
Digital Communication using GNU Radio

Prof. Kumar Appaiah

Department of Electrical Engineering

Indian Institute of Technology Bombay

Week-11

Lecture-54

Error Control Coding: Linear Block Codes

Welcome to this lecture on Digital Communication Using GNU Radio. I am Kumar Appiah

from the Department of Electrical Engineering at IIT Bombay. In our previous set of

lectures, we explored error control codes, focusing particularly on parity check codes and

repetition codes. We examined how parity check codes enforce even parity, meaning the

code word contains an even number of 1s, and how repetition codes work by repeating a

bit 3 or 5 times.

(Refer Slide Time: 01:50)

We found that repetition codes significantly reduce the probability of error on the binary

symmetric channel, but they come with trade-offs. Specifically, while the parity check code

can only detect a single error without correcting it, the repetition code can correct errors,

albeit with very low efficiency due to its low data rate.

To broaden our understanding of coding strategies, in this lecture, we will delve into linear

block codes, which are widely used error control mechanisms. Linear block codes are

fundamental to many practical error control schemes, and we will explore the Hamming

code more closely in subsequent lectures.

So, what exactly is a linear block code? A linear block code is defined by two parameters:

n and k. Essentially, you take a block of k bits from your bit sequence and map it to n bits,

where n is typically greater than k, using a binary linear transformation. This linear

transformation is highly effective because it can be efficiently implemented in both

software and hardware. The terminology we use, which you might already be familiar with,

refers to this as an n,k binary code, where the rate of the code is 𝑘𝑘
𝑛𝑛
.

(Refer Slide Time: 05:47)

To implement these codes, matrix techniques are often employed. Since linear block codes

are linear by nature, they can be implemented using matrix multiplication, with Modulo 2

addition to perform the necessary operations. Linear algebra provides several useful results,

particularly those related to vector spaces, which are instrumental in understanding and

implementing these codes. While we won't dive deeply into the intricacies of vector spaces

in this lecture, I'll highlight the relevant properties as we go along to help clarify the

concepts.

Lastly, it's important to note that since we're working with bits, and operating within a

binary field (0s and 1s), the addition and multiplication operations are equivalent to XOR

and AND operations, respectively. These operations can be implemented very efficiently,

whether using logical gates in hardware or through software.

Thus, a linear block code essentially maps 2k k-length binary sequences to 2k n-length

binary sequences, making it a powerful tool in error control coding.

If you take a block of k information bits, the total number of possible sequences you can

generate is 2k. These sequences are then mapped to 2k sequences of length n, where n is

greater than or equal to k. This implies that redundancy is introduced during the mapping

process. For clarity, we represent the k-length message sequence as a column vector 𝑚𝑚,

and the n-length coded sequence as a column vector 𝑋𝑋. Thus, the k-length column vector

𝒎𝒎 is transformed into an n-length column vector 𝑿𝑿 after applying the coding operation.

Given that this is a linear code, this transformation can be expressed as a linear

transformation within the binary field (i.e., 0s and 1s). To do this, we introduce a generator

matrix, denoted by 𝑮𝑮. By convention, the generator matrix 𝑮𝑮 is defined in the transpose

sense, meaning it has k rows and n columns. When you pre-multiply the vector 𝒎𝒎 by 𝐺𝐺,

which is why we use 𝒎𝒎T (the transpose of 𝒎𝒎), you obtain 𝑿𝑿T (the transpose of 𝑿𝑿). The

elements of 𝑮𝑮 consist of 0s and 1s, with each row representing a code word.

Let’s break down what this transformation accomplishes. The generator matrix 𝑮𝑮 is

generally expressed as a "fat" matrix, which means it has more columns than rows,

specifically, k rows and n columns. Each row corresponds to a code word because if you

select 𝒎𝒎 as [1 0 0 0]𝑇𝑇 𝑜𝑜𝑜𝑜 [0 1 0 0]𝑇𝑇, you will retrieve the corresponding row of 𝑮𝑮. Each of

these rows is indeed a code word. Since 𝒎𝒎 can take 2k possible values, 𝑚𝑚𝑇𝑇𝐺𝐺 can also yield

up to 2k distinct values. In some cases, if the rows are linearly dependent, you might get

fewer unique values, but we will set that aside for now.

