
Digital Communication using GNU Radio

Prof. Kumar Appaiah

Department of Electrical Engineering

Indian Institute of Technology Bombay

Week-12

Lecture-58

(7,4) Hamming Code in GNU Radio

Welcome to this lecture on Digital Communication using GNU Radio. My name is Kumar

Appiah, and I am a member of the Department of Electrical Engineering at the Indian

Institute of Technology, Bombay. In this session, we will continue our exploration of error

correction codes, with a specific focus on binary Hamming codes. We will implement these

codes using GNU Radio and embedded Python blocks, which provide us with a powerful

means of customizing the coding process.

(Refer Slide Time: 01:37)

Our primary focus will be on the (7,4) Hamming code, which encodes 4 information bits

into 7 coded bits. This code is particularly valuable because it can correct any single-bit

error without any loss of fidelity. We will verify the functionality of the Hamming code

and evaluate its performance under various scenarios.

In the previous lecture, we defined the Hamming code using a parity check matrix. We

began with a matrix containing the rows 1101, 1011, and 0111, followed by the identity

matrix. We then used this to create the generator matrix, which included the identity matrix

and the transpose of the initial matrix, resulting in columns of 1101, 1011, and 0111.

Today, we'll see how to implement this generator matrix in Python, which we will then

translate into a GNU Radio Python block.

(Refer Slide Time: 04:57)

To start, we'll use a Python prompt to create the generator matrix and verify all possible

code words for the (7,4) Hamming code, which has 16 distinct 7-bit code words. We'll

begin by writing the generator matrix.

First, we need to import the `numpy` library. Type `import numpy as np` to bring in this

essential tool. Next, we'll construct the generator matrix G.

We'll create a zero array to start, ensuring that the data type is set to integers by specifying

`dtype=int`. We will define this array as a 4 by 7 matrix. Given that the first 4 by 4

submatrix is an identity matrix, we can access this portion of the matrix using `[:, :4]`. This

operation selects the first submatrix, allowing us to build the generator matrix accordingly.

(Refer Slide Time: 08:39)

To verify our generator matrix G, we first set it to I_4, which gives us the identity matrix.

Now, we need to properly specify the 5th, 6th, and 7th columns of G (corresponding to

columns 4, 5, and 6, respectively, because Python uses zero-based indexing). Let’s proceed

to fill in these entries. We will update the matrix as follows:

G[:, 4] = ... # Set the 5th column

G[:, 5] = ... # Set the 6th column

G[:, 6] = ... # Set the 7th column

Upon inspection, G should now match the generator matrix we intended.

Next, let’s construct the parity check matrix H. Since we have already created the generator

matrix, deriving the parity check matrix is straightforward. The parity check matrix H

consists of the identity matrix on the right and the transpose of matrix A on the left. Thus,

we can take the non-identity part of G and use it to populate H.

We begin by initializing H with zeros. For the (7,4) Hamming code, the parity check matrix

H is of size 3 x 7. We need to place the identity matrix in the last three columns. This is

done using the following code:

H[:, -3:] = np.i(3) # Place the 3x3 identity matrix in the last three columns

(Refer Slide Time: 10:13)

Now, to complete H, we take the second part of G (the part that excludes the identity

matrix), transpose it, and insert it into the first part of H:

H[:, :4] = G[:, 4:].T

This gives us the parity check matrix H we need. Recall from the lecture that if G has the

form [𝐼𝐼 𝐴𝐴], then H should be [𝐴𝐴𝑇𝑇 𝐼𝐼] for a binary matrix. To verify that G and H are indeed

correct, we can perform matrix multiplication modulo 2:

result = (H @ G.T) % 2

The result should be a matrix of all zeros, confirming that H and G are correctly paired.

To find all 16 codewords, we can manually encode all possible 4-bit vectors. For example,

let’s start with the following 4-bit messages:

0000

0001

0010

0011

0100

0101

0110

0111

These are 8 of the codewords. To generate the remaining codewords, prepend a 1 to each

of the above messages:

codewords = [np.concatenate(([1], m)) for m in messages]

Here, `messages` contains all 4-bit vectors, and this list comprehension prepends a 1 to

each vector. By adding these new vectors to the original list, we obtain all 16 binary

codewords for the (7,4) Hamming code.

