f ) .

We now construct the complex baseband signal 

s (t)=sc (t)+ j ss( t) .

In general, unless there are some specific properties that 

sc (t) and ss(t )

may have, this is  a complex signal and it does not have a conjugate symmetric Fourier
transform.  In other words, we will shortly see that this particular construction eliminates
the  so-called redundancy in the frequency domain and allows you to transmit two real
valued  signals within the same bandwidth 

W

if  you  permit  the  use  of  complex  signals.

  So, to convince ourselves that 

s (t)=sc (t)+ j ss( t)

is not generally  real is very simple.  We know that the real nature of 



Sc (f ) and Ss( f )

means that 

Sc (f )=Sc
∗

(−f ) ,

Ss( f )=Ss
∗
(−f ) .

Then by the linearity of the Fourier transform, we can directly write 

S ( f )=Sc (f )+ j Ss( f ) .

Then let us see if 

S ( f )

satisfies the so-called conjugate even property.  If you take the conjugate of 

S ( f ) ,

we get 

(Sc ( f )+ j Ss(f ))
∗ .

  Using this puts the conjugate on the 

j ,

so you get a 

− j

over here.  You get 

Sc
∗

( f )− j Ss
∗

(f ) .

Using the properties of our 

Sc (f ) and Ss( f )

we find above, we get 

Sc (−f )− j Ss(−f ) .

If 



S ( f )

were corresponding to a real signal, then the conjugate even property would have  meant
that 

S ∗
( f )=Sc (−f )+ j Ss(−f )

which  is  not  the  case.   Therefore,  this  so-called  complex  baseband  construction  or
representation allows you  to very easily just design two real signals and combine them
by just using the complex  addition operation that is you take the 

(first signal) + j×  (the second signal )

and  you end up with two real signals that occupy the same bandwidth 

−W to W

as  a  complex   signal.

  As a visual cue, if we have a 

Sc (f ) and Ss( f ) ,

we are depicting the spectrum being similar  as having a hatch over here and a hatch over
here.  This particular information over here and this particular information over here, they
are the same information except that they have the conjugate even property and similar
properties hold over here.  But in case you construct the so-called complex baseband
equivalent signal, you end up with  a resulting signal 

S ( f )=Sc (f )+ j Ss( f ) ,

the spectrum of that signal that is that need  not have the property that the real part and
the imaginary part are just mirror images  of each other.  That is we occupy the same
bandwidth 

−W to W

and now have a complex signal in the  form of two real signals that occupy the same
bandwidth range.  But this is nice, but we need to be able to transmit this signal as a real
signal because  whenever you have any transmission medium, you have to be able to send
a  real  signal.

  The question arises as to how we can make this into a real passband signal that can  be
transmitted  over  any  media.   To  do  this,  we  have  the  baseband  to  passband
transformation which is very simple.  We will now start dealing with 



s (t)

directly where 

s (t)

is now a complex signal that  occupies the frequency range between 

−W and W .

In other words, it occupies a bandwidth of 

W ,

but it is a complex signal thus it consists  of two real signals.  We are now going to define

s p(t)=ℜ{√2 s (t)e
j2π f c t} .

  For a minute, we can ignore the root 2 which is just a scaling factor, but what we are
doing is we are multiplying or modulating 

s (t)

with the complex exponential 

e j 2π f c t .

If you remember your Fourier transform properties, multiplication with 

e j 2π f c t

convolves the spectrum of 

s (t)

and places it around 

f c .

Therefore, this signal 

s (t)e j2π f c t

is going to occupy the frequency  range between 

f c−W to f c+W .



The real operation just places a copy at 

−f c .

We will soon see that 

s p(t)

is a real pass band signal that has information of 

sc (t) and ss(t )

together.

  The bandwidth footprint as we mentioned is between 

f c−W and f c+W

of course  it is a real signal.  So, there is a corresponding conjugate at 

−f c−W to −f c+W .

Pictorially what happens is that this spectrum base band spectrum which is unsymmetric
and  corresponds to a complex signal is brought to around 

f c

and a copy of the same with  the conjugate operation is also brought to 

−f c .

Therefore, the conjugate symmetry property is definitely satisfied, but you can clearly
make out that all the information about both the positive frequency part and the negative
frequency part of the base band signal are present very much and there should be a way
to recover them.  Of course, the way we motivated this was by taking a complex signal
and then taking real  part 

e j 2π f c t

and  so  on.

  One question that arises naturally is that can we get 

s p(t)

directly from 



sc (t) and ss(t ) .

sc (t) and ss(t )

are just a proxy for 

s (t)

because 

s (t)

essentially has 

sc (t)

as its  real part and 

ss(t )

as its imaginary part.  So, can we construct 

s p(t)

directly from 

sc (t) and ss(t ) .

To do this we consider 

s p(t)

as

ℜ{√2 s (t)e
j2π f c t}

and  we can expand this by writing 

e j 2π f c t

as 

cos (2π f c t)+ j sin(2π f c t ) .

So,  let  us  now  perform  this  operation.

  If you now expand 



e j 2π f c t

as 

cos (2π f c t)+ j sin(2π f c t )

you  will find that the real part that remains after this expansion is 

sc (t)cos(2π f c t)−ss(t)sin(2π f c t) .

Therefore, the way to construct your pass band signal 

s p(t)

is to modulate 

sc (t)

with a cosine at 

f c

and to modulate the 

ss(t )

with a sine at the same frequency  and add or subtract them.  Therefore, by performing
this operation you are able to construct 

s p(t)

directly from  

sc (t) and ss(t ) .

