
Digital Communication using GNU Radio

Prof. Kumar Appaiah

Department of Electrical Engineering

Indian Institute of Technology Bombay

Week-12

Lecture-57

Error Control Coding: Hamming Codes

Welcome to this lecture on Digital Communication using GNU Radio. I’m Kumar Appiah

from the Department of Electrical Engineering at IIT Bombay. Today, we will continue

our discussion on perfect codes and Hamming codes. To recap, a perfect code ensures that

for any received n-length bit sequence, a minimum number of bit flips will yield a unique

code word, leaving no ambiguity.

(Refer Slide Time: 00:56)

For instance, the 3-bit repetition code is a perfect code because each 3-bit sequence maps

uniquely to a single code word with the least number of bit flips. In contrast, the 4-bit

repetition code suffers from ambiguity and thus is not a perfect code. We also covered the

concepts of Hamming weight and distance in our previous discussion.

(Refer Slide Time: 03:06)

Let’s briefly revisit these concepts. For binary vectors, Hamming weight and distance are

closely related. Specifically, the Hamming weight of an n-bit sequence is the count of 1s

in that sequence. For two n-bit sequences, x1 and x2, the Hamming distance, denoted as dH,

is defined as the weight of the XOR of x1 and x2.

To illustrate, consider two 5-bit sequences: 00101 and 00111. To find where the bits differ,

we compare them bit by bit: same, same, different, different, same. Thus, the Hamming

distance should be 2. Alternatively, we can compute this by XOR-ing the sequences

bitwise.

The result is 00101 XOR 00111 = 00010, which has a weight of 2, indicating a Hamming

distance of 2. The Hamming distance is a useful metric because it represents the number

of bit flips required to transform one n-bit sequence into another, which is crucial for

determining the minimum number of bit flips needed to correct errors and obtain a valid

code word.

(Refer Slide Time: 04:43)

Lastly, remember that our goal is to find the least Hamming weight error pattern e such

that H(X + e) = H(Y), where Y = X + e represents the received sequence with an error

pattern e.

When you compute HY, known as the syndrome, it is given by 𝐻𝐻𝑌𝑌 = 𝐻𝐻 × (𝑋𝑋 + 𝐸𝐸), which

simplifies to 𝐻𝐻𝑌𝑌 = 𝐻𝐻𝑋𝑋 + 𝐻𝐻𝐸𝐸 . Since H X equals zero, this reduces to 𝐻𝐻𝑌𝑌 = 𝐻𝐻𝐸𝐸 . The

advantage of using a linear block code is that if H E can be uniquely mapped to an error

pattern E, specifically, if H E uniquely identifies E and E has the minimum Hamming

weight, then we can correct errors effectively.

To illustrate, recall the 4-bit parity code. We were unable to uniquely map H E to E in this

case. For example, consider the repetition code with a parity-check matrix. If the generator

matrix G is [1; 1; 1], there are only two 1-bit error patterns to consider. The mapping of H

E back to E is feasible because:

(Refer Slide Time: 06:39)

Thus, there is a clear mapping between these patterns and their syndromes. However, if we

consider a 4-bit repetition code where G is [1; 1; 1; 1], correcting a single error is

straightforward because the syndrome will always uniquely identify the error, whether it's

1 1 1 1 or any other single-bit error pattern.

Let's check the syndromes for some error patterns. For example, if we have 1 1 0 0:

1. Multiply and sum the first two columns to get 0; 1; 1; 0; 1; 1; 0.

2. For 1 0 1 0, the result is 0; 1; 0.

3. For 1 0 0 1, the result is 1; 0; 0; 1; 1; 1; 0.

Notice that patterns yielding the same syndrome indicate that not all 2-bit error sequences

can be uniquely corrected. Therefore, this code is not perfect.

To clarify, a perfect code ensures that every possible sequence can be uniquely mapped to

a single valid code word with a minimum number of bit flips. For example, the 3-bit

repetition code is perfect because:

• The sequence 0 0 0 maps to itself.

• The sequence 1 1 1 maps to itself.

(Refer Slide Time: 07:58)

Here, a single bit flip will map to 1 1 1, and flipping more bits will eventually map back to

0 0 0. Thus, all sequences are uniquely mapped, demonstrating the concept of a perfect

code.

(Refer Slide Time: 08:52)

To ensure that the minimum distance code words are unique, we need to construct codes

where, given an n-length bit vector, performing the minimum number of bit flips will lead

us to a distinct code word. The question then arises: can we construct a family of perfect

single error-correcting codes? The answer is yes, and we are going to focus on a specific

family known as Hamming codes.

Hamming codes are among the earliest and most well-known error control codes. They

were pivotal in the development of subsequent modern coding schemes. Their uniqueness

and ease of understanding make them a great subject for detailed discussion. We will delve

into constructing Hamming codes using their parity-check matrix, rather than focusing on

the intricate details of their formulation.

