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Rate and Error-Free Communication 

Welcome to this lecture on Digital Communication using GNU Radio. My name is Kumar 

Appiah. In this session, we will explore the concept of channel capacity, which relates to 

the maximum rate at which error-free communication can be achieved over a given 

channel. Although our primary focus will be on the binary symmetric channel, we will also 

touch on how these concepts extend to other types of channels. 
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Here's the outline of our discussion: 

1. Rate and Error-Free Communication: We will start by discussing the rate of error-free 



communication. 

2. Typical Sets and Their Probability: We will briefly cover typical sets and their associated 

probabilities. 

3. Binary Symmetric Channel Capacity: We will specify the capacity of a binary symmetric 

channel. 

4. Gaussian Channel Capacity: We will also touch on the capacity of a Gaussian channel, 

which is more practical and relevant to the simulations you have encountered. 

5. Implications of Capacity: Finally, we will summarize what channel capacity means for 

practical communication systems. 
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To begin with, let's examine the rate of error-free communication. In the context of an (n, 

k) block code, as discussed in previous lectures, the rate is given by 𝑘𝑘
𝑛𝑛
. The block error in a 

binary symmetric channel occurs when a sufficient number of bits are flipped. In such a 



noisy channel, if no bits are flipped, there is no issue. However, if bit flips do occur, they 

can potentially be corrected. 

For instance, we've seen error correction mechanisms like the Hamming code and 

repetition code. These codes are designed to be robust against bit flips, enabling the 

receiver to correctly interpret the transmitted message even if errors occur. 

Now, what does error-free communication entail? Hypothetically, error-free 

communication means having a channel that introduces errors but incorporating enough 

redundancy so that all these errors can be managed effectively. 
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Let's consider an example. Suppose we have a binary symmetric channel with a bit-flip 

probability p = 0.2. This means there is a 20% chance that each bit will be flipped. 

However, if we employ a repetition code and repeat each bit 11 times, we can significantly 

reduce the effective error rate. Even though the channel flips bits, the repetition code can 

handle these errors and recover the original data. The trade-off here is that the rate of the 

code becomes quite poor. For an 11-repetition code, the rate is 1
11

. 



The key question we are addressing is: What is the maximum achievable rate 𝑘𝑘
𝑛𝑛

 as n 

approaches infinity? Essentially, we are interested in finding the maximum possible rate 

for a very large block length. When you allow a large number of bits to be sent through the 

channel, patterns in the types of errors introduced by the channel emerge. Understanding 

these patterns enables the design of more effective codes that can counteract these errors. 

This process helps us approach the channel's capacity. 
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In practice, with a very high block length, what is the maximum 𝑘𝑘
𝑛𝑛
 that can be achieved 

with an arbitrarily small error rate? As students of probability, you know that with any non-

zero error probability in a binary symmetric channel, and for any finite n, there will always 

be some situations where a large number of errors occur, regardless of the code used. 

Hence, decoding errors will always be present. 

Let's consider a practical scenario. Suppose you require the error rate to be less than 10−9 

or even 10−12. In such cases, you might design a code to meet these stringent requirements. 

The simplest approach might be to use a repetition code, but this is inefficient because 



achieving a very low error probability requires a significantly large n, making the rate 1
𝑛𝑛
 

approach zero as n grows. 
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Therefore, we aim to find the highest possible 𝑘𝑘
𝑛𝑛
 that allows for error-free communication 

over a channel with errors. Now, turning our attention back to a binary symmetric channel 

with an error probability p, we need to identify the most typical error sequences over n 

channel uses. Here, "typical" refers to sequences that are probable, meaning they are not 

the rarest but rather the most likely error patterns. For example, if p < 0.5, the most probable 

error sequence in a binary symmetric channel is one where no errors occur at all. Our goal 

is to determine the number of errors that are most likely to occur when bits are transmitted 

n times. 