(Refer Slide Time: 05:58)

If you carefully construct 𝑮𝑮, you will obtain 𝑿𝑿, the coded vector. For every 𝒎𝒎, there is a

corresponding 𝑿𝑿 that includes enough redundancy so that even if errors occur, it may still

be possible to reconstruct 𝒎𝒎 or at least detect the errors. This redundancy is the key to the

error correction capability of the code.

Before delving into the mechanics of how to effectively use this generator matrix, let’s

ground our understanding with some practical examples. We’ll revisit familiar examples,

such as the 3-2 parity check code and the 3-1 repetition code, to illustrate these concepts in

action.

Let's delve into the parity check code and explore its elements. For even parity, the code

includes sequences like 000, 111, and 011. Interestingly, this code qualifies as a linear

code. Naturally, it’s also a block code, as it involves taking blocks of 2 bits and mapping

them to 3 bits, which we discussed in the previous lecture. But more importantly, it’s a

linear block code. Why is that the case? To illustrate, we’ll demonstrate that the code is

indeed linear.

(Refer Slide Time: 07:49)

To construct the generator matrix 𝑮𝑮 for this particular code, we'll take a systematic

approach. One straightforward method is to select two linearly independent code words.

For instance, the sequence 000 is trivial and doesn’t offer much utility because multiplying

anything by 000 will always yield 000. Instead, let's define our generator matrix 𝑮𝑮 using

different rows. For example, we could use the second and third rows, like 101 and 011.

Now, let’s formalize this. Here, k = 2, meaning 𝒎𝒎 is a 2-bit column vector. To evaluate

𝑚𝑚𝑇𝑇𝐺𝐺 for each 𝒎𝒎, we can represent 𝒎𝒎 as rows. Starting with 𝑚𝑚 = [0 0],𝑚𝑚𝑇𝑇𝐺𝐺 yields:

𝑚𝑚𝑇𝑇𝐺𝐺 = 0 × [1 0 1] + 0 × [0 1 1] = [0 0 0]

Next, for 𝑚𝑚 = [0 1]:

𝑚𝑚𝑇𝑇𝐺𝐺 = 0 × [1 0 1] + 1 × [0 1 1] = [0 1 1]

(Refer Slide Time: 12:41)

For 𝑚𝑚 = [1 0]:

𝑚𝑚𝑇𝑇𝐺𝐺 = 1 × [1 0 1] + 0 × [0 1 1] = [1 0 1]

Finally, for 𝑚𝑚 = [1 1]:

𝑚𝑚𝑇𝑇𝐺𝐺 = 1 × [1 0 1] + 1 × [0 1 1] = [1 1 0]

What can we infer from this? There are several key points to highlight. First, the n-length

zero vector is always a valid code word in any linear block code. This is because when 𝒎𝒎

is chosen as the zero vector, the result is always the n-length zero vector, which is a

fundamental property of linear transformations. Hence, the zero code word is inherently

part of the linear block code.

Secondly, all the code words we’ve generated here match the original code words,

indicating that the generator matrix 𝑮𝑮 we’ve constructed is indeed valid for this code. The

mapping of 𝒎𝒎 to 𝑚𝑚𝑇𝑇𝐺𝐺 is evident and consistent.

(Refer Slide Time: 13:51)

One additional point to consider is whether this generator matrix 𝑮𝑮 is unique. It turns out

that 𝑮𝑮 is not necessarily unique. For instance, we could choose a different 𝑮𝑮 matrix, such

as:

𝐺𝐺 = �1 0 1
1 1 0�

This new matrix is also valid since the rows are linearly independent, meaning you cannot

simply multiply one row by a scalar to get the other. Thus, while 𝑮𝑮 can vary, the

fundamental properties and results of the code remain consistent.

Let's evaluate the vector 𝒎𝒎 and the result of 𝑚𝑚𝑇𝑇𝐺𝐺 for the given scenarios.

First, we start with 𝑚𝑚 = [0 0], and for simplicity, I'll only write the key outcomes. When

𝑚𝑚 = [0 0], the result is [0 0 0]. For 𝑚𝑚 = [0 1], we obtain [1 1 0]. When 𝑚𝑚 = [1 0], the

outcome is [1 0 1], and finally, for 𝑚𝑚 = [1 1], the result is [1 1 1].

