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Hello, and welcome to this lecture on Digital Communication using GNU Radio. My name 

is Kumar Appiah, and I am a part of the Department of Electrical Engineering at IIT 

Bombay. Today, we will be discussing another important concept called the error control 

coding. Up until now, we've discussed various practical challenges that arise in digital 

communication systems, challenges like noise and the impact of the channel on your 

transmitted signal.  

(Refer Slide Time: 01:51) 

 

We've explored several techniques to mitigate these issues, such as equalization. However, 



as we've seen, these methods can only go so far, especially when dealing with noise and 

other transmission impairments. There isn’t a way to completely eliminate these effects. 

So, how do we further reduce their impact? This is where error control coding comes into 

play. It’s a powerful technique that allows us not only to detect the presence of errors but, 

to some extent, to correct them as well. Over the next few lectures, we will dive into a 

specific category of error control coding tools, focusing on linear block codes. Our 

discussions will center around bit error detection and correction. 
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It’s important to note that our discussions will operate at the bit level, specifically before 

modulation occurs, that is, before the bits are converted into symbols or constellation 

points. We’ll concentrate on binary linear codes, which are a type of error control code that 

is both straightforward to implement and incredibly effective. While binary linear codes 

are not the only type available, they are certainly among the most commonly used and 

practical in many applications. Therefore, we will focus our attention on binary linear codes 

in this lecture series. 



In particular, we will examine a specific code known as the Hamming code. This code is a 

cornerstone in the field of error control coding, and understanding it will provide a solid 

foundation for grasping more advanced error correction mechanisms. We will also briefly 

touch on where these advanced techniques are applicable and how they can be leveraged 

in different scenarios. 

To start, we’ll cover some preliminary concepts and focus on a set of fundamental binary 

operations. These basics will be essential as we move forward in our exploration of error 

control coding. 

In binary operations, we work with addition and multiplication, but both are performed 

modulo 2. To clarify, in this context, the addition operation functions similarly to an XOR 

(exclusive OR), and the multiplication operation functions like an AND (logical AND). 

Let’s break this down with truth tables for a clearer understanding. 
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For the addition operation (modulo 2), think of it as an XOR operation. The truth table for 

XOR is as follows: XOR 0 with 0 results in 0, XOR 0 with 1 results in 1, XOR 1 with 0 



results in 1, and XOR 1 with 1 results in 0. This table matches the truth table of an XOR 

gate. 

On the other hand, the multiplication operation (modulo 2) resembles an AND operation. 

The truth table for AND is: AND 0 with 0 results in 0, AND 0 with 1 results in 0, AND 1 

with 0 results in 0, and AND 1 with 1 results in 1. This table aligns with the truth table of 

an AND gate. 

The crucial concept here is to use these binary operations to introduce redundancy into the 

bits we generate. This redundancy helps us detect and correct errors. For example, if you 

start with a sequence of 5 bits, you might expand it to 7 bits by adding 2 extra bits. These 

additional bits are used to detect and correct errors that might occur in the original 5 bits. 
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While these binary operations can be viewed as part of a broader algebraic framework 

called field theory, which encompasses more general concepts in error control coding, our 

focus will remain on modulo 2 operations. In this framework, addition, subtraction, and 

multiplication have specific, consistent meanings that are fundamental to error control 



coding. 

Now, let’s consider the adversary model, which addresses the problem we are dealing with. 

The main issue is that bits can be flipped due to errors. For instance, if you are using Binary 

Phase Shift Keying (BPSK) or any other modulation scheme, noise can cause a symbol to 

be detected incorrectly. This incorrect detection of a symbol results in an erroneous bit 

being detected. 

To effectively model the errors that occur at the bit level, we use a channel model known 

as the binary symmetric channel. The binary symmetric channel essentially describes a 

scenario where if you transmit a 0, it is ideally received as a 0, although occasionally it 

might be received as a 1. Similarly, if you transmit a 1, it is ideally received as a 1, but 

sometimes it might be received as a 0. The key characteristic of this channel is that the 

probability of a 0 being flipped to a 1 is equal to the probability of a 1 being flipped to a 0. 

This equal probability is what defines the symmetry of the channel. 

In technical terms, the binary symmetric channel takes in bits one at a time and outputs a 

bit with an error probability p. This means that each bit has a probability p of being flipped. 