Let’s delve into this in greater detail. Consider a binary symmetric channel with an error 

probability p. In this channel, a zero is transmitted as zero with a probability of 1 - p, and 

a one is transmitted as one with a probability of 1 - p. Conversely, each bit has a probability 

p of being flipped. 
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Now, let’s examine the behavior of this channel over multiple transmissions, specifically 

focusing on 3 bits. We will analyze the error patterns based on their Hamming weight, 

which represents the number of bit errors: 

• 0 errors: 000 

• 1 error: 001, 010, 100 

• 2 errors: 011, 101, 110 

• 3 errors: 111 

Grouping these patterns: 

• 0 errors: Probability is (1 - p)3 

• 1 error: Probability is 3p(1 - p)2 

• 2 errors: Probability is 3p2(1 - p) 

• 3 errors: Probability is p3 

When p is less than 0.5, the probability of having zero errors (000) is the highest among 



these patterns. For example, if p is 0.1, then: 

• The probability of 0 errors is approximately (0.9)3 

• The probability of 1 error is approximately 3 ⋅ 0.1 ⋅ (0.9)2 

• The probability of 2 errors is approximately 3 ⋅ (0.1)2 ⋅ 0.9 

• The probability of 3 errors is (0.1)3 
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Summing these probabilities should add up to 1, which confirms that all possible error 

patterns are accounted for. For instance, with p = 0.1: 

• The probability of having 0 errors is around 0.93 

• he probability of having 1 error is 3 ⋅ 0.1 ⋅ 0.92 

• The probability of having 2 errors is 3 ⋅ 0.12 ⋅ 0.9 

• The probability of having 3 errors is 0.13 

Now, let’s generalize to n bit patterns. Instead of targeting individual error patterns, it’s 

more practical to focus on the number of errors the channel introduces across multiple uses. 



We calculate the cumulative probability for all possible sequences to understand the overall 

error distribution. 

In this context, we are investigating the occurrence of typical sequences. To clarify, the 

most typical sequences are those where the probability remains consistent, even with larger 

block lengths. For instance, consider the probability expressions (1 - p)n and 𝑛𝑛 ⋅ 𝑝𝑝 ⋅

(1 − 𝑝𝑝)𝑛𝑛−1. While (1 - p)n can be a large number, 𝑛𝑛 ⋅ 𝑝𝑝 ⋅ (1 − 𝑝𝑝)𝑛𝑛−1 might vary.  
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Let's illustrate this with n-bit error patterns. For example, if we consider zero errors, the 

total probability of observing zero errors is given by (1 - p)n. For one error, the probability 

is 𝑛𝑛 ⋅ 𝑝𝑝 ⋅ (1 − 𝑝𝑝)𝑛𝑛−1. To be more formal, this can be expressed as: 

�
𝑛𝑛
1
� ⋅ 𝑝𝑝1 ⋅ (1 − 𝑝𝑝)𝑛𝑛−1 

Here, it is crucial to note that the term 𝑛𝑛 ⋅ 𝑝𝑝 might not be negligible. In fact, due to the 

presence of (1 - p)n and 𝑛𝑛 ⋅ 𝑝𝑝 ⋅ (1 − 𝑝𝑝)𝑛𝑛−1, a large n can make the single-error patterns 

more probable than the zero-error patterns. 



Although the zero-error pattern is the most probable, its probability (1 - p)n approaches 

zero as n approaches infinity, provided that p is non-zero. This means that with very large 

block lengths, it becomes nearly certain that we will not encounter an all-zero error pattern. 

Thus, what we are seeking is the most probable group of error patterns for large block 

lengths. Let us denote the number of errors by l (as using k might be confusing due to its 

other uses). The probability of having exactly l errors is: 

�
𝑛𝑛
𝑙𝑙
� ⋅ 𝑝𝑝𝑙𝑙 ⋅ (1 − 𝑝𝑝)𝑛𝑛−𝑙𝑙 

This expression will help us identify the most likely error patterns in the given context. 