(Refer Slide Time: 16:47)

(Refer Slide Time: 18:18)

If you examine these sequences, you see they correspond to the following mappings:

• 𝒎𝒎 = [0 0] maps to [0 0 0]

• 𝒎𝒎 = [0 1] maps to [1 1 0]

• 𝒎𝒎 = [1 0] maps to [1 0 1]

• 𝒎𝒎 = [1 1] maps to [1 1 1]

(Refer Slide Time: 21:11)

Now, let's compare these results. We see that [0 0 0] consistently maps to [0 0 0], [1 1 1]

maps to [1 1 1], [1 0 1] remains [1 0 1], and [0 1 1] maps to [0 1 1]. This illustrates that we

have another equivalent generator matrix 𝑮𝑮 for the code, albeit with a slight difference.

The key difference lies in the mapping from the messages to the coded vectors. For

instance, in one case, [0 1] maps to [0 1 1], while in another case, it maps to [1 1 1].

Similarly, [1 1] may map to [1 1 0] in one scenario and [0 1 1] in another. Despite these

differences, in terms of error performance and other metrics, these two codes are

equivalent. They represent the same code, just realized differently.

This is an important concept to understand. For example, someone might present a

generator matrix for a 7, 4 Hamming code, and someone else might offer a different matrix

for the same 7, 4 Hamming code. The mappings may differ, but the codes are

fundamentally equivalent. The mapping between the messages and the coded vectors can

be considered as a lookup table, which can always be adjusted as needed.

There are a couple of additional points to note. First, you can always swap the rows of the

generator matrix 𝑮𝑮 without affecting performance, though I won't prove that here. You can

also swap the columns of 𝑮𝑮 without losing any performance. Additionally, the zero vector

is always a code word. When constructing a generator matrix, ensure you select linearly

independent code words. Avoid including [0 0 0] as a row in 𝑮𝑮, as it leads to trivial results

and won't generate all the necessary code words.

(Refer Slide Time: 23:41)

Next, let’s consider the 3, 1 repetition code, which is quite straightforward. Here, the

generator matrix 𝑮𝑮 is very simple. With a 1-bit repetition code, 𝒎𝒎 is a 1-element vector.

Consequently, 𝑮𝑮 has only one row. This is the only 𝑮𝑮 you can construct in this case because

when you multiply 𝒎𝒎 by 𝑮𝑮, the result is either [0 0 0] or [1 1 1], depending on whether 𝒎𝒎

is 0 or 1.

So, for the 3, 1 repetition code, 𝑮𝑮 is a row of three 1s. The code has 21 = 2 code words,

making this conceptually very simple. The exercise here is to generate all code words using

this 𝑮𝑮 and verify them, as we just did. Another interesting exercise is to enumerate all

possible equivalent generator matrices for this linear block code.

Finally, how do we check if the channel output is a valid code word? One method is to

evaluate all possible 𝑚𝑚𝑇𝑇𝐺𝐺 combinations, and when the receiver gets an n-bit sequence, you

can check whether it matches one of the code words. However, this approach is not

efficient, especially for large k. Instead, due to the linear nature of the code, you can

determine whether a sequence is a code word by performing a linear operation.

The key hint here is that since the code words were generated by taking linear combinations

of the rows of 𝑮𝑮, all you need to do is check if the received sequence is indeed a linear

combination of those rows. This verification is done using a parity-check matrix, which

serves as a pair to the generator matrix 𝑮𝑮.

(Refer Slide Time: 26:32)

Whenever you generate code words using a generator matrix G, there is a corresponding

matrix H that serves as a check to verify whether a given n-bit vector is indeed a valid code

word for the code in question. Essentially, you can think of this as having a total of 2n

possible n-length sequences, out of which 2k are valid code words. These 2k valid code

words form a vector space.

The remaining 2n-k sequences are not valid code words. The matrix H can be used to

determine if a sequence is a valid code word or not. Specifically, H is a matrix of size

(𝑛𝑛 − 𝑘𝑘) × 𝑛𝑛 such that Hm = 0 for all valid code words m. In other words, H is constructed

so that it produces a zero inner product with all the valid code words.