Typically, p is constrained such that 0 ≤ 𝑝𝑝 ≤ 0.5.  

To visualize this, imagine the following: if you send a 0, it might be received as a 0 with 

probability 1 - p, or it might be flipped to a 1 with probability p. Likewise, if you send a 1, 

it might be received as a 1 with probability 1 - p, or it might be flipped to a 0 with 

probability p. You can think of this process as flipping a biased coin for each bit. If the 

coin lands on the more probable outcome, you send the bit as-is; if it lands on the less 

probable outcome, you flip the bit before sending it. 

Now, why is p typically less than or equal to 0.5? If the probability of a bit flip exceeds 

0.5, say p = 0.9, sending a 0 would result in a 1 with a high probability, and sending a 1 

would result in a 0 with a high probability. In this scenario, it would be more efficient to 

simply swap the 0s and 1s at the receiver and use a channel model with a bit flip probability 

of 1 - p, which would be less than 0.5. Thus, for practical purposes, we focus on binary 

symmetric channels where 0 ≤ 𝑝𝑝 <  0.5.  



The case where p = 0.5 is special because, in this case, the channel behaves like a noisy 

channel where each bit is equally likely to be flipped or not. If you denote the sent value 

by x and the received value by y, the channel behaves in a manner where each bit is 

effectively randomized, and the model needs to account for this symmetry. 
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In the binary symmetric channel (BSC) model, the relationship between the transmitted bit 

x and the received bit y can be expressed as 𝑦𝑦 =  𝑥𝑥 ⊕𝑛𝑛 or equivalently y = x + n (where 

addition is performed modulo 2). Here, n is a noise term that is equally likely to be 0 or 1, 

with each occurring with a probability of 0.5. In this context, if you analyze the relationship 

between y and x, you will find that y and x are uncorrelated, and indeed, they can be 

considered independent.  

Why is this the case? When n is known, x can be directly determined. However, when n is 

unknown, the operation is akin to flipping a fair coin to decide whether to flip the bit or 

not. This randomness means you have no additional information about x based on y. 

Consequently, if you are given y, the probability of x being 0 or 1 is effectively 50%. This 



lack of dependence can be mathematically expressed by the relationship 𝑥𝑥 =  𝑦𝑦 ⊕𝑛𝑛, 

which simplifies to x = y + n due to the properties of modulo 2 arithmetic where subtraction 

is equivalent to addition. 

In this scenario, regardless of the value of y, x remains independent of y. I encourage you 

to prove this formally as an exercise. The intuition is that, with no knowledge of n, x is not 

dependent on y because n simply introduces random flips, leading to no useful information 

about x being gleaned from y. Thus, we will consider the binary symmetric channel with 

0 ≤ 𝑝𝑝 <  0.5.  

A binary symmetric channel with p = 0.5 results in a situation where no useful information 

can be extracted because the noise introduces a complete randomization of the bits.  

In practical applications, we often model BPSK (Binary Phase Shift Keying) over an 

AWGN (Additive White Gaussian Noise) channel as a binary symmetric channel. In this 

model, the bit-flip probability p is given by 𝑝𝑝 = 𝑞𝑞
�2𝐸𝐸𝑏𝑏/𝑁𝑁0

, where Eb is the energy per bit and 

N_0 is the noise power spectral density. For BPSK, if you transmit -1, there is a probability 
𝑞𝑞

�2𝐸𝐸𝑏𝑏/𝑁𝑁0
 that it will be incorrectly detected as 1 due to noise. Similarly, if you transmit 1, 

there is the same probability that it will be detected as -1. As N_0 approaches infinity, the 

bit-flip probability p approaches 0.5, reflecting the fact that with extremely high noise, it 

becomes impossible to reliably detect whether the symbol was a 1 or a -1. 

There are, of course, various simplifications applicable to other modulation schemes as 

well, but the approach we are discussing provides a clear and intuitive understanding. A 

BPSK (Binary Phase Shift Keying) system over an AWGN (Additive White Gaussian 

Noise) channel essentially simplifies to a binary symmetric channel under these 

assumptions.  

Let us now turn to our first practical example of an error control code. Note that I 

specifically used the term "error control code" rather than "error correction code." Error 

control codes encompass both error detection and error correction. While some codes are 

designed solely for detecting errors, others can detect and correct errors as well. We will 



begin with a code primarily used for error detection, known as the parity check code. 
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The key idea behind parity check codes is to add an extra bit to a set of k bits, so that the 

entire sequence has even parity. For example, consider the 3-2 parity check code. To 

illustrate, let's detail this example.  

