
Digital Communication using GNU Radio

Prof. Kumar Appaiah

Department of Electrical Engineering

Indian Institute of Technology Bombay

Week-10

Lecture-51

Equalisation using OFDM in GNU Radio

In the previous lecture, we thoroughly explored the various aspects of Orthogonal

Frequency Division Multiplexing (OFDM). To recap, the core idea behind OFDM is to

distribute your data across multiple parallel narrowband frequency channels. This approach

allows you to effectively parallelize the transmission, transforming it into several channels

that are relatively easy to equalize.

(Refer Slide Time: 04:07)

In this lecture, we will delve into using GNU Radio to implement an FFT-based OFDM

system. We will demonstrate how parallelizing the channels in the frequency domain helps

mitigate the effects of inter-symbol interference (ISI) to a significant extent. This reduction

is achieved because the transmission is split into parallel channels. However, it's important

to note that while ISI is reduced in this manner, it does reappear in the frequency domain

as different channel gains.

We will explore this concept by applying various PSK and QAM modulation schemes,

examining how the use of OFDM impacts the receiver design. Our approach will involve

first constructing a traditional system that does not utilize OFDM, and then gradually

integrating the OFDM components to observe the differences.

Let's begin with our first task, which involves creating a random data source. Once we've

added this random source, we'll configure it for QPSK modulation. Specifically, we will

set the maximum value to 4 and use the byte data type for simplicity. Next, we'll introduce

a constellation object along with an encoder. You can easily find these by using the search

function, just press Control+F (or Command+F on a Mac) and type in "constellation" to

locate the encoder.

We'll connect these elements together, defining the constellation as `myconst`, and ensure

that our encoder is set to use this `myconst` configuration. At this stage, we'll also need to

add a throttle block, which you can similarly find by searching for "throttle."

Moving forward, we'll incorporate a Root Raised Cosine (RRC) filter to handle pulse

shaping. We'll set the sampling rate to 192,000, while limiting our symbol rate to 8,000.

To manage this, we'll create another variable called `SPS` (samples per symbol). You can

find the variable block by searching, and we'll configure `SPS` to be the result of the

sampling rate divided by the symbol rate, ensuring we obtain an integer value of 8,000.

With the `SPS` variable in place, we'll next define our RRC filter taps. Again, search for

"RRC" to find the filter taps block, which we will label as `RRC_taps`. Given our symbol

rate of 8,000, this will define our RRC filter. Finally, we'll perform an interpolation using

a FIR (Finite Impulse Response) filter to adjust the sample rate.

So, the next step is to incorporate an interpolating FIR filter into our design. To do this,

we'll search for it by using Control+F (or Command+F on Mac), and then locate the

interpolating FIR filter. The interpolation factor will be set to `SPS`, while the filter taps

will correspond to the `RRC taps` that we defined earlier. This follows the traditional

approach we've been using to generate a properly sampled signal.

(Refer Slide Time: 04:33)

Now, we can visualize this signal using a QT GUI frequency sink. Again, use Control+F

(or Command+F) to search for "FREQ" and grab the QT GUI frequency sink. Once

connected, you'll notice that the frequency spectrum of the signal is spread across a

bandwidth roughly between -8 kHz and +8 kHz. After performing a bit of averaging, you

will see that the active bandwidth is actually within the range of -5 kHz to +5 kHz. This

slight reduction is due to the 1.3 factor introduced by the root raised cosine filter, which is

completely expected and makes sense.

Moving forward, we will transition from traditional modulation techniques to OFDM

modulation. To do this, we will take the output of the encoder (or from the throttle) and

perform an Inverse Discrete Fourier Transform (IDFT). As discussed in the lecture, the

simplest way to implement OFDM is to take your modulated symbols, apply an IDFT to

them, and then transmit the result.

To set this up in GNU Radio, we'll begin by creating a variable that defines the FFT size

for the IDFT. Use Control+F (or Command+F) to search for "variable" and define a new

variable called `FFTSIZE`. Setting this up as a variable will allow you to easily adjust the

FFT size later. For now, we can set it to, say, 4.

Next, we'll disconnect the existing signal flow so we can insert the necessary OFDM

elements. Specifically, we will need to perform a Discrete Fourier Transform (DFT) and

then its inverse (IDFT). The FFT block will be used for this purpose. Use Control+F (or

Command+F) to search for "FFT", and you'll find the FFT block under the Fourier analysis

section.

(Refer Slide Time: 12:58)

However, the FFT block in GNU Radio works with vector inputs rather than stream inputs,

because the FFT algorithm operates on blocks of data instead of individual samples. So,

before we can connect our signal to the FFT block, we need to convert the continuous

stream into vectors of a fixed size. This can be done by inserting a stream-to-vector

conversion block.

To do this, once again, use Control+F (or Command+F) and search for "stream to vector".

After inserting the block, double-click on it to configure the settings. We will set the

number of items to match our FFT size, which in this case is 4. Make sure that both the

number of items and the vector length are configured correctly, so that the input is divided

into chunks of size 4.