Let's delve into the probability of encountering exactly l errors in a sequence. To determine 

this, we calculate the probability for each possible error sequence and sum them up. Given 

that these sequences are mutually exclusive, the total probability for having l errors is: 

�
𝑛𝑛
𝑙𝑙
� ⋅ 𝑝𝑝𝑙𝑙 ⋅ (1 − 𝑝𝑝)𝑛𝑛−𝑙𝑙 

This expression might exceed the probability of having zero errors, (1 - p)n. Therefore, as 

the block length increases, it is essential to identify the most likely error sequences. This is 

the crux of our investigation. 

To provide some intuition, consider a biased coin with the probability of heads being p and 

tails 1 - p. The probability of obtaining a sequence of n heads is (1 - p)n. If we seek the 

probability of getting exactly l tails (and thus n - l heads), it is given by: 

�
𝑛𝑛
𝑙𝑙
� ⋅ 𝑝𝑝𝑙𝑙 ⋅ (1 − 𝑝𝑝)𝑛𝑛−𝑙𝑙 

Now, if n is very large, say 10,000 or even 1 million, what value of l will maximize this 

probability? This situation aligns with the binomial distribution, where we seek the peak 

of the probability mass function (PMF). The peak, or the most likely number of tails (or 

heads), occurs when l is approximately np. This result is derived from the binomial 

distribution, where the maximum probability is found at l = np. 



For a more intuitive understanding, consider the binomial distribution as the sum of 

independent Bernoulli trials. According to the Central Limit Theorem, the sum of a large 

number of independent Bernoulli random variables approaches a Gaussian distribution. 

Thus, if you plot the PMF of a binomial distribution for large n, it resembles a Gaussian 

shape with the peak near np. 

In practical terms, knowing the most likely number of errors allows us to design codes 

effectively. For example, with Hamming codes, the goal is to correct errors by ensuring 

that code words are distinguishable even when a certain number of bits are flipped. 

Understanding the error distribution helps in designing codes that handle the expected 

number of errors, thus addressing the capacity aspect of coding theory. 

The reason we use the term "approximate" is that k is an integer, and np may or may not 

be an integer. Nonetheless, the peak of the binomial distribution consistently occurs close 

to np. This indicates that the most likely number of errors is around np. In other words, the 

most probable error pattern involves approximately np bit flips. However, the challenge is 

that we do not know the exact locations of these np bit flips. If we did, it would simplify 

things considerably.  

The goal is to design your code so that, even if np bits are flipped, the code can still map 

back to the original code word rather than being misinterpreted as a different one. The code 

should be structured such that flipping up to np bits will not result in a decoding error, 

ensuring the distance between code words remains sufficient. 

Let's explore this concept further. Suppose we use n-length code words and arrange them 

such that np bit flips do not affect decodability. For instance, with Hamming codes, we 

designed the code words to be separated enough so that a single bit flip wouldn't cause 

decoding issues. Now, we are aiming to ensure that np bit flips are also manageable. 

Here, we introduce a packing-based argument. The total number of possible n-bit 

sequences is 2n, where n is a large number. If we arrange n-bit code words such that flipping 

np bits still maintains unique decodability, we need to consider how many such sequences 

are possible. 



To illustrate, consider a specific n-length code word. How many distinct n-length vectors 

can be generated by flipping np bits? It turns out that the number of such possible vectors 

is approximately � 𝑛𝑛
𝑛𝑛𝑛𝑛�.  

To put it simply, if you flip np bits in any n-length code word, the number of different 

resulting sequences is � 𝑛𝑛
𝑛𝑛𝑛𝑛� . Therefore, the number of code words that can be 

accommodated within the 2n space is 2n divided by the volume of the "ball" with a size of 

� 𝑛𝑛
𝑛𝑛𝑛𝑛�. This ball represents all possible sequences that result from flipping np bits. 

Let me provide some intuition on this concept. Consider a space of 2n n-bit sequences. 

Suppose you have a code word, which we’ll call x. Any sequence obtained by flipping np 

bits in x will generate several other n-bit sequences. We need to ensure that these sequences 

don’t overlap or get confused with other code words, such as x1, x2, and so on. Each code 

word should have a distinct sphere around it, where the sphere’s radius is defined by np bit 

flips. This way, no two code words should be indistinguishable from each other after np 

bit flips. 

