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Error Control Coding: Linear Block Codes 

Welcome to this lecture on Digital Communication Using GNU Radio. I am Kumar Appiah 

from the Department of Electrical Engineering at IIT Bombay. In our previous set of 

lectures, we explored error control codes, focusing particularly on parity check codes and 

repetition codes. We examined how parity check codes enforce even parity, meaning the 

code word contains an even number of 1s, and how repetition codes work by repeating a 

bit 3 or 5 times.  
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We found that repetition codes significantly reduce the probability of error on the binary 



symmetric channel, but they come with trade-offs. Specifically, while the parity check code 

can only detect a single error without correcting it, the repetition code can correct errors, 

albeit with very low efficiency due to its low data rate. 

To broaden our understanding of coding strategies, in this lecture, we will delve into linear 

block codes, which are widely used error control mechanisms. Linear block codes are 

fundamental to many practical error control schemes, and we will explore the Hamming 

code more closely in subsequent lectures.  

So, what exactly is a linear block code? A linear block code is defined by two parameters: 

n and k. Essentially, you take a block of k bits from your bit sequence and map it to n bits, 

where n is typically greater than k, using a binary linear transformation. This linear 

transformation is highly effective because it can be efficiently implemented in both 

software and hardware. The terminology we use, which you might already be familiar with, 

refers to this as an n,k binary code, where the rate of the code is 𝑘𝑘
𝑛𝑛
. 
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To implement these codes, matrix techniques are often employed. Since linear block codes 



are linear by nature, they can be implemented using matrix multiplication, with Modulo 2 

addition to perform the necessary operations. Linear algebra provides several useful results, 

particularly those related to vector spaces, which are instrumental in understanding and 

implementing these codes. While we won't dive deeply into the intricacies of vector spaces 

in this lecture, I'll highlight the relevant properties as we go along to help clarify the 

concepts. 

Lastly, it's important to note that since we're working with bits, and operating within a 

binary field (0s and 1s), the addition and multiplication operations are equivalent to XOR 

and AND operations, respectively. These operations can be implemented very efficiently, 

whether using logical gates in hardware or through software. 

Thus, a linear block code essentially maps 2k k-length binary sequences to 2k n-length 

binary sequences, making it a powerful tool in error control coding. 

If you take a block of k information bits, the total number of possible sequences you can 

generate is 2k. These sequences are then mapped to 2k sequences of length n, where n is 

greater than or equal to k. This implies that redundancy is introduced during the mapping 

process. For clarity, we represent the k-length message sequence as a column vector 𝑚𝑚, 

and the n-length coded sequence as a column vector 𝑋𝑋. Thus, the k-length column vector 

𝒎𝒎 is transformed into an n-length column vector 𝑿𝑿 after applying the coding operation. 

Given that this is a linear code, this transformation can be expressed as a linear 

transformation within the binary field (i.e., 0s and 1s). To do this, we introduce a generator 

matrix, denoted by 𝑮𝑮. By convention, the generator matrix 𝑮𝑮 is defined in the transpose 

sense, meaning it has k rows and n columns. When you pre-multiply the vector 𝒎𝒎 by 𝐺𝐺, 

which is why we use 𝒎𝒎T (the transpose of 𝒎𝒎), you obtain 𝑿𝑿T (the transpose of 𝑿𝑿). The 

elements of 𝑮𝑮 consist of 0s and 1s, with each row representing a code word.  

Let’s break down what this transformation accomplishes. The generator matrix 𝑮𝑮  is 

generally expressed as a "fat" matrix, which means it has more columns than rows, 

specifically, k rows and n columns. Each row corresponds to a code word because if you 

select 𝒎𝒎 as [1 0 0 0]𝑇𝑇 𝑜𝑜𝑜𝑜 [0 1 0 0]𝑇𝑇, you will retrieve the corresponding row of 𝑮𝑮. Each of 



these rows is indeed a code word. Since 𝒎𝒎 can take 2k possible values, 𝑚𝑚𝑇𝑇𝐺𝐺 can also yield 

up to 2k distinct values. In some cases, if the rows are linearly dependent, you might get 

fewer unique values, but we will set that aside for now. 
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If you carefully construct 𝑮𝑮, you will obtain 𝑿𝑿, the coded vector. For every 𝒎𝒎, there is a 

corresponding 𝑿𝑿 that includes enough redundancy so that even if errors occur, it may still 

be possible to reconstruct 𝒎𝒎 or at least detect the errors. This redundancy is the key to the 

error correction capability of the code. 