With this setup, the output from the stream-to-vector block can now be fed into the FFT

block. However, don't forget that after performing the FFT, you will need to convert the

output back into a stream to continue processing and viewing it in the frequency sink. This

ensures smooth signal flow throughout the entire OFDM processing chain.

We are now one step closer to creating a fully functional OFDM system in GNU Radio.

The first step is to configure the FFT block. We'll start by setting the FFT size to

`FFTSIZE`. Since we're aiming to perform an inverse DFT (IDFT), we need to adjust the

FFT block by setting it to operate in reverse mode. By default, the FFT block applies a

Blackman-Harris window, which is typically useful for spectral analysis as it smoothens

the spectral display. However, in our case, we want to visualize the spectrum directly

without any modifications. So, we’ll modify the window function to be all ones,

specifically by defining it as `square bracket 1 times FFT size`. This ensures that the

window function is effectively neutral.

Next, we need to deal with the FFT shift feature, which rotates the FFT output for easier

viewing. However, since we don't require any rotation here, we'll set the shift to 'none'.

With these adjustments, the connection should be set up correctly. After performing the

inverse DFT, the next step is to convert the output back into a continuous stream. For this,

we use the "vector to stream" block. After inserting the block, double-click it and set the

number of items to the FFT size. Now, make sure that the previous "stream to vector" block

is also updated to use `FFTSIZE` instead of a fixed number like 4, allowing for more

flexibility when changing the FFT size in the future.

(Refer Slide Time: 17:34)

Once the flow graph is executed, you should observe a similar spectrum to the one before,

this makes sense because we're essentially sending similar data through the system.

However, it would be more insightful to visualize how the spectrum or symbols behave

when we enable or disable specific frequency subcarriers. To accomplish this, we can

explore various methods, but one straightforward approach is to use demultiplexing and

multiplexing.

Here’s the plan: we will break the stream down into smaller sub-streams, manipulate

specific subcarriers, and then reassemble the stream. We'll begin by creating four QT GUI

range sliders, which will act as on/off switches for each subcarrier. Start by using

Control+F (or Command+F) to search for the "range" block. Once inserted, name the first

one `S1` and set the default value to 1. The range will be configured with a start value of

0, a stop value of 1, and a step size of 1, effectively turning the subcarriers on and off.

Next, we’ll duplicate this range block three times (using Ctrl+C and Ctrl+V), labeling the

new blocks as `S2`, `S3`, and `S4`, respectively. These will control the activation of the

four parallel streams (or subcarriers).

After setting up the range blocks, we need to split the main stream into parallel sub-streams

using a stream demultiplexer (stream demux). This block takes the continuous input stream

and splits it into multiple parallel streams. Search for the "stream demux" block via

Control+F (or Command+F), and insert it into the flow graph. Double-click the block and

configure the number of outputs to match the FFT size, in this case, 4. The lengths of the

outputs should be set to `[1 times FFT size]`, ensuring that each of the four outputs

corresponds to one of the subcarriers.

Now, we’ll connect the output of the modulation stage to the demux block, splitting the

data into four parallel streams. Once we have the demuxed streams, the next step is to

reassemble them back into a single stream. We accomplish this by using a stream

multiplexer (stream mux) block. Search for "stream mux" and insert it into the flow graph.

This block will perform the inverse operation of the demux, recombining the individual

streams back into one continuous data stream.

Lastly, once the structure is in place, you can tidy up the flow graph for better readability

and ensure everything is properly connected.

Let's tidy this up later. Now, for the stream multiplexer (streammux), I’ll double-click and

set the number of inputs to `FFTSIZE`, and for simplicity, we’ll set the lengths as `[1

times FFT size]`. Once the streammux is configured, we'll connect its output

appropriately. The next step is to toggle these individual streams on and off using the ranges

we set up earlier.

To do this, we'll create four constant sources that act as multipliers for each stream. Use

Ctrl+F (or Cmd+F) and search for the "multiply const" block. I'll insert the first one and

name it `S1`. Then, I'll duplicate it three times by using Ctrl+C and Ctrl+V, and name them

`S2`, `S3`, and `S4`. Once these multipliers are placed, we connect them to the

corresponding streams.

Now, if we execute this flow graph, you'll initially see the entire spectrum. But let’s switch

off all subcarriers by setting all ranges to zero. As expected, no spectrum will be visible.

Now, let’s turn on only `S1`. You should observe that only one portion of the spectrum

near zero is being used, occupying approximately one-fourth of the total spectrum, which

makes sense since we’ve divided the spectrum into four subcarriers.

Next, let’s switch on `S2`. You'll notice a similar spectral shape, but this time it will appear

around the 2 kHz mark, again, this is logical as the spectrum is being split into four parts.

When only `S3` is enabled, the spectrum appears around the 4 kHz mark on the positive

side and also symmetrically near -4 kHz. This behavior is consistent with the sampling

theorem and what you've learned in DSP. Finally, when `S4` is on, the center appears

around -2 kHz.

In essence, by enabling and disabling these streams, we’ve split the signal into four parallel

subcarriers, and you can clearly see how each subcarrier occupies its respective portion of

the frequency spectrum.