The Hamming code belongs to the class of perfect (n, k) linear block codes. A perfect (n,

k) linear block code ensures that every n-bit sequence has a unique minimum distance code

word. In other words, no other code word will have the same minimum distance as this

particular code word. For Hamming codes, n is chosen to be 2m - 1, and k is 2m - 1 - m,

where m is an integer that starts from 1 and increases.

(Refer Slide Time: 10:11)

Let’s analyze this choice. For binary Hamming codes:

• If m = 1, we get n = 21 - 1 = 1 and k = 21 - 1 - 1 = 0. This is not a valid code.

• For m = 2, we get n = 22 - 1 = 3 and k = 22 - 1 - 2 = 1. This corresponds to the 3-bit

repetition code, which qualifies as a Hamming code according to this definition.

• For m = 3, we have n = 23 - 1 = 7 and k = 23 - 1 - 3 = 4. This code is referred to as

the [7, 4] Hamming code.

Now, why do we use n = 2m - 1 and k = 2m - 1 - m? To understand this, let’s look at the

parity-check matrix. Our goal is to correct exactly one error. In terms of perfect codes, this

means every syndrome (which is the result of the parity-check matrix) should be unique.

For a perfect code, the minimum distance between code words is such that if you flip one

bit, the resulting vector should still be closest to the original code word.

Therefore, the minimum distance between code words must be such that any single bit flip

will still identify the closest code word correctly, ensuring reliable error correction.

(Refer Slide Time: 11:11)

Let's consider the scenario where you flip any one bit. The key characteristic of the

Hamming code is that the closest code word, in terms of Hamming distance, will always

be the original code word from which you started. To define this precisely, we use a specific

form of the parity-check matrix for the [7, 4] Hamming code.

Here, we have a parity-check matrix which we’ll denote in a particular format. There are

indeed multiple possible parity-check matrices for the [7, 4] Hamming code, but we’ll use

one particular matrix for illustrative purposes. This matrix includes the pattern [1, 1, 0, 1]

and an identity matrix. Placing the identity matrix in this position simplifies the process of

writing the generator matrix using an efficient method known as the 𝐴𝐴  𝐼𝐼 trick.

With this specific parity-check matrix for the [7, 4] Hamming code, our claim is that each

one-bit error pattern results in a unique syndrome. Let's break this down: if an error occurs

in a particular bit position, the syndrome generated is unique to that position. For instance,

if an error occurs in the first bit, the resulting syndrome is [1, 1, 0]; if the error is in the

second bit, the syndrome is [1, 0, 1]; and if the error is in the third bit, the syndrome

becomes [0, 1, 1]. Thus, each one-bit error corresponds to a distinct syndrome.

(Refer Slide Time: 16:38)

To correct errors, you compute 𝐻𝐻 × 𝑌𝑌 , where Y is the received n-bit sequence. This

calculation yields 𝐻𝐻 × 𝑋𝑋 + 𝐸𝐸, which simplifies to 𝐻𝐻 × 𝐸𝐸, where E is the error vector.

The syndrome 𝐻𝐻 × 𝐸𝐸 will correspond to one of the columns in the parity-check matrix. By

identifying which column matches the syndrome, you can determine the error pattern and

correct it.

In essence, the design of the matrix H ensures that each single-bit error results in a unique

syndrome, allowing straightforward error detection and correction. The number of single-

bit error patterns is equal to n, and therefore, H must have n unique columns. Consequently,

the size of H is (𝑛𝑛 − 𝑘𝑘) × 𝑛𝑛, ensuring that it can accommodate all possible single-bit error

patterns uniquely.

Let’s break this down. First, note that for a Hamming code, you have 2m - 1 single-bit error

patterns. Consequently, the parity-check matrix H must have columns representing all

possible non-zero m-bit sequences. For example, if m = 3, then k = 4, and H will be an

𝑚𝑚 × 𝑛𝑛 matrix where n = 2m - 1. In this case, the matrix H will have columns consisting of

all possible non-zero m-bit sequences.

(Refer Slide Time: 19:36)

Let's construct a Hamming code for m = 2. We will compute the parity-check matrix H.

Here, we have randomly placed the columns but ensured the matrix conforms to the

required structure. For this matrix, using the identity trick, we can find the generator matrix

G. This example corresponds to the [3, 1] repetition code.

Now, for m = 3, let's consider a more detailed example. We’ll construct the parity-check

matrix H for this case.

In this matrix, I’ve arranged the columns manually. For simplicity, I’ve used some tricks

to avoid writing too much, including copying and adjusting columns as needed.

With n = 15 and k = 11, this is a [15, 11] Hamming code. Constructing the generator matrix

G for this code can be an exercise for you. You can swap columns to align the identity

matrix on the right, which will give you the required structure.