Before delving into the mechanics of how to effectively use this generator matrix, let’s 

ground our understanding with some practical examples. We’ll revisit familiar examples, 

such as the 3-2 parity check code and the 3-1 repetition code, to illustrate these concepts in 

action. 

Let's delve into the parity check code and explore its elements. For even parity, the code 

includes sequences like 000, 111, and 011. Interestingly, this code qualifies as a linear 

code. Naturally, it’s also a block code, as it involves taking blocks of 2 bits and mapping 



them to 3 bits, which we discussed in the previous lecture. But more importantly, it’s a 

linear block code. Why is that the case? To illustrate, we’ll demonstrate that the code is 

indeed linear. 
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To construct the generator matrix 𝑮𝑮  for this particular code, we'll take a systematic 

approach. One straightforward method is to select two linearly independent code words. 

For instance, the sequence 000 is trivial and doesn’t offer much utility because multiplying 

anything by 000 will always yield 000. Instead, let's define our generator matrix 𝑮𝑮 using 

different rows. For example, we could use the second and third rows, like 101 and 011. 

Now, let’s formalize this. Here, k = 2, meaning 𝒎𝒎 is a 2-bit column vector. To evaluate 

𝑚𝑚𝑇𝑇𝐺𝐺 for each 𝒎𝒎, we can represent 𝒎𝒎 as rows. Starting with 𝑚𝑚 = [0 0],𝑚𝑚𝑇𝑇𝐺𝐺 yields: 

𝑚𝑚𝑇𝑇𝐺𝐺 = 0 × [1 0 1] + 0 × [0 1 1] = [0 0 0] 

Next, for 𝑚𝑚 = [0 1]: 

𝑚𝑚𝑇𝑇𝐺𝐺 = 0 × [1 0 1] + 1 × [0 1 1] = [0 1 1] 
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For 𝑚𝑚 = [1 0]: 

𝑚𝑚𝑇𝑇𝐺𝐺 = 1 × [1 0 1] + 0 × [0 1 1] = [1 0 1] 

Finally, for 𝑚𝑚 = [1 1]: 

𝑚𝑚𝑇𝑇𝐺𝐺 = 1 × [1 0 1] + 1 × [0 1 1] = [1 1 0] 

What can we infer from this? There are several key points to highlight. First, the n-length 

zero vector is always a valid code word in any linear block code. This is because when 𝒎𝒎 

is chosen as the zero vector, the result is always the n-length zero vector, which is a 

fundamental property of linear transformations. Hence, the zero code word is inherently 

part of the linear block code. 

Secondly, all the code words we’ve generated here match the original code words, 

indicating that the generator matrix 𝑮𝑮 we’ve constructed is indeed valid for this code. The 

mapping of 𝒎𝒎 to 𝑚𝑚𝑇𝑇𝐺𝐺 is evident and consistent. 
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One additional point to consider is whether this generator matrix 𝑮𝑮 is unique. It turns out 

that 𝑮𝑮 is not necessarily unique. For instance, we could choose a different 𝑮𝑮 matrix, such 

as: 

𝐺𝐺 = �1 0 1
1 1 0� 

This new matrix is also valid since the rows are linearly independent, meaning you cannot 

simply multiply one row by a scalar to get the other. Thus, while 𝑮𝑮  can vary, the 

fundamental properties and results of the code remain consistent. 

Let's evaluate the vector 𝒎𝒎 and the result of 𝑚𝑚𝑇𝑇𝐺𝐺 for the given scenarios.  

First, we start with 𝑚𝑚 = [0 0], and for simplicity, I'll only write the key outcomes. When 

𝑚𝑚 = [0 0], the result is [0 0 0]. For 𝑚𝑚 = [0 1], we obtain [1 1 0]. When 𝑚𝑚 = [1 0], the 

outcome is [1 0 1], and finally, for 𝑚𝑚 = [1 1], the result is [1 1 1]. 
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If you examine these sequences, you see they correspond to the following mappings: 

• 𝒎𝒎 = [0 0] maps to [0 0 0] 

• 𝒎𝒎 = [0 1] maps to [1 1 0] 

• 𝒎𝒎 = [1 0] maps to [1 0 1] 

• 𝒎𝒎 = [1 1] maps to [1 1 1] 
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Now, let's compare these results. We see that [0 0 0] consistently maps to [0 0 0], [1 1 1] 

maps to [1 1 1], [1 0 1] remains [1 0 1], and [0 1 1] maps to [0 1 1]. This illustrates that we 

have another equivalent generator matrix 𝑮𝑮 for the code, albeit with a slight difference. 