In fact, there are more efficient methods to achieve this, but I am sticking to this approach

for simplicity. To generate the codewords, I will use a list comprehension. Essentially, I

will multiply each message vector m by the transpose of G. Here’s how you can do it:

codewords = [i @ G.T % 2 for i in m]

(Refer Slide Time: 12:30)

Here, `i @ G.T` represents matrix multiplication of each vector i in m with G transposed,

and `% 2` ensures we perform modulo 2 operations. This generates all 16 codewords. If

you notice any discrepancies, it’s likely because the modulo 2 operation was not applied,

so ensure you use `% 2` to correct this.

To verify that these are indeed valid Hamming codewords, we can use the parity check

matrix H. By checking:

[H @ i % 2 for i in codewords]

we should confirm that all results are zero, indicating that these are valid codewords.

Next, observe that any two codewords differ in at least 3 bits. For example, if you compare

the first codeword with the second, they differ in 4 bits. This distance property ensures that

the code is robust against errors.

Now, if you need to implement this in GNU Radio, you will be performing XOR

operations. One method is to add the vectors and take modulo 2, but a more straightforward

approach is to use the XOR operator directly.

For instance, let’s consider an error vector `010000`. If we calculate:

syndrome = H @ e % 2

we obtain the error syndrome. To correct errors and find the correct codeword, you would

XOR this error vector with the codeword. Instead of manually performing XOR and

modulo operations, you can use Python’s built-in XOR operator (`^`), which simplifies the

process.

(Refer Slide Time: 13:10)

For example:

• `1 ^ 2` results in `3` because in binary, `1` is `0001` and `2` is `0010`, so their XOR

gives `0011`.

• `4 ^ 1` results in `5` because `4` is `0100` and `1` is `0001`, so their XOR gives

`0101`.

• `4 ^ 2` results in `6` and `4 ^ 3` results in `7`, while `4 ^ 4` results in `0`.

We will use the XOR operator for our GNU Radio implementation. The approach will

involve constructing a binary symmetric channel using a Gaussian channel model and

applying the Hamming code in parallel. This will demonstrate improved error performance

compared to a standard channel without error correction.

(Refer Slide Time: 18:39)

Let's put together the components for our system. We'll start with a random source. Since

we are using Binary Phase Shift Keying (BPSK), a binary source is sufficient. We'll need

to configure a few essential elements: a BPSK constellation object, a constellation encoder,

and a constellation decoder. We'll set up these components as follows:

1. BPSK Constellation Object: We'll name this `myBPSK` and configure it for BPSK

modulation.

2. Constellation Encoder: We'll use the `myBPSK` constellation object for encoding.

3. Constellation Decoder: We'll also use the `myBPSK` constellation object for decoding.

Next, we'll connect these components. To manage the flow of data, we'll add a throttle

block to control the rate.

After that, we will add the following blocks:

• Complex to Real Converter: To convert complex numbers to real numbers, we'll

use the "complex to real" block.

• Noise Source: We'll include a noise source to simulate real-world conditions. This

will be a real noise source with adjustable amplitude and noise standard deviation.

We’ll set the range for noise from 0 to 10, with a step of 0.1.

• Adder: We'll use an adder block to combine the noisy signal with the original signal.

To prepare the signal for decoding:

• Float to Complex Converter: We'll convert the float values back to complex

numbers. The real part will be taken from the signal, and the imaginary part will be

set to 0 using a constant source.

We’ll visualize the results with:

• Time Sink: Add a time sink to observe the signals. The time sink will have two

inputs, and we’ll configure it to display float values. Additionally, we will include

a "char to float" block to convert and view the bytes as float values.

To visualize errors:

1. Histogram Sink: Add a histogram sink to observe the distribution of errors. We’ll use

the subtract block to find the difference between the expected and actual values, and the

absolute value block to get the magnitude of errors.

2. Layout Adjustments: Rotate and arrange the blocks for clarity. This will help in

visualizing the error patterns effectively.

Finally, run the flow graph. Initially, with no noise, you should see no errors. As you

increase the noise level, the blue and red signals will start to diverge, indicating errors.

Adjust the histogram range and scale to better visualize the errors. Adding an absolute

value block will help in displaying the magnitude of the errors.

By adjusting these settings, you’ll be able to clearly see and analyze the error patterns in

your BPSK system.