(Refer Slide Time: 27:07)

Another way to view this is that H multiplied by the transpose of G, 𝐻𝐻 ⋅ 𝐺𝐺𝑇𝑇, results in the

zero matrix. But how does this work, and why is it effective? To gain an intuitive

understanding, let's perform an exercise to guess the parity check matrices for both the

repetition code and our parity check code.

Let's consider a specific case of a parity check code with parameters n = 3 and k = 2. The

generator matrix G for this code could be something like this:

Here, n = 3 and k = 2. The matrix H, which will have (n-k) rows and n columns, must

satisfy the condition 𝐻𝐻 ⋅ 𝑚𝑚 = 0 for all valid code words m. For example, H must satisfy:

The matrix H must be chosen to satisfy these equations. Let's assume H is a binary matrix

with entries A, B, C. The first equation tells us A + C = 0 (in binary, this is equivalent to

𝐴𝐴 ⊕𝐶𝐶 = 0). The second equation tells us B + C = 0, and the third tells us A + B = 0.

By guessing A, B, C, we can deduce the matrix H. If we guess 𝐻𝐻 = (1 1 1), this

satisfies all the conditions:

1 + 1 = 0, 1 + 1 = 0, 1 + 1 = 0 (𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)

Thus, 𝐻𝐻 = (1 1 1) is the parity check matrix for the [3,2] code. You can verify that 𝐻𝐻 ⋅

𝐺𝐺𝑇𝑇 = 0, confirming that this indeed is the correct parity check matrix.

Now, let's extend this to the repetition code. Suppose we have n = 3 and k = 1. The

corresponding matrix H must satisfy the condition 𝐻𝐻 ⋅ 𝐺𝐺𝑇𝑇 = 0, where 𝐺𝐺 = (1 1 1). For

this, H must be a (𝑛𝑛 − 1) × 𝑛𝑛 binary matrix, i.e., 2 × 3.

You can either guess H or systematically solve for H. For example, choosing 𝐻𝐻 =

�1 0 1
0 1 1� satisfies 𝐻𝐻 ⋅ 𝐺𝐺𝑇𝑇 = 0. This is not the only valid H; another valid choice is 𝐻𝐻 =

�0 1 1
1 1 0�. Both are equivalent and usable.

Ultimately, H is the parity check matrix for the code, and there can be multiple valid forms

of H. The reason H is of size (𝑛𝑛 − 𝑘𝑘) × 𝑛𝑛 is due to the vector space dimensions, where n-

k represents the dimension of the space that does not contain valid code words. This

concept is also tied to dual codes, a significant area of study in coding theory.

Therefore, constructing a parity check matrix H is a powerful tool that allows you to verify

whether a received sequence is a valid code word without having to compare it against all

possible code words 𝑚𝑚 ⋅ 𝐺𝐺 . Instead, a linear operation using H suffices, making the

verification process much more efficient.

(Refer Slide Time: 31:46)

When dealing with a three-length sequence that results in a zero inner product, 101 and

011 both yield 111 as the solution. It's important to note that 000 is a trivial solution, and

we should exclude it from consideration. Now, consider a scenario where y is an 𝑛𝑛 × 1

received vector from the channel. Here's where it gets interesting: any single bit error will

lead to 𝐻𝐻 × 𝑦𝑦 equaling 1, which indicates an error since it's not zero.

Why does this happen? Recall that we chose H = [111], which means that the code should

have even parity. If only one bit is flipped, whether it's 101, 011, 110, or 001, multiplying

the received code word by H (i.e., 111) will result in 1. Thus, the parity check matrix (or

the parity code) has the ability to detect a bit error by signaling a non-zero value when

multiplied by the received code word.

This approach effectively detects errors, and here's the underlying intuition: you're

essentially XORing the bits of the code and checking if the parity is zero. If the result is 1,

you can conclude that a single-bit error has occurred. As mentioned in previous lectures, if

there are two-bit errors or if all three bits are flipped, this method will fail. However, if

only one bit is in error, the method will accurately detect it.

Now, let's consider the 3-1 repetition code we discussed earlier. The generator matrix for

this code is 111, and this is one of the equivalent parity check matrices. You can verify that

all proper code words satisfy 𝐻𝐻 × 𝑥𝑥 = 0. If a single-bit error occurs, the corresponding

column where the error took place is directly identified.