The key difference lies in the mapping from the messages to the coded vectors. For 

instance, in one case, [0 1] maps to [0 1 1], while in another case, it maps to [1 1 1]. 

Similarly, [1 1] may map to [1 1 0] in one scenario and [0 1 1] in another. Despite these 

differences, in terms of error performance and other metrics, these two codes are 

equivalent. They represent the same code, just realized differently.  

This is an important concept to understand. For example, someone might present a 



generator matrix for a 7, 4 Hamming code, and someone else might offer a different matrix 

for the same 7, 4 Hamming code. The mappings may differ, but the codes are 

fundamentally equivalent. The mapping between the messages and the coded vectors can 

be considered as a lookup table, which can always be adjusted as needed. 

There are a couple of additional points to note. First, you can always swap the rows of the 

generator matrix 𝑮𝑮 without affecting performance, though I won't prove that here. You can 

also swap the columns of 𝑮𝑮 without losing any performance. Additionally, the zero vector 

is always a code word. When constructing a generator matrix, ensure you select linearly 

independent code words. Avoid including [0 0 0] as a row in 𝑮𝑮, as it leads to trivial results 

and won't generate all the necessary code words.  
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Next, let’s consider the 3, 1 repetition code, which is quite straightforward. Here, the 

generator matrix 𝑮𝑮 is very simple. With a 1-bit repetition code, 𝒎𝒎 is a 1-element vector. 

Consequently, 𝑮𝑮 has only one row. This is the only 𝑮𝑮 you can construct in this case because 

when you multiply 𝒎𝒎 by 𝑮𝑮, the result is either [0 0 0] or [1 1 1], depending on whether 𝒎𝒎 



is 0 or 1.  

So, for the 3, 1 repetition code, 𝑮𝑮 is a row of three 1s. The code has 21 = 2 code words, 

making this conceptually very simple. The exercise here is to generate all code words using 

this 𝑮𝑮 and verify them, as we just did. Another interesting exercise is to enumerate all 

possible equivalent generator matrices for this linear block code. 

Finally, how do we check if the channel output is a valid code word? One method is to 

evaluate all possible 𝑚𝑚𝑇𝑇𝐺𝐺 combinations, and when the receiver gets an n-bit sequence, you 

can check whether it matches one of the code words. However, this approach is not 

efficient, especially for large k. Instead, due to the linear nature of the code, you can 

determine whether a sequence is a code word by performing a linear operation.  

The key hint here is that since the code words were generated by taking linear combinations 

of the rows of 𝑮𝑮, all you need to do is check if the received sequence is indeed a linear 

combination of those rows. This verification is done using a parity-check matrix, which 

serves as a pair to the generator matrix 𝑮𝑮. 
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Whenever you generate code words using a generator matrix G, there is a corresponding 

matrix H that serves as a check to verify whether a given n-bit vector is indeed a valid code 

word for the code in question. Essentially, you can think of this as having a total of 2n 

possible n-length sequences, out of which 2k are valid code words. These 2k valid code 

words form a vector space. 

The remaining 2n-k sequences are not valid code words. The matrix H can be used to 

determine if a sequence is a valid code word or not. Specifically, H is a matrix of size 

(𝑛𝑛 − 𝑘𝑘) × 𝑛𝑛 such that Hm = 0 for all valid code words m. In other words, H is constructed 

so that it produces a zero inner product with all the valid code words. 
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Another way to view this is that H multiplied by the transpose of G, 𝐻𝐻 ⋅ 𝐺𝐺𝑇𝑇, results in the 

zero matrix. But how does this work, and why is it effective? To gain an intuitive 

understanding, let's perform an exercise to guess the parity check matrices for both the 

repetition code and our parity check code. 