The challenge here is to pack these spheres into the 2n bit sequence space without overlap 

or confusion. To estimate how many such code words you can support, we calculate 2n 

divided by the number of possible sequences within each sphere, which is � 𝑛𝑛
𝑛𝑛𝑛𝑛�.  

Why � 𝑛𝑛
𝑛𝑛𝑛𝑛�? Because each sphere that accounts for np bit flips contains � 𝑛𝑛

𝑛𝑛𝑛𝑛� possible 

sequences. Given that np bit flips are the most likely, we want to ensure that np bit flips do 

not lead to confusion. Thus, the approximate number of n-length code words you can 

support is: 

2𝑛𝑛

� 𝑛𝑛
𝑛𝑛𝑛𝑛�

 

Here, I’ve used Stirling’s approximation to estimate � 𝑛𝑛
𝑛𝑛𝑛𝑛� . Stirling’s approximation 

simplifies n! for large n and is proportional to nn. Using this approximation, we find: 



�
𝑛𝑛
𝑛𝑛𝑝𝑝�

≈
𝑛𝑛𝑛𝑛

(𝑛𝑛𝑝𝑝)𝑛𝑛𝑛𝑛 ⋅ (𝑛𝑛 − 𝑛𝑛𝑝𝑝)𝑛𝑛−𝑛𝑛𝑛𝑛 

If np is not an integer, bear with me for a moment and assume it is close enough to an 

integer. Then: 

2𝑛𝑛
𝑛𝑛𝑛𝑛

(𝑛𝑛𝑝𝑝)𝑛𝑛𝑛𝑛 ⋅ (𝑛𝑛 − 𝑛𝑛𝑝𝑝)𝑛𝑛−𝑛𝑛𝑛𝑛
 

Simplifies to: 

2𝑛𝑛 ⋅
(𝑛𝑛𝑝𝑝)𝑛𝑛𝑛𝑛 ⋅ (𝑛𝑛 − 𝑛𝑛𝑝𝑝)𝑛𝑛−𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛
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When you take the numerator and simplify, nn cancels out, leaving: 

2𝑛𝑛 ⋅ 𝑝𝑝𝑛𝑛𝑛𝑛 ⋅ (1 − 𝑝𝑝)𝑛𝑛−𝑛𝑛𝑛𝑛 

This result represents the number of code words. For a block length n and n uses of the 



binary symmetric channel, the number of code words you can transmit is: 

2𝑛𝑛 ⋅ 𝑝𝑝𝑛𝑛 ⋅ (1 − 𝑝𝑝)𝑛𝑛−𝑛𝑛 

The rate of information transmission is found by dividing the number of code words by n 

and taking the base-2 logarithm. The reason for using base-2 logarithm is straightforward: 

if you have 4 code words, you can encode 2 bits; with 8 code words, you can encode 3 bits; 

and with m code words, you can encode log2(𝑚𝑚) bits. 

Here’s why we use logarithms and division by n to determine the rate per channel use. By 

taking the base-2 logarithm of our result and dividing by n, we obtain the rate for each use 

of the binary symmetric channel. This results in the formula: 

1 − 𝑝𝑝 log2(1 − 𝑝𝑝) − 𝑝𝑝 log2(𝑝𝑝) 

This formula represents the rate achievable over a binary symmetric channel. To get a sense 

of this, let’s calculate some examples. 

When p = 0, we encounter an issue with 𝑝𝑝 log2(𝑝𝑝) . Since log2(0)  tends to negative 

infinity, we define 𝑝𝑝 log2(𝑝𝑝) as 0 for this case. Thus, the rate r simplifies to 1 when p = 0, 

meaning that the channel can perfectly transmit one bit per use with no errors. 