(Refer Slide Time: 19:18)

As you can see, errors are appearing in the results. To address this, we'll need to adjust the

settings. Ensure that the accumulation option is turned offset it to "no." Adding a grid to

the visualization will help us better understand the error distribution. Now, we can

effectively visualize errors by comparing the number of detected errors with the actual

number of correct bits.

We have our base setup complete. Next, we need to incorporate a Hamming code into our

flow graph. To do this, we'll modify the existing setup to accommodate Hamming

encoding. We will continue using the random source but will replicate several components

to manage the Hamming code processing.

Here the plan is:

1. Random Source: We will use this as before but now need to handle multiple bits for

Hamming encoding.

2. Hamming Encoding: We'll use a Python block to perform the Hamming encoding. This

block will take in 4 bits at a time and output 7 bits.

(Refer Slide Time: 21:06)

To achieve this:

• Demultiplexer: First, we need to demultiplex the data stream to handle 4-bit chunks.

Press `Ctrl+F` or `Command+F` and search for "stream demux." Add a stream

demux block and configure it to split the stream into 4-bit segments. Set the data

type to byte.

• Multiplexer: We’ll also need a stream mux block to combine the encoded 7-bit

segments back into a single stream. Similarly, press `Ctrl+F` or `Command+F`,

search for "stream mux," and add this block. Configure it to handle 7-bit segments

with byte data type.

• Hamming Encoder: Implement the Hamming encoder as a Python block. Press

`Ctrl+F` or `Command+F`, search for "Python," and add the Python block.

Double-click to open the editor and choose your preferred Python editor for coding.

Remove any unnecessary content to focus on your Hamming encoding

implementation. You don’t need the example parameter provided.

With these adjustments, you’ll be able to integrate the Hamming code into your flow graph

effectively and analyze the performance.

We don't need this section. We'll name our block "7 for Hamming Encoder." This block

will accept 4 ̀ int8` inputs and produce 7 ̀ int8` outputs, and we won’t be using any example

parameters. We will set the input items as 0, 1, 2, and 3, and the output items as 0 through

6. Our goal is to perform XOR operations based on these inputs.

(Refer Slide Time: 24:57)

To understand how to perform these XOR operations, let's look at the generator matrix. It

is clear that the first 4 output bits are directly the same as the input bits because they appear

unchanged. The fifth bit is calculated by XORing the first, second, and fourth bits from the

input. Similarly, the sixth bit is computed by XORing the first, third, and fourth bits, and

the seventh bit results from XORing the second, third, and fourth bits.

Now, let’s implement this using the XOR operator in the GNU Radio Python block. For

the first 4 bits, we simply map them directly from the inputs. For the remaining bits, we

will use the XOR operations:

• Output item 4 (the fifth bit) is computed as: `input[0] XOR input[2] XOR

input[3]`

• Output item 5 (the sixth bit) is computed as: `input[0] XOR input[1] XOR

input[3]`

• Output item 6 (the seventh bit) is computed as: `input[1] XOR input[2] XOR

input[3]`

(Refer Slide Time: 27:39)

You can verify that this implementation matches the XOR operations specified by the

generator matrix. Ensure that these operations correspond correctly to the expected

patterns, like 1101, 1011, and 0111.

With this, we can save and exit the Python block editor. Our Hamming encoder is now

ready. While we could have implemented this as a matrix operation, this approach provides

a clearer instructional example.

Next, we'll need to connect the stream and multiplex it back for transmission. To do this,

we’ll copy and paste the components required for modulation and noise addition:

1. Copy the Encoder: `Ctrl+C`, `Ctrl+V` to duplicate the Hamming encoder.

2. Add Complex to Real: `Ctrl+C`, `Ctrl+V` to duplicate the Complex to Real block.

3. Add Noise: `Ctrl+C`, `Ctrl+V` to duplicate the Noise block.

4. Add Adder: `Ctrl+C`, `Ctrl+V` to duplicate the Adder block.

5. Add Float to Complex: `Ctrl+C`, `Ctrl+V` to duplicate the Float to Complex block,

along with the Constant Source.

(Refer Slide Time: 30:53)

Connect these blocks accordingly and arrange them neatly to improve the layout. Position

the stream demux, Hamming encoder, and stream mux blocks effectively to streamline the

flow.

