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Hello and welcome to this lecture on Digital Communication using GNU Radio. My name 

is Kumar Appiah, and I am with the Department of Electrical Engineering at IIT Bombay. 

Today’s lecture continues our exploration of error control codes. In our previous session, 

we implemented the repetition code in GNU Radio and observed its effectiveness in 

correcting errors. To refresh your memory, with an n-bit repetition code, where n is an odd 

number, we could reliably correct up to 𝑛𝑛−1
2

 bit errors and accurately determine the sent bit. 

This approach significantly reduced the bit error rate. 
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However, a major drawback is the code rate, which is 1
𝑛𝑛
. As n increases, the rate deteriorates 

markedly, making it impractical for large block lengths. In this lecture, we will explore a 

class of linear block codes known as Hamming codes. Hamming codes are notable for their 

ability to correct a single-bit error while maintaining a higher rate than repetition codes. 

They also offer intriguing geometric and structural properties that are worth understanding. 
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We will first discuss perfect codes and then delve into Hamming codes, which are a specific 

type of perfect code. Following that, we will cover syndrome-based error correction. As 

we’ve mentioned in previous lectures, by computing the syndrome, obtained by 

multiplying the received bit vector by the parity-check matrix, and comparing it with 

various error pattern syndromes, we can identify and correct errors. 

Finally, we will explore additional error control methods and discuss commonly used 

techniques in the field. To recap, linear block codes are defined by two parameters, n and 

k. An (n, k) linear block code maps k bits to n coded bits using a linear transformation. 

If you recall, we previously implemented the linear transformation using a matrix 𝐺𝐺. By 



convention, 𝑮𝑮 is a matrix with k rows and n columns. This means the message, which is a 

k-bit vector, is pre-multiplied by 𝑮𝑮, resulting in an n-bit vector, known as the codeword. 

Correspondingly, there is an (𝑛𝑛 − 𝑘𝑘) × 𝑛𝑛 parity check matrix, denoted 𝐻𝐻. The matrix 𝑯𝑯 is 

designed so that when any codeword is multiplied by 𝑯𝑯, the result is zero. Essentially, the 

parity check matrix 𝑯𝑯 is used to verify that no error has occurred.  
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Syndromes are obtained by multiplying the received bit vector by the parity check matrix 

𝑯𝑯. If the result, which is the syndrome, is zero, it indicates that no errors have occurred, 

though there could be many errors, this usually suggests no errors. If the syndrome is non-

zero, it not only signals the presence of an error but can also potentially identify where the 

error occurred. This was demonstrated with parity check matrices, such as those used in 

parity codes, where they indicated the occurrence of errors and sometimes even their 

location. 

Now, let's briefly discuss perfect codes or perfect linear block codes. Consider the (4,2) 

double parity code with codewords: 



 0000, 0101, 1011, 1110  
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To find the generator and parity check matrices for this code, let’s do a quick analysis. For 

example, with a 4-bit parity code: 

 0000, 0101, 1011, 1110  

We generate the code by taking the first two bits, finding their parity, and repeating it. For 

instance, 10 has parity 1, so 11 is repeated twice. Similarly, 01 has a parity of 1, so you get 

11. This code is essentially a variant of the 3-bit parity code, which involves appending 

bits to form the codewords. 

To find the generator matrix for this code, we can use the standard approach by selecting 

two linearly independent codewords. For this example, let’s choose: 

 1010, 1110  

To find the parity check matrix, here's a useful trick: if you write your generator matrix in 



the form [ 𝐼𝐼 ∣ 𝐴𝐴 ], where I is the 𝑘𝑘 × 𝑘𝑘 identity matrix and A is the remaining matrix, then 

A must be an (𝑛𝑛 − 𝑘𝑘) × 𝑘𝑘 matrix. 

Let’s construct the generator matrix for the 3-bit parity code: 

• Choose two linearly independent codewords. 

• Use them to form the generator matrix. 

Finally, for the parity check matrix, if you write the generator matrix as [ 𝐼𝐼 ∣ 𝐴𝐴 ], where I is 

the identity matrix and A is the matrix, then A should be an (𝑛𝑛 − 𝑘𝑘) × 𝑘𝑘 matrix. 