Now, let’s consider p = 0.5, which represents a fair coin toss scenario. In this case, we 

compute: 

𝑟𝑟 = 1 + (0.5 log2(0.5) + 0.5 log2(0.5)) 

Since log2(0.5) = −1, this simplifies to: 

𝑟𝑟 = 1 + �0.5 ⋅ (−1) + 0.5 ⋅ (−1)� 

𝑟𝑟 = 1 − (−1) 

 𝑟𝑟 =  1 −  1  

 𝑟𝑟 =  0  



This means the achievable rate is 0 when p = 0.5. What does this imply? When p = 0.5, 

errors occur with equal probability for heads and tails. If you have an equal number of 

heads and tails (or n/2 errors), distinguishing between different code words becomes nearly 

impossible. For example, if you use a repetition code with n bits and flip n/2 bits, you end 

up with an equal number of ones and zeros, making it impossible to determine the original 

code word. 

Thus, the rate being 0 when p = 0.5 signifies that even a repetition code is not effective in 

this scenario because the channel is too noisy for reliable communication. 
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When p = 0, however, the channel is perfect, no bit flips occur, so the rate is 1 bit per 

channel use. This reflects a situation where the binary symmetric channel perfectly 

transmits zeros as zeros and ones as ones. 

Let's delve into the concept of the "typical set," which formalizes the earlier statements 

we've made about probability. Consider a sequence of random variables 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛, 

which are independently and identically distributed (i.i.d.) and drawn from a finite alphabet 



X. The typical set 𝐴𝐴ϵ𝑛𝑛 is defined to include sequences that satisfy: 

𝐻𝐻(𝑥𝑥) − ϵ ≤ −
1
𝑛𝑛

log2 𝑃𝑃 (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) ≤ 𝐻𝐻(𝑥𝑥) + ϵ, 

where H(x) represents the entropy of x, defined as: 

𝐻𝐻(𝑥𝑥) = −�𝑝𝑝(𝑥𝑥)
𝑥𝑥∈𝑋𝑋

log2 𝑝𝑝 (𝑥𝑥). 

In the binary case where our alphabet consists of {0,1},𝐻𝐻(𝑥𝑥) corresponds to the binary 

entropy function. The expression 𝐻𝐻(𝑥𝑥) − ϵ ≤ − 1
𝑛𝑛

log2 𝑃𝑃 (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) ≤ 𝐻𝐻(𝑥𝑥) + ϵ, 

indicates that the probability of observing a typical sequence of errors will lie between 

2−𝑛𝑛(𝐻𝐻(𝑥𝑥)+ϵ) 𝑎𝑎𝑛𝑛𝑎𝑎 2−𝑛𝑛(𝐻𝐻(𝑥𝑥)−ϵ). 
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What this means in practice is that, for a sufficiently large n and for any given ϵ (say ϵ = 

0.01 or ϵ = 0.001), the probability of encountering the most likely error sequences is highly 

concentrated around the entropy H(x). Essentially, typical sequences' probabilities will 



always be less than or equal to 2−𝑛𝑛𝐻𝐻(𝑥𝑥) and greater than 2−𝑛𝑛(𝐻𝐻(𝑥𝑥)+𝜖𝜖). 

To illustrate, if you take any sequence with n p ones in the context of a binary symmetric 

channel, this sequence will likely fall into the typical set. The principle here mirrors what 

we observed earlier: the number of ones l that maximizes the likelihood is n p. This concept 

is grounded in the weak law of large numbers, which tells us that, as n grows, sequences 

with n p ones become increasingly probable, and their probability approximates 2−𝑛𝑛𝐻𝐻(𝑥𝑥). 

Thus, when designing codewords, you need to account for these typical error patterns, as 

they dominate the probability distribution. As n approaches infinity, the typical set 

sequences accumulate all the probability mass. Consequently, a sequence like the all-zero 

error sequence will have a probability approaching zero, reinforcing the idea that the 

typical error patterns are the ones you must be prepared to handle. 

In terms of error sequences, sequences with zero errors have zero probability. However, 

sequences with errors close to n p have a non-zero probability. Each of these typical error 

sequences has a probability of approximately 2−𝑛𝑛𝐻𝐻(𝑥𝑥) , and together, they account for 

almost all the probability mass. Therefore, you only need to focus on these typical error 

sequences. 