Let's organize our setup for decoding. First, we'll position the noise source, complex-to-

real conversion, and constant source. After that, we need to add the constellation decoder

and adjust the layout to create some space for this component. We'll rotate this decoder to

the left for better alignment.

Before we proceed with converting characters to floats, we need to implement Hamming

decoding. For this, we'll use a syndrome-based decoder utilizing the parity check matrix

we discussed earlier. By examining the syndrome and identifying its corresponding index

in the parity check matrix, we can pinpoint the location of errors and perform the necessary

corrections.

(Refer Slide Time: 34:16)

We'll begin by setting up a new Python block for Hamming decoding. This block will be

configured with 7 inputs and 4 outputs, reflecting the 7,4 Hamming code structure. We

don't need the example parameters, so we will remove those. Our main task is to calculate

the syndrome and flip the appropriate bit. Given that our generator matrix places the

original 4-bit sequence in the first part, correcting the identified bit allows us to directly

read the decoded data from the first 4 bits.

Let’s outline the decoding process:

(Refer Slide Time: 34:58)

1. Determine the Syndromes: We'll calculate three syndromes based on XOR operations

involving the received inputs. For clarity, we'll reference the Hamming parity check matrix

as follows:

 1101100

 1011010

 0111001

 We will use this matrix to compute the syndromes:

• Syndrome 1: XOR input items according to the first row of the parity matrix. For

example, `syndrome1 = input[0] XOR input[1] XOR input[3] XOR input[4]`.

• Syndrome 2: XOR input items based on the second row of the matrix, such as

`syndrome2 = input[0] XOR input[1] XOR input[2] XOR input[5]`.

• Syndrome 3: XOR input items according to the third row, for instance, ̀ syndrome3

= input[1] XOR input[2] XOR input[3] XOR input[6]`.

2. Calculate Overall Syndrome: Combine these syndromes into a single value where:

• Syndrome 1 represents the least significant bit,

• Syndrome 2 represents the middle bit,

• Syndrome 3 represents the most significant bit.

 This combined syndrome is calculated as: `syndrome = syndrome1 + (syndrome2 * 2)

+ (syndrome3 * 4)`.

 For example:

 `001` results in 1,

 `010` results in 2,

 `011` results in 3,

 `100` results in 4,

 `101` results in 5,

 `110` results in 6,

 `111` results in 7.

 Using these values, you can determine the specific bit to correct.

Now, we are ready to perform the bit corrections based on the computed syndromes.

I will now directly correct the input items based on the syndrome values. Here’s the

approach:

First, we’ll loop through each syndrome value using the `enumerate` function. This

provides both the index and the syndrome value. Based on the syndrome, we will perform

the appropriate correction.

Let's start with a syndrome value of 3. If the syndrome value is 3, it indicates an error in

the first bit. To correct this, we will flip the first bit. Specifically, if the syndrome is 3, we

swap the value of input item 0 with its negation: `input_items[0] = -input_items[0]`.

Next, for a syndrome value of 5, the error is in the second bit. To flip the second bit, we

simply change the second bit: `input_items[1] = -input_items[1]`.

Similarly, for a syndrome of 6, the error is in the third bit. We perform the correction by

setting the third bit accordingly: `input_items[2] = -input_items[2]`.

For a syndrome value of 7, which indicates an error in the fourth bit, we will modify the

fourth bit: `input_items[3] = -input_items[3]`.

We need to handle all these syndromes appropriately, but we’ll just focus on the first four

bits since they directly affect the message. Here’s a summary:

• Syndrome 3 affects the first bit.

• Syndrome 5 affects the second bit.

• Syndrome 6 affects the third bit.

• Syndrome 7 affects the fourth bit.

If the syndrome is 0, no corrections are necessary, as it indicates no errors.

Finally, we'll copy the corrected values back to the outputs. For instance:

• `output_item[0] = input_item[0]`

• `output_item[1] = input_item[1]`

These outputs now represent the corrected message, with the first four bits corresponding

to the actual data.

With our decoder configured and the corrections implemented, let’s finalize this by setting

up the flow graph. We need to split the constellation by using a stream demuxer. Use

`Ctrl+F` or `Cmd+F` to find and add the stream demux block. Rotate the demux block as

needed, and ensure it handles byte data with 7 inputs.

We’ll also need a stream mux block for combining the data. Add this block, ensuring it’s

set to handle byte data with 1 input and 4 outputs. Connect the stream mux to the decoder,

then use `char to float` and `subtract` blocks to process the output. Connect these to a

time sink for visualization.