To construct the parity check matrix 𝑯𝑯, you need to ensure that 𝐻𝐻 ⋅ 𝐺𝐺𝑇𝑇 = 0. Here’s an 

efficient way to achieve this without much hassle:  

Consider the matrix 𝑯𝑯 in the form [𝐴𝐴𝑇𝑇 ∣∣ 𝐼𝐼 ], where 𝐴𝐴 is an (𝑛𝑛 − 𝑘𝑘) × 𝑘𝑘 matrix and 𝑰𝑰 is an 

(𝑛𝑛 − 𝑘𝑘) × (𝑛𝑛 − 𝑘𝑘)  identity matrix. To determine the size of 𝑰𝑰 , note that since 𝑨𝑨  is 

(𝑛𝑛 − 𝑘𝑘) × 𝑘𝑘, the transpose 𝐴𝐴𝑇𝑇 will be 𝑘𝑘 × (𝑛𝑛 − 𝑘𝑘), and 𝐼𝐼 must be (𝑛𝑛 − 𝑘𝑘) × (𝑛𝑛 − 𝑘𝑘). 

Let’s use this to construct 𝑯𝑯. Suppose we have: 

𝐺𝐺 = [ 𝐼𝐼 ∣ 𝐴𝐴 ] 

Then: 

𝐻𝐻 = [𝐴𝐴𝑇𝑇 ∣∣ 𝐼𝐼 ] 

To verify this, compute: 

𝐻𝐻 ⋅ 𝐺𝐺𝑇𝑇 = [𝐴𝐴𝑇𝑇 ∣∣ 𝐼𝐼 ] ⋅ [ 𝐼𝐼𝑇𝑇 ∣∣ 𝐴𝐴𝑇𝑇 ] 

Expanding this: 

𝐻𝐻 ⋅ 𝐺𝐺𝑇𝑇 = [𝐴𝐴𝑇𝑇 ⋅ 𝐼𝐼𝑇𝑇 ∣∣ 𝐴𝐴𝑇𝑇 ⋅ 𝐴𝐴𝑇𝑇 ] = [𝐴𝐴𝑇𝑇 ∣∣ 𝐴𝐴𝑇𝑇 ⋅ 𝐴𝐴𝑇𝑇 ] 

Since 𝐴𝐴𝑇𝑇 ⋅ 𝐴𝐴𝑇𝑇 results in the zero matrix under modulo 2 arithmetic, this confirms that 𝑯𝑯 is 

correct. 
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For instance, in a systematic linear block code where the codeword appears directly, you 

can see an identity matrix at the front. For example, if we have a (4,2) code with the 

following codewords: 

0000, 0101, 1011, 1110 

The generator matrix 𝑮𝑮 can be: 

𝐺𝐺 = [ 𝐼𝐼 ∣ 𝐴𝐴 ] 

where 𝑨𝑨 consists of the parity check components. Construct 𝑯𝑯 as: 

𝐻𝐻 = [𝐴𝐴𝑇𝑇 ∣∣ 𝐼𝐼 ] 

For the (3-bit) parity check matrix code, the generator matrix might be: 

𝐺𝐺 = �1 0 1
1 1 0� 



To find the parity check matrix 𝑯𝑯, use the approach: 

𝐻𝐻 = [𝐴𝐴𝑇𝑇 ∣∣ 𝐼𝐼 ] 

For the 3-bit parity code, 𝑨𝑨 is: 

𝐴𝐴 = �1 1
1 1� 

Thus: 

𝐻𝐻 = �
1 1
1 1
0 1

� 

Verify that 𝑯𝑯 is correct by checking that the syndrome is zero for codewords, confirming 

the code's correctness. If the parity check matrix results in non-unique columns or other 

issues, this may reflect linear dependencies in 𝑯𝑯 or 𝑮𝑮, but for a well-constructed code, 

these will be minimal. 
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This method of constructing 𝑯𝑯 from 𝑮𝑮 and verifying correctness ensures accurate error 

detection and correction capabilities. 

Let’s examine an intriguing error event by considering a specific error pattern. Suppose we 

have an error event E with some bit flips that result in a non-unique outcome. For 

illustration, let’s assume the received sequence is 0 1 0 0. Although I’ve presented this 

sequence as a string, you can envision it as a column vector. For clarity, let’s refer to this 

sequence as X rather than calling it an error. 