(Refer Slide Time: 25:44)

In the constructed parity-check matrix, all columns are unique, and they include all 23 - 1

non-zero 3-bit vectors. The key observation here is that multiplying H by a zero vector

results in zero, which is true for any parity-check matrix. However, multiplying by any

one-bit vector will always produce a unique result, and similarly, no two different 2-bit

vectors will sum to zero. This implies that you need to flip at least three bits to correct an

error, ensuring that the code words of the Hamming code have a minimum distance of at

least three. Therefore, this guarantees that any single-bit error pattern can be uniquely

decoded, making the Hamming code an efficient and effective error-correcting code.

Let's clarify the key concept here. Using the same methods we've discussed, we can

construct the generator matrix for the Hamming code. For the [7,4] Hamming code, we'll

employ the same approach used previously. We start with the identity matrix and an

accompanying matrix A. For the generator matrix G, we arrange it also.

Let’s examine the properties of this matrix. Each code word in the Hamming code has a

minimum Hamming weight of 3. This means every non-zero code word contains at least

three 1's. For instance, a code word like 1 0 0 0 0 0 0 or 1 1 0 0 0 1 1 has at least three 1's.

(Refer Slide Time: 27:09)

To verify this, let’s check how these code words interact. If you take any code word and

add it to another, such as 1 1 0 plus 1 0 0 plus 0 1 0, the result is 0. This confirms that

adding specific code words results in zero, consistent with the properties of linear codes.

By performing similar calculations for all possible vectors, we can verify that there are 16

code words, each with a length of 7. If you flip one bit in any code word, you can detect an

error. However, flipping two bits can lead to detection but not necessarily correction.

Let’s illustrate this with an example. Suppose we have the vector 0 0 0 0 1 0 1. If you apply

this to the error vector, the syndrome might incorrectly indicate where the error is. For

instance, the syndrome calculation might show 1 0 1, suggesting an error in a different

location than where it actually occurred.

The correct decoded code word, in this case, would be 1 0 1 0 1 0 0 1 0 1, which is one of

the valid code words. The Hamming code is perfect for single-bit errors because it

guarantees correction. However, when two-bit errors occur, while the code can detect the

errors, it cannot always correct them.

(Refer Slide Time: 27:43)

Thus, with a single-bit error, the unique columns of H ensure that the error can be located

and corrected. The probability of block errors can be analyzed using combinatorial terms,

but typically, the p2 term, which accounts for two-bit errors, will dominate.

The Hamming code is indeed an elegant solution for single-bit error correction, but it has

its limitations when it comes to handling multiple errors. Specifically, while the Hamming

code always maps to a unique element, if you encounter two-bit errors, it might incorrectly

identify a valid code word, resulting in a block error. Determining the exact bit error

probability for such cases is a bit more complex and is covered in specialized references,

which you can consult for detailed calculations.

As for the rate of the Hamming code, it is given by the formula:

Rate =
2𝑚𝑚 − 1 −𝑚𝑚

2𝑚𝑚 − 1

For the [7,4] Hamming code, this results in a rate of 4
7
. If you extend this to larger values

of m, for example, with m = 4, the rate becomes 11
15

, and so on. As m increases, the

Hamming code can achieve better rates, but the challenge of single error correction persists.

In practice, for larger block lengths, single error correction becomes increasingly

insufficient. As the block size grows, the likelihood of encountering more than one error

rises significantly. This is analogous to repeatedly tossing a coin: although getting tails

might be rare on a single toss, the probability of landing two tails increases with the number

of tosses. Thus, as block lengths increase, the probability of encountering multiple errors

becomes much higher, making single error correction less effective.

(Refer Slide Time: 30:47)

Using Hamming codes for very large block lengths can be efficient in terms of rate, but it

is generally not ideal for practical applications. This is because the ability to correct only a

single-bit error becomes inadequate when the probability of errors in a binary symmetric

channel is relatively high. For error probabilities such as 10−3, 10−4, or 10−5, Hamming

codes can be quite beneficial, even for large values of m. However, when faced with a

substantial number of bit errors, the limitations become apparent.

Before we conclude our discussion on Hamming codes, it's important to recognize that they

serve as a foundation for many modern coding techniques. For instance, Reed-Solomon

and Reed-Muller codes are widely used in various applications. Reed-Solomon codes are

particularly common in error correction for optical discs like compact discs and DVDs,

while Reed-Muller codes are used in block error control.

Additionally, there are advanced families of block codes such as Turbo codes, LDPC

codes, and Polar codes. These codes are designed with randomness-oriented strategies and

perform exceptionally well with large block lengths, offering excellent error performance

and high rates. They are known for their efficiency and optimality, particularly in terms of

channel capacity, which we will explore further in upcoming lectures.

Moreover, convolutional codes are another category used for continuous error control.

These codes form a trellis structure to handle errors progressively, similar to equalization

techniques. For more detailed information on these and other coding techniques, I

encourage you to consult comprehensive textbooks on error control coding.

In summary, while Hamming codes and linear block codes provide an effective and

efficient starting point for error correction, especially in noisy channels, modern coding

techniques offer advanced solutions for handling errors in more complex scenarios. In the

next lecture, we will implement the Hamming code using GNU Radio and analyze its

performance. Thank you.