How does this work? Consider H = [101, 011]. If you post-multiply by any code word (e.g.,

000 or 111), the results are telling. For instance, suppose you sent 000, but a bit error

occurred. You would get a result like 01, which picks out the middle column. Reading 01

in binary gives you 1, indicating that the error occurred in the second bit, which indeed

aligns with the actual error.

This isn't magic; it's a systematic process. If you sent 111 but the first bit was flipped, the

result might initially confuse you. But once you correctly label the positions, say as 1, 2,

and 3, the approach becomes clearer. For example, if you label the columns as 1, 2, and 3,

and you receive 011, it picks out the sum of those two columns, resulting in 10. This

indicates that the error occurred in the corresponding column, and flipping that bit will

correct the code word.

Thus, using a repetition code's parity check matrix, you can identify the column where the

error occurred simply by analyzing the result (e.g., 01) and then correcting the

corresponding bit to obtain a valid code word. This method, though straightforward, is

incredibly effective in detecting and correcting single-bit errors.

This is where a well-designed parity check code proves invaluable. When you design your

parity check code with an effective parity check matrix, multiplying this matrix by the

received vector will yield the parity. More specifically, it will identify the column or a

combination of columns from the parity check matrix, pinpointing the exact location of the

error. You can then flip the relevant bit to correct the code word, which helps you determine

which k-bit message was originally sent. This method confirms that your repetition code

can reliably correct a single-bit error.

As we have seen, with linear codes, by multiplying the received block of n bits by the parity

check matrix H, you can easily verify whether you have a valid code word. If the result is

not zero, it indicates an error. The non-zero result tells you the nature of the error, assuming

that a detectable error has occurred. Let’s delve into the 3-1 repetition code we discussed

earlier. The single-bit error vectors are 100, 010, and 001, and the corresponding results of

𝐻𝐻 × 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 are 1001 or 11, according to the parity check matrix we examined.

(Refer Slide Time: 32:32)

Consider any code word X, which can be either 000 or 111, written as a column vector for

convenience. For an error pattern E, if Y = X + E, then whether X is 000 or 111, 𝐻𝐻 × 𝑌𝑌

always provides the correct location of the error. This is because S, defined as 𝐻𝐻 × 𝑌𝑌, is

also known as the syndrome. We can write 𝐻𝐻 × 𝑌𝑌 as 𝐻𝐻 × (𝑋𝑋 + 𝐸𝐸). Due to linearity, this

simplifies to 𝐻𝐻 × 𝑋𝑋 + 𝐻𝐻 × 𝐸𝐸. Since 𝐻𝐻 × 𝑋𝑋 is zero for a valid code word (i.e., 𝐻𝐻 × 000

or 𝐻𝐻 × 111 results in zero), we are left with 𝐻𝐻 × 𝐸𝐸.

Thus, for any linear block code, the multiplication of H by the received vector Y yields the

same error pattern, regardless of the code word sent. In other words, whether you

transmitted 000 or 111, if the error pattern is identical, 𝐻𝐻 × 𝑌𝑌 will yield the same result.

This means that the syndrome 𝐻𝐻 × 𝑌𝑌 depends solely on the error pattern, not on the

specific code word transmitted. This result will be crucial in our upcoming discussion on

single-error-correcting codes, specifically Hamming codes, where we will use the

syndrome to correct errors.

To summarize, in error-correcting codes, particularly block codes, adding redundancy in

the bits helps in detecting and correcting errors. In this lecture, we focused on the binary

symmetric channel, a simple yet practical model for managing errors in digital

communication systems. We discussed binary phase shift keying (BPSK) over additive

white Gaussian noise (AWGN) as a typical example of the binary symmetric channel.

We also covered the fundamental concepts of linear error detection and correction,

providing basic examples of linear block codes used for error detection and correction.

Remember, when expanding from k blocks to n blocks, you incur an overhead. Out of the

n bits, only k are information bits, while n - k represent redundancy. The redundancy-to-

total ratio 𝑛𝑛−𝑘𝑘
𝑛𝑛

 represents the overhead, and the code rate is 𝑘𝑘
𝑛𝑛
. Ideally, you want this rate to

be as high as possible, though redundancy comes with a cost. In the next lecture, we will

continue our exploration of error control codes, with a detailed look at Hamming codes.

Thank you.