The question now is: which code word was most likely transmitted? Given 0 1 0 0, we need 

to determine its syndrome. In this case, the syndrome is 1 1. The issue with this syndrome 

is that it does not uniquely identify the exact error. The 1 1 syndrome could result from an 

error occurring in the first bit or the second bit of the sequence. 
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To better understand this, consider the decodability of the code. Suppose we have a set of 

code words and the received sequence is 0 1 0 0. A single-bit flip could have led to this 

received sequence. For instance, flipping one bit in 0 1 0 0 might result in 1 1 0 0, or 



flipping a different bit could result in 0 0 0 0. Therefore, multiple single-bit flips can 

produce valid code words, creating ambiguity in identifying the exact transmitted code 

word. 

To illustrate this further, let’s consider another example. Suppose we have 0 1 1 1 and we 

add it to 0 1 0 0. The result of this addition is 0 0 1 1. Applying the syndrome calculation 

𝐻𝐻 ⋅ 𝑋𝑋  to this result yields 1 1 again. This outcome is consistent with our previous 

understanding that 𝐻𝐻 ⋅ 𝑋𝑋 (where X is a code word with an added error) is equivalent to 

𝐻𝐻 ⋅ 𝐸𝐸, because 𝐻𝐻 ⋅ code word = 0, thus yielding 1 1. 

The presence of 1 1 in the syndrome indicates that the error could have occurred in the first 

or second bit, or potentially in both. However, for this example, let’s disregard the 

possibility of two-bit errors as they are less likely. Thus, the error could have occurred 

either in the second bit of 0 1 1 1, which would result in flipping it to 0 0, or in the second 

bit of the received sequence. 

Let me clarify this by correcting the explanation, focusing on the case of the sequence 1 1 

0 0 instead of 0 1 1 1, which makes the analysis a bit easier. 

Consider the sequence 1 1 0 0. To analyze this, we calculate its syndrome using the matrix 

H. If 𝐻𝐻 ⋅ 𝑋𝑋 =  1 1, this indicates that if a single-bit error occurred, it must have been in 

either the first or second position. Specifically, flipping the first bit of 1 1 0 0 results in 0 1 

0 0, and flipping the second bit results in 1 0 0 0. Neither of these outcomes is a valid code 

word. 

Thus, there is no way to correct this error because neither 0 1 0 0 nor 1 0 0 0 corresponds 

to a valid code word. This demonstrates a fundamental problem with this code: not all n-

bit vectors can be uniquely mapped to a single valid code word with the minimum number 

of bit flips. This issue arises due to inherent ambiguities in the generator matrix G and 

parity check matrix H. 

Now, let’s analyze a different example, specifically a 4-bit repetition code where n is 

chosen as an odd number. In practice, an odd number simplifies error correction because 

majority logic becomes unambiguous. For example, with 3 bits, choosing the majority is 



straightforward. However, with 4 bits, if you encounter an equal number of 0s and 1s, the 

decision becomes trickier. 

For the 4-bit repetition code, the generator matrix G is straightforward, and the parity check 

matrix H is the transpose of the identity matrix. This setup ensures that multiplying 0 yields 

0 and multiplying 1 1 1 1 yields 0, validating the parity check matrix. 

However, there are issues with this code as well. For instance, consider the sequence 0 1 1 

0. Similar to the previous case, flipping any single bit in this sequence does not produce a 

valid code word. For example, flipping the first bit results in 1 1 1 0, and flipping the second 

bit results in 0 0 1 0 or 0 1 0 0. None of these sequences is a valid code word. 

Now, examining 2-bit flips, although each sequence is equally likely, performing two-bit 

flips can result in different code words. This discrepancy shows that a 4-bit repetition code 

cannot uniquely map all n-bit sequences to a single code word with minimum bit flips. 

Therefore, this code does not satisfy unique decodability for every possible n-bit sequence. 
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As we move towards more advanced codes like Hamming codes, one crucial requirement 

will be to ensure that for any received n-bit sequence, it is possible to perform the minimum 

number of bit flips to obtain a unique code word. 

Let's discuss an example of a well-structured code word using a 3-bit repetition code. In 

this code, the generator matrix G is [1 1 1]. The code words generated are 0 0 0 and 1 1 1. 

This example will demonstrate how the minimum number of bit flips can be uniquely 

decoded. 