(Refer Slide Time: 37:32)

Add a histogram sink to observe error correction, setting it to 2 inputs. Use `Ctrl+C` and

`Ctrl+V` to duplicate and configure ̀ subtract` and ̀ abs` blocks. Connect these to compare

the original data with the corrected output.

Execute the flow graph to verify error correction. To test its effectiveness, increase the

histogram points and sample count, then evaluate the performance with varying levels of

noise.

Let's proceed with integrating the absolute value block. First, copy and paste the block

using `Ctrl+C` and `Ctrl+V`. Add the absolute value block here and connect it

appropriately. With these adjustments made, we're ready to test the flow graph.

(Refer Slide Time: 40:19)

When you execute the flow graph, you should observe some level of error correction taking

place. To get a clearer picture, increase the number of histogram points and samples, and

introduce some noise into the system.

As you observe the results, you may notice that the blue trace starts to rise slightly, while

the red trace remains a bit lower. This indicates that the system is successfully correcting

single-bit errors. Adjusting the display might be necessary for the peak of the red trace to

settle, which will show a lower peak compared to the blue trace, confirming that one-bit

errors are being corrected.

For further verification, you can manually introduce a bit flip to ensure that all one-bit

errors are corrected. Here’s how to do it:

• Use `Ctrl+F` or `Cmd+F` to find and add a constant block.

• Set this constant block to byte format and configure it to add a value of -1 to the

bit.

• Multiply this by -1 to introduce a bit error.

(Refer Slide Time: 43:39)

Alternatively, you can edit the Hamming encoder directly to introduce a bit error by

flipping a bit in the encoding process. Execute the flow graph after making these changes.

If you find that the Hamming code correctly corrects single-bit errors even after introducing

these errors, it confirms that the implementation is accurate. If you need to remove the

manually introduced error, make sure to reset your setup.

This exercise demonstrates that the Hamming encoder and decoder can effectively correct

one-bit errors even in the presence of noise. You can observe the high efficiency of error

correction by waiting for the results to stabilize.

Finally, it's worth noting that while this implementation of the Hamming decoder is

functional, it could be optimized. Currently, we manually check each syndrome and flip

the corresponding bit. GNU Radio offers other advanced error coding options, such as

Reed-Solomon coding and polar codes. By exploring these options, you can leverage more

sophisticated techniques for error correction. For instance, you can use `Ctrl+F` to search

for "coding" to find various coding blocks like `FECAsync decoder`, `FECAsync

encoder`, and more, which can be combined to achieve better results.

There is an alternative method that leverages Python for a more efficient implementation

of error correction. Instead of manually checking and flipping bits for each syndrome, you

can use a mapping approach. For instance, you can create a Python dictionary to map each

syndrome value to the corresponding bit that needs to be flipped.

Consider this mapping: If the syndrome is 3, the bit to flip is 0. If the syndrome is 5, the

bit to flip is 6. You can set up a dictionary like this:

syndromemap = { 3: 0, 5: 1, 6: 2, 7: 3, 1: 4, 2: 5, 4: 6}

(Refer Slide Time: 43:51)

With this dictionary, you no longer need multiple lines of code. Instead, you can simply

use:

bit_to_flip = syndromemap.get(syndrome)

This streamlined approach means that if the syndrome is 3, `syndromemap[3]`

automatically gives you 0, indicating that the 0th bit should be flipped. To make the code

even clearer, you can use:

idx = syndromemap.get(syndrome)

This reduces the complexity of your code, making it more readable and maintainable by

directly mapping each syndrome to the corresponding bit flip.

Additionally, remember to confirm that the syndrome is not 0. If the syndrome equals 0,

no bit flip is needed. After implementing these changes, execute the flow graph again. You

should observe the original performance, and by adjusting the noise levels, you will see

that the Hamming code performs effectively.

In this lecture, we demonstrated one method to implement the binary Hamming code using

GNU Radio's embedded Python block. This method offers a simple yet powerful approach

for realizing the Hamming code. We verified the single-error correction capability of the

Hamming code by deliberately introducing a bit error and confirming that the code could

correct it. In future lectures, we will explore how error correction codes integrate into

communication systems and how they can enhance overall performance. Thank you.