In a 3-2 parity check code, the notation '3-2' indicates that for every 2 information bits, we 

add 1 parity bit to make a total of 3 bits. Here’s how it works: you take 2 bits at a time and 

output 3 bits, which are then sent to the modulator for further processing.  

Let's say we have the bit sequence: 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, and so on. According to the 

parity check code rule, for each group of 2 bits, we append 1 parity bit to ensure that the 

total number of 1s in the group of 3 bits is even.  

Here's the breakdown: In our modulo-2 system, addition and multiplication are performed 

as follows: 

• For the bit group 0, 0, the parity bit added is 0 because the sum (0 + 0 + 0) is 0, 



which is even. 

• For the bit group 0, 1, the parity bit added is 1 because the sum (0 + 1 + 1) is 0, and 

we need an extra 1 to make the sum even. 

• For the bit group 1, 0, the parity bit added is 1 because the sum (1 + 0 + 1) is 0. 

• For the bit group 1, 1, the parity bit added is 0 because the sum (1 + 1 + 0) is 0. 

Remember, in our modulo-2 system, 1 + 1 equals 0. This is an important detail when 

working with binary operations where the arithmetic is performed modulo 2. 
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This is the codebook we are working with. Given this codebook, let’s examine how we 

handle the information bits and their corresponding coded bits.  

For this example, we’ll add parity bits to our information bits to form the coded bits. Let’s 

consider the following sequence of information bits: 0, 0, 1, 0, 1, 1, 0, 1, and so on. For 

each of these bit pairs, we will append a parity bit to ensure even parity.  

Let’s determine the parity bit for each pair: 



• For 0, 0, the parity bit is 0, because 0 + 0 + 0 = 0 (even). 

• For 1, 0, the parity bit is 1, because 1 + 0 + 1 = 0 (even). 

• For 1, 1, the parity bit is 0, because 1 + 1 + 0 = 0 (even). 

• For 0, 1, the parity bit is 1, because 0 + 1 + 1 = 0 (even). 

Thus, instead of sending 12 bits, you will now send 16 bits. Specifically, you’re sending 3 

coded bits for every 2 information bits.  

This process introduces redundancy, as we’re adding extra bits to our transmission. The 

code rate, which is the ratio of information bits to coded bits, is 2
3
. Thus, out of the total bits 

sent, approximately 66.66% are information bits and 33.33% are redundant. 
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Technically, the redundancy can be viewed as overhead. In this context, one-third of the 

transmitted bits are for redundancy. Alternatively, you might describe this as 50% overhead 

if you consider the additional bits as a fraction of the original information bits.  

Thus, for an (n, k) code, where n is the total number of bits transmitted and k is the number 



of information bits, the rate of the code is 𝑘𝑘
𝑛𝑛
. In this example, the rate is 2

3
, reflecting the 

redundancy introduced by the parity bits. 

Now let’s analyze this particular code in more detail.  

Consider the case where the codeword 0, 0, 0 is sent, and suppose exactly one bit error 

occurs in this 3-bit block. This means one of the bits is flipped, resulting in possible error 

patterns such as 0, 0, 1, 0, 1, 0, or 1, 0, 0.  

For each of these patterns, we can observe that there is a parity mismatch, indicating that 

an error has occurred. The reason is that the parity rule requires the total number of 1s in 

each block of three bits to be even. Let’s verify this: 

• For the pattern 0, 0, 1 : The sum is 0 + 0 + 1 = 1 (odd). 

• For the pattern 0, 1, 0 : The sum is 0 + 1 + 0 = 1 (odd). 

• For the pattern 1, 0, 0 : The sum is 1 + 0 + 0 = 1 (odd). 

Since each of these patterns results in an odd number of 1s, they do not satisfy the parity 

check rule, which requires an even number of 1s. Thus, the parity check code can 

effectively detect single errors. However, it cannot correct them, nor can it handle multiple 

errors within the same block. 

Now, let’s see how this works with an example. Suppose you have a bit pattern like 

00100010000110001. If we use this pattern with a binary symmetric channel, you will need 

to check the received bits for parity.  