Consider the following sequences and their decoding outcomes: 

 0 0 0 

 0 0 1 

 0 1 0 

 0 1 1 

 1 0 0 

 1 0 1 

 1 1 0 

 1 1 1 

In this 3-bit repetition code, the decoding is straightforward: 

For sequences 0 0 0 and 1 1 1, the code word is clear and unambiguous. This is because 

the most probable event, given a low probability p of errors (where p is less than 0.5), is 

that there are no errors. Therefore, sequences with no bit flips or a single bit flip can be 

decoded uniquely. 

For example, if you start with 0 0 1 and perform a one-bit flip: 

• Flipping the first bit yields 1 0 1, which is not a code word. 

• Flipping the second bit results in 0 1 1, which is not a code word. 

• Flipping the third bit yields 0 0 0, which is a valid code word. 

Similarly, for 1 1 0: 



• Flipping the first bit results in 0 1 0, which is not a code word. 

• Flipping the second bit results in 1 0 0, which is not a code word. 

• Flipping the third bit yields 1 1 1, which is a valid code word. 

In this manner, each of the 23 = 8 possible sequences is mapped to a single, unique code 

word, avoiding ambiguity in decoding. This is in contrast to other codes, such as repetition 

codes or parity check codes, where single-bit flips or multiple-bit flips can lead to 

ambiguous results. 
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Now, let’s discuss the generator and parity check matrices for this code. The generator 

matrix for the 3-bit repetition code is straightforward and is essentially an identity matrix. 

The parity check matrix is also derived from the generator matrix and is used to ensure 

error detection and correction. 

We should also introduce some key concepts: Hamming weight and Hamming distance.  

• Hamming Weight: The Hamming weight of a bit vector X is the number of nonzero 



elements or ones in X. For instance, if X = 0 1 0, its weight is 1 because there is 

one '1'. If X = 1 1 1, its weight is 3, and for X = 0 0 0, the weight is 0. 

• Hamming Distance: The Hamming distance between two n-bit sequences X1 and 

X2 is the number of bits in which they differ. To find this, perform a bitwise XOR 

operation between X1 and X2, then count the number of ones in the result. For 

example, for X1 = 0 1 0 and X2 = 0 1 1, XORing these sequences gives 0 0 1. 

Counting the ones, we get a Hamming distance of 1, indicating that the sequences 

differ in one bit. 

Here's a refined explanation of decoding strategies for linear block codes, which can also 

simplify computer implementation: 

(Refer Slide Time: 29:00) 

 

To begin with, let’s consider the Hamming distance, denoted as DH(X1, X2). This distance 

between two bit vectors X1 and X2 can be computed as the Hamming weight of their XOR, 

𝑋𝑋1 ⊕ 𝑋𝑋2.  

Now, let’s outline the decoding strategy for linear block codes. Suppose you receive a bit 



vector Y, and X is a valid code word. The vector Y represents X with added noise. The 

goal is to find the code word X that is closest to Y in terms of Hamming distance. In other 

words, we want to determine the minimum number of bit flips required to transform Y into 

a valid code word X. 

Why is this strategy optimal? In a binary symmetric channel with a low probability p of 

errors (where p < 0.5), the most likely event is that no errors have occurred, meaning no 

bit flips are necessary. The next most probable scenario is that a single-bit error has 

occurred, so we would flip one bit and check whether the result is a valid code word. If a 

single-bit flip doesn’t yield a code word, we then consider two-bit errors, and so on, to find 

the modification that results in the code word closest to X in terms of Hamming distance. 

Alternatively, we can formulate this problem as finding the least Hamming weight error 

pattern e such that H(X + e) = H(Y), where H is the parity check matrix. In this case, X is 

the most likely valid code word if X = Y + e. Essentially, we are looking for the smallest 

number of bit flips (or smallest Hamming weight vector e) that corrects the received 

sequence Y to match a valid code word X. 

If no bit errors occurred, e would be the all-zeros vector. For a single-bit error, we would 

test vectors like 1 0 0, 0 1 0, 0 0 1, and determine which results in a valid code word by 

checking if H(X + e) = H(Y).  

If the solution is unambiguous, as it is with the 3-bit repetition code, then error correction 

is straightforward. We will delve deeper into these concepts and discuss single-error 

correcting codes, such as Hamming codes, in the next lecture. Thank you. 