To visualize this, consider that you have 2n possible sequences. Your goal is to partition 

these sequences so that they are robust against any errors of length n p. Essentially, you 

need to design your code so that the 2n sequences are organized in a way that they can 

handle typical error patterns. 

Formally, if you consider 𝑦𝑦 = 𝑥𝑥 + noise, where x is chosen from a uniform distribution of 

0s and 1s and noise follows the binary symmetric channel distribution, you’ll find that 

2𝑛𝑛𝐻𝐻(𝑦𝑦) relates to the capacity of the channel. Specifically, the capacity C of the binary 

symmetric channel is 1 - H(p), where H(p) is the binary entropy function, defined as: 

𝐻𝐻(𝑝𝑝) = −𝑝𝑝 log2 𝑝𝑝 − (1 − 𝑝𝑝) log2(1 − 𝑝𝑝). 

This matches the earlier expression 1 + 𝑝𝑝 log2 𝑝𝑝 + (1 − 𝑝𝑝) log2(1 − 𝑝𝑝). This is the formal 

expression of the channel capacity, which can be validated through rigorous proofs in 



textbooks such as "Fundamentals of Information Theory" by Cover and Thomas or other 

information theory resources. 
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The key insight is that for n-length bit sequences, you select 2k sequences so that any n p 

bit flips do not lead to ambiguity. By focusing on typical error sequences and partitioning 

your codewords accordingly, you achieve this capacity. 

As an aside, consider the additive white Gaussian noise (AWGN) channel. Here, the 

constraint is that the expectation of x2 must be less than or equal to P, where P is the power 

constraint. For an AWGN channel with Gaussian noise having zero mean and variance σ2, 

the channel capacity is given by: 

𝐶𝐶 =
1
2

log2 �1 +
𝑃𝑃
σ2�

. 

This formula reflects that as P increases, the capacity increases, allowing you to use higher 

power and achieve higher rates. The number of possible x values you can choose relates to 

this capacity. Just as with the binary symmetric channel, you cannot directly use x values 



without accounting for noise. 
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To achieve the channel capacity, you need to construct multiple codebooks and use the 

channel repeatedly. By doing so, you can leverage a large number of channel uses to reach 

the desired capacity through the concept of typicality. 

Consider using the channel n times. Just like with the binary symmetric channel, you would 

have sequences 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛, and the noise would result in sequences like x1 + n1, x2 + n2, 

and so forth. Here, n represents the number of channel uses, and it directly affects how 

noise impacts the signal. 

To visualize this, think of the signal-to-noise ratio as a sphere in n-dimensional space. The 

volume of this sphere is approximately proportional to �√N ⋅ (𝑝𝑝 + σ2)�
N

, where p is the 

signal power and σ2 is the noise variance. The noise sphere has a volume proportional to 

�√N ⋅ σ2�
N

. Ignoring the constants for simplicity, you can calculate the ratio r of these 

volumes as: 



𝑟𝑟 =
1
N

log�
��N ⋅ (𝑝𝑝 + σ2)�

N

�√N ⋅ σ2�
N �. 

Simplifying this, you get: 

𝑟𝑟 =
1
2

log2 �1 +
𝑝𝑝
σ2
�. 

This indicates that the channel capacity, or the maximum achievable rate, is 
1
2

log2 �1 + 𝑛𝑛
σ2
�. For a more detailed exploration, refer to a comprehensive information 

theory textbook. 
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In practical scenarios, the bit rate you can achieve is often lower than the theoretical 

capacity due to various factors that reduce efficiency. However, if you desire an arbitrarily 

low bit error rate, the channel capacity represents the ultimate limit. With sufficiently large 

block lengths, you can approach this limit. Modern coding techniques, such as LDPC 

(Low-Density Parity-Check) codes and turbo codes, are designed to get very close to this 



capacity, although some error margin is still present. 

For additional insights, consider reviewing resources that cover the Shannon-Hartley 

theorem, which extends these principles to channels with bandwidth. This theorem 

provides a way to calculate the achievable rate per Hertz in wideband channels. For more 

information on information theory and modern coding techniques, you can explore relevant 

textbooks and courses. Thank you.  