Let's consider a specific case of a parity check code with parameters n = 3 and k = 2. The 



generator matrix G for this code could be something like this: 

 

Here, n = 3 and k = 2. The matrix H, which will have (n-k) rows and n columns, must 

satisfy the condition 𝐻𝐻 ⋅ 𝑚𝑚 =  0 for all valid code words m. For example, H must satisfy: 

 

The matrix H must be chosen to satisfy these equations. Let's assume H is a binary matrix 

with entries A, B, C. The first equation tells us A + C = 0 (in binary, this is equivalent to 

𝐴𝐴 ⊕𝐶𝐶 =  0). The second equation tells us B + C = 0, and the third tells us A + B = 0. 

By guessing A, B, C, we can deduce the matrix H. If we guess 𝐻𝐻 = (1 1 1), this 

satisfies all the conditions:  

1 + 1 = 0,  1 + 1 = 0,  1 + 1 = 0 (𝑖𝑖𝑛𝑛 𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏𝑜𝑜𝑏𝑏) 

Thus, 𝐻𝐻 = (1 1 1) is the parity check matrix for the [3,2] code. You can verify that 𝐻𝐻 ⋅

𝐺𝐺𝑇𝑇 = 0, confirming that this indeed is the correct parity check matrix. 

Now, let's extend this to the repetition code. Suppose we have n = 3 and k = 1. The 

corresponding matrix H must satisfy the condition 𝐻𝐻 ⋅ 𝐺𝐺𝑇𝑇 = 0, where 𝐺𝐺 = (1 1 1). For 

this, H must be a (𝑛𝑛 − 1) × 𝑛𝑛 binary matrix, i.e., 2 × 3. 

You can either guess H or systematically solve for H. For example, choosing 𝐻𝐻 =

�1 0 1
0 1 1� satisfies 𝐻𝐻 ⋅ 𝐺𝐺𝑇𝑇 = 0. This is not the only valid H; another valid choice is 𝐻𝐻 =

�0 1 1
1 1 0�. Both are equivalent and usable. 

Ultimately, H is the parity check matrix for the code, and there can be multiple valid forms 

of H. The reason H is of size (𝑛𝑛 − 𝑘𝑘) × 𝑛𝑛 is due to the vector space dimensions, where n-



k represents the dimension of the space that does not contain valid code words. This 

concept is also tied to dual codes, a significant area of study in coding theory. 

Therefore, constructing a parity check matrix H is a powerful tool that allows you to verify 

whether a received sequence is a valid code word without having to compare it against all 

possible code words 𝑚𝑚 ⋅ 𝐺𝐺 . Instead, a linear operation using H suffices, making the 

verification process much more efficient. 

(Refer Slide Time: 31:46) 

 

When dealing with a three-length sequence that results in a zero inner product, 101 and 

011 both yield 111 as the solution. It's important to note that 000 is a trivial solution, and 

we should exclude it from consideration. Now, consider a scenario where y is an 𝑛𝑛 × 1 

received vector from the channel. Here's where it gets interesting: any single bit error will 

lead to 𝐻𝐻 × 𝑏𝑏 equaling 1, which indicates an error since it's not zero. 

Why does this happen? Recall that we chose H = [111], which means that the code should 

have even parity. If only one bit is flipped, whether it's 101, 011, 110, or 001, multiplying 

the received code word by H (i.e., 111) will result in 1. Thus, the parity check matrix (or 



the parity code) has the ability to detect a bit error by signaling a non-zero value when 

multiplied by the received code word.  

This approach effectively detects errors, and here's the underlying intuition: you're 

essentially XORing the bits of the code and checking if the parity is zero. If the result is 1, 

you can conclude that a single-bit error has occurred. As mentioned in previous lectures, if 

there are two-bit errors or if all three bits are flipped, this method will fail. However, if 

only one bit is in error, the method will accurately detect it. 

Now, let's consider the 3-1 repetition code we discussed earlier. The generator matrix for 

this code is 111, and this is one of the equivalent parity check matrices. You can verify that 

all proper code words satisfy 𝐻𝐻 × 𝑥𝑥 =  0. If a single-bit error occurs, the corresponding 

column where the error took place is directly identified.  