For instance: 

• If you receive 001, the parity is odd (since there is one 1), so you would reject it. 

• If you receive 101, the parity is even, so you would accept it. 

• If you receive 010, the parity is odd, so you would reject it. 

• If you receive 011, the parity is even, so you would accept it. 

Here’s an interesting point: Up to this point, we have only seen cases where there is a single 



bit error in the block of 3. However, if there are 2 bit errors in the block, the parity will still 

appear correct. For example, if 011 was sent, but due to 2 errors it was received as 101, the 

resulting block still has even parity, misleading the detection process. Thus, you would 

incorrectly conclude no error occurred, even though 2 bit errors were introduced. 

Therefore, the single parity check code can effectively detect single-bit errors but fails to 

detect or correct multiple-bit errors. If there are more than one bit error, the code may fail 

to detect the error or provide incorrect results, as seen in the case of 011 being mistakenly 

read as 101. This demonstrates the limitations of the parity check code, where the detection 

capability is compromised with more than one bit error. 
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This is an important aspect to consider: when there are 2-bit errors, the parity check code 

can fail. The failure occurs because with 2-bit errors, the code might incorrectly conclude 

that no errors have occurred. The way the parity check code is designed, it involves 

appending a parity bit to the data bits. After transmitting, the receiver drops this parity bit 

and checks the remaining bits for correctness. If the remaining bits satisfy the parity 



condition, they are considered correct. However, if there are 2-bit errors, the parity check 

may not detect these errors, leading to incorrect conclusions. 

For instance, in a simple parity check code, a single additional bit is used to detect errors. 

This bit serves as a check and is effective for detecting single-bit errors. If you want to 

extend this idea to codes of different sizes, it is straightforward. For example, you can use 

a 5-4 parity code, where you take 4 bits of data and add a 5th bit for parity. In this case, 

you append a parity bit to make sure that the total number of 1s in the 5-bit block is even. 

Consider the following example:  

• For the bit sequence `1010`, which already contains an even number of 1s, you add 

a `0` as the parity bit. 

• For the bit sequence `1011`, which has an odd number of 1s, you add a `1` to make 

the total number of 1s even. 
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In general, for a k+1 parity check code, the rate of the code is given by 𝑘𝑘
𝑘𝑘+1

. The redundancy 



of the code is 1
𝑘𝑘+1

. As the parity check code gets larger, it can detect more single-bit errors 

but may struggle with multiple-bit errors, leading to an increased likelihood of making 

mistakes. Therefore, it's crucial to balance the code's size and error detection capability. 

Now, let’s examine the probability of making errors with a 3-2 parity code. 

The probability of encountering no errors in a block of 3 bits is given by (1 - p)3. On the 

other hand, the probability of a single error occurring is 3p(1 - p)2. This calculation is based 

on the fact that the error could occur in any one of the three positions. For each position, 

the probability of having an error in that spot while the other two bits are correct is p(1 - 

p)2. Since these scenarios are mutually exclusive, you sum them up to get 3p(1 - p)2. 

For more than one error, if there are two errors, the probability of this happening is 3p2(1 - 

p) + p3. If there are more than two errors, the code fails to detect them correctly. In other 

words, the code will accurately detect no errors or a single error and then accept the bit 

sequence after removing the parity bit. However, if there are two or three errors, the code 

cannot reliably detect them, leading to incorrect conclusions. 

Despite these limitations, using a parity check code does offer some advantages. For an 

uncoded system, the probability of a single bit error is p. In comparison, for a block of 2 

bits, the probability of at least one error is p2 (if both bits are erroneous) plus 2p(1 - p) (if 

one bit is erroneous). The parity check code, with a probability of 3p(1 - p)2 for detecting 

single-bit errors, generally provides better performance. This can be verified through 

calculations or exercises. 

It’s important to note that while a parity check code can detect errors, it cannot correct 

them. The redundancy of the code is 1
𝑘𝑘+1

, and the rate is 𝑘𝑘
𝑘𝑘+1

, as we have discussed. This 

parity check code is effective for detecting certain errors but not for correcting them. 

In the next lecture, we will explore another class of simple error control codes known as 

block codes. These block codes not only detect errors but can also correct them, meaning 

that they can recover the original information bits even if some of the coded bits are flipped. 

I look forward to discussing this with you next time. Thank you. 