The c and s subscripts should now become somewhat clear because 

sc (t)

rides on 

cos (2π f c t)

in the sense of being modulated by 

cos (2π f c t)

and 



ss(t )

rides on 

sin(2π f c t )

which is why the subscripts make sense 

sc (t)

is for cos 

ss(t )

is for sin.  Conventionally because of the fact that 

sc (t)

is multiplied by 

cos (2π f c t)

we  refer to 

sc (t)

as the I-component or the in-phase component and 

ss(t )

as  the  Q-component   or  the  quadrature  component.

  This should be consistent with the nomenclature that is used in the context of circuits
and  power systems phases and so on.  To understand this pass band transition better we
will take a small detour that considers  combining these signals from the base band to
obtain pass band signals.  We will now take a detour to make a very simple experiment in
GNU radio wherein we  will construct a complex base band signal using very simple
cosine and sine.  We will take the base band signals 

cos (2π f 0 t) and sin(2π f 0 t)

implicitly assuming  that 

f 0

is small and therefore close to dc thus these can be treated as base band  signals.  Since
both of these are real signals they have conjugate symmetric Fourier transforms  and we



are going to use the conventional  approach of taking the first  signal plus j  times the
second signal and observing the spectral characteristic and showing that the symmetry  is
no longer present thereby indicating that you have a baseband signal that has two distinct
real  signals.

  Let us begin by first adding a signal source. We will use the conventional approach
control  f or command f type signal grab a signal source place it in our flow graph. We
want  a real signal therefore we will double click this and change the type to float. Since
we  also want a sign we can pull in another signal source or we can just select the signal
source  by clicking on it and hitting control c or command c and control v or command v
to produce  a copy. We then double click the signal source and change this to sign and
say  ok.

  Our next course of action is to construct the first signal plus j times the second signal.
GNU radio offers a convenient approach to do this. We will pull in the float to complex
block control f or command f type float and we have the float to complex.  Next we
connect  the signal source one to the real part the second one to the imaginary part and we
are  ready with our complex baseband signal. But we wish to view the spectra of this
signal   along  with  the  original  signals.

 So we would need a complex QT GUI frequency sink.  We will   press control  f  or
command f, f, r, e, q get the QT GUI frequency sink. Let us not forget  the throttle control
f  or command f throttle.  We can connect  our  signal  to  the throttle   and we want  to
visualize  three  signals  in  the  frequency  sink.

 So we will double click  it. We will say grid yes, auto scale yes and we will say three
inputs and say ok. We will  connect the throttle to the third input. Now to view the signal
source in the complex GUI  frequency sink, we need to convert the signal source again to
complex. For that we will  again use float to complex but we will keep only the real part.
An easy way is to just select this  float to complex, hit control c or command c to copy
and control v or command v to paste,  control v to paste again so that we get two of them.

 Connect the output to the real part,  connect this output to the real part and then we will
play a trick to make sure that the signal  which comes out has only a real part. We will
create a constant source that emits zero. So,  control f or command f, c, o, n, s, d, const.
We will get a constant source. The constant source  that always outputs the real number
zero.

 So,  double click this,  change it  to float,   say ok and we connect  the output  of  this
constant source to the complex imaginary part over here and  the imaginary part over
here. We can then connect the first source to the input zero, second source  to the input 1



and  our  flow  graph  is  ready.  Let  us  execute  this  flow  graph.   Now,  what  is  the
interpretation? Let us inspect only the first signal by disabling the second and  third ones.

 This is our cosine. As expected, you see two peaks, one at 1 kHz and the other  at minus
1 kHz. If we then see the sine, it is essentially overlapping with the cosine because  both
the sine and cosine have similar magnitude spectra but they differ only in phase. In fact,
to  get  a  finer  line,  we  can  middle  click,  hit  the  control  panel  and  change  this  to  a
rectangular  window in which case you will see the lines distinctly. But when you now
bring the third  signal, the third signal only has a peak at exactly 1 kHz and no peaks
elsewhere. Why is  this the case? This is because 

cos (2π f 0 t)+ jsin(2π f 0 t)

is actually 

e j 2π f 0 t

which has a Fourier transform of 

δ( f− f 0) .

 Therefore, as expected, it has a single  distinct peak at 1 kHz. But from the perspective
of baseband signals, here is a baseband signal  

e j 2π f 0 t

that embeds 

cos (2π f 0 t) and sin(2π f 0 t)

which are  two real  signals  and does   not  have  a  complex conjugate  which  is  equal,
thereby having a complex baseband signal.  So,   this  is  an example of a  very simple
complex baseband signal. As a final step, let us also  convert this to a passband signal by
performing the operation 

ℜ{s (t)e j2π f ct } .

To do this, let us take a complex signal source say control f or command f, signal source.

  This signal source is going to be 

e j 2π f c t .

So, let us choose the carrier frequency  as say 6000 Hz. We will then multiply this 



s (t)

that we obtain by combining the cos and sine with  this. So, control f or command f, we
get the multiply block, we multiply the signal, multiply  the other signal and all we need
to  do  is  to  take  the  real  part  of  this  and  look  at  the  spectrum.

  So, let us now take the real part. So, we say control f or command f and type real,  we
get the complex to real block, connect the output to here and we get a real  QT-GUI
frequency sink. Control f or command f, grab the frequency sink over here,  we double
click it and change it to float, connect it over here, hit run.  Now, as you can see the
complex baseband signal was 

e j 2π f 0 t .

When you now modulate it  with a carrier at 6 kHz, you will get a copy at 7 kHz and
minus 7 kHz.  The reason is  because  6 kHz is  the center  frequency and your signal
appears  1  kHz  to  the  right  and  over  here  1  kHz   to  the  left  of  minus  6  kHz.

 This is a very simple example of obtaining a passband signal  from a complex baseband
signal. We will soon expand this to more sophisticated signals in the next detour.  Thank
you.