How does this work? Consider H = [101, 011]. If you post-multiply by any code word (e.g., 

000 or 111), the results are telling. For instance, suppose you sent 000, but a bit error 

occurred. You would get a result like 01, which picks out the middle column. Reading 01 

in binary gives you 1, indicating that the error occurred in the second bit, which indeed 

aligns with the actual error.  

This isn't magic; it's a systematic process. If you sent 111 but the first bit was flipped, the 

result might initially confuse you. But once you correctly label the positions, say as 1, 2, 

and 3, the approach becomes clearer. For example, if you label the columns as 1, 2, and 3, 

and you receive 011, it picks out the sum of those two columns, resulting in 10. This 

indicates that the error occurred in the corresponding column, and flipping that bit will 

correct the code word. 

Thus, using a repetition code's parity check matrix, you can identify the column where the 

error occurred simply by analyzing the result (e.g., 01) and then correcting the 

corresponding bit to obtain a valid code word. This method, though straightforward, is 

incredibly effective in detecting and correcting single-bit errors. 

This is where a well-designed parity check code proves invaluable. When you design your 

parity check code with an effective parity check matrix, multiplying this matrix by the 



received vector will yield the parity. More specifically, it will identify the column or a 

combination of columns from the parity check matrix, pinpointing the exact location of the 

error. You can then flip the relevant bit to correct the code word, which helps you determine 

which k-bit message was originally sent. This method confirms that your repetition code 

can reliably correct a single-bit error. 

As we have seen, with linear codes, by multiplying the received block of n bits by the parity 

check matrix H, you can easily verify whether you have a valid code word. If the result is 

not zero, it indicates an error. The non-zero result tells you the nature of the error, assuming 

that a detectable error has occurred. Let’s delve into the 3-1 repetition code we discussed 

earlier. The single-bit error vectors are 100, 010, and 001, and the corresponding results of 

𝐻𝐻 × 𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 are 1001 or 11, according to the parity check matrix we examined. 
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Consider any code word X, which can be either 000 or 111, written as a column vector for 

convenience. For an error pattern E, if Y = X + E, then whether X is 000 or 111, 𝐻𝐻 × 𝑌𝑌 

always provides the correct location of the error. This is because S, defined as 𝐻𝐻 × 𝑌𝑌, is 



also known as the syndrome. We can write 𝐻𝐻 × 𝑌𝑌 as 𝐻𝐻 × (𝑋𝑋 + 𝐸𝐸). Due to linearity, this 

simplifies to 𝐻𝐻 × 𝑋𝑋 +  𝐻𝐻 × 𝐸𝐸. Since 𝐻𝐻 × 𝑋𝑋 is zero for a valid code word (i.e., 𝐻𝐻 × 000 

or 𝐻𝐻 × 111 results in zero), we are left with 𝐻𝐻 × 𝐸𝐸. 

Thus, for any linear block code, the multiplication of H by the received vector Y yields the 

same error pattern, regardless of the code word sent. In other words, whether you 

transmitted 000 or 111, if the error pattern is identical, 𝐻𝐻 × 𝑌𝑌 will yield the same result. 

This means that the syndrome 𝐻𝐻 × 𝑌𝑌  depends solely on the error pattern, not on the 

specific code word transmitted. This result will be crucial in our upcoming discussion on 

single-error-correcting codes, specifically Hamming codes, where we will use the 

syndrome to correct errors. 

To summarize, in error-correcting codes, particularly block codes, adding redundancy in 

the bits helps in detecting and correcting errors. In this lecture, we focused on the binary 

symmetric channel, a simple yet practical model for managing errors in digital 

communication systems. We discussed binary phase shift keying (BPSK) over additive 

white Gaussian noise (AWGN) as a typical example of the binary symmetric channel. 

We also covered the fundamental concepts of linear error detection and correction, 

providing basic examples of linear block codes used for error detection and correction. 

Remember, when expanding from k blocks to n blocks, you incur an overhead. Out of the 

n bits, only k are information bits, while n - k represent redundancy. The redundancy-to-

total ratio 𝑛𝑛−𝑘𝑘
𝑛𝑛

 represents the overhead, and the code rate is 𝑘𝑘
𝑛𝑛
. Ideally, you want this rate to 

be as high as possible, though redundancy comes with a cost. In the next lecture, we will 

continue our exploration of error control codes, with a detailed look at Hamming codes. 

Thank you. 