Now, let's explore what happens when we increase the number of subcarriers. A simple

way to do this is by increasing the `FFTSIZE` from 4 to 8. However, this will require us

to add more ranges and multipliers to handle the additional subcarriers. Let’s go ahead and

do that now. I'll select the current range and multiplier blocks, copy them using Ctrl+C,

and paste them with Ctrl+V. These new blocks will be named `S5`, `S6`, `S7`, and `S8`,

respectively.

I'll also duplicate the corresponding multiply constants, connecting `out4` to `S5`, `out5`

to `S6`, `out6` to `S7`, and `out7` to `S8`. With everything connected and in place, we can

execute the flow graph again.

This time, let’s only enable `S1` and keep all others off. You’ll notice the spectrum is even

narrower than before, centered around 0 kHz. Now, turn on `S2`, and you’ll see a portion

of the spectrum centered around 1 kHz. With eight subcarriers, we’re dividing the 8 kHz

spectrum into eight equal parts. Similarly, enabling ̀ S3` places the spectrum around 2 kHz,

and `S4` around 3 kHz. When `S5` is activated, the spectrum splits between 4 kHz and -4

kHz, a familiar artifact of the sampling theorem and the way the discrete-time Fourier

transform (DTFT) is computed, repeating between -π and π.

(Refer Slide Time: 28:05)

This effectively demonstrates that we’ve parallelized the channels, distributing the signal

across multiple subcarriers. The spectrum clearly shows how the data is placed in parallel,

validating that our system works as expected.

Now that we’ve achieved this, it’s clear that using OFDM allows your data to appear in the

frequency domain without altering the spectral characteristics. It uses the same spectrum

but distributes the data across different subcarriers, effectively parallelizing the channel.

Our next objective is to demonstrate the ease of equalization in OFDM, specifically by

ensuring that, even in the presence of a channel, we can equalize the signal using one-tap

equalization.

To keep things straightforward, let's simulate a scenario where we assume one symbol per

sample rate, which means our simulation will have one symbol for every sample. We’ll

start by adding a random source and a constellation encoder. So, as usual, use Ctrl+F (or

Cmd+F) to search for "random source." We'll configure the random source to output 4

bytes and then proceed to add the constellation encoder. For this example, let's call the

encoder `myconst`, though we haven’t created it yet. We’ll define `myconst` as our

constellation object, and with that, our constellation is ready.

Next, we’ll add a throttle block to regulate the flow. However, since we are introducing a

channel in the simulation, it’s important to remember that we need to add a cyclic prefix to

account for the channel. Let’s assume our channel has at most 3 taps. We’ll create a channel

model by defining a variable named `h`. Let’s say the channel model is represented by the

following complex taps: `[1, 0.2 + 0.3j, 0.1 - 0.05j]`. This will represent our baseband

channel.

Now, we need to perform a convolution between the transmitted data and this channel.

Before doing that, we’ll incorporate OFDM, making sure to add a cyclic prefix of length

at least 2 to accommodate the channel. To begin, we’ll use Ctrl+F (or Cmd+F) to search

for and add the necessary blocks. We’ll start by bringing in a variable block for the FFT

size. Let’s name this variable `FFTSIZE` and set its initial value to 8.

Next, we’ll use a "stream to vector" block to convert the incoming data stream into vectors

of size `FFTSIZE`. Search for this block using Ctrl+F (or Cmd+F). We’ll configure the

number of items in this block to match the `FFTSIZE` variable. Following that, we’ll grab

an FFT block. Again, we’ll set the FFT size according to our `FFTSIZE` variable and

configure it for inverse FFT (IDFT). We’ll also set the FFT window function to `[1 times

FFT size]`, an array of ones, and disable shifting.

After the inverse FFT, we’ll convert the vectors back into a stream by using a "vector to

stream" block. Once this is done, we’ll need to demultiplex the stream in order to add a

cyclic prefix. Search for the "stream demux" block, configure its length to `[1 times FFT

size]`, and set the number of outputs to `FFTSIZE`. This will effectively split the stream

into multiple parallel outputs.

Now, to handle the cyclic prefix, we’ll use a stream multiplexer (streammux). This will

allow us to insert the cyclic prefix into the data stream. We’ll add a streammux block and

configure it to accommodate the additional data for the cyclic prefix.

(Refer Slide Time: 29:49)

Once all the components are set, we’ll rotate the blocks for better visibility using the arrow

keys. This will help organize the flow graph neatly. Now, with the cyclic prefix added and

everything properly aligned, we’ll be able to effectively simulate the OFDM system with

channel convolution and observe how the one-tap equalization performs under these

conditions.

Now, I'll grab a stream mux and double-click to adjust its parameters. Let’s set the cyclic

prefix length to 3. This means the length of the stream will be `[1 * FFT size + 3]`, so the

total length becomes `FFT size + 3`. This creates a larger stream mux that accounts for the

cyclic prefix. I’ll use the right and left arrow keys to rotate the block as needed for the

connections.

I’ll now connect the "back parts" of the data stream directly, since the cyclic prefix is

positioned at the front. After connecting these back parts, I’ll connect ̀ out 7` to ̀ IN2`, ̀ out

6` to `IN1`, and `out 5` to `IN0`. This step introduces the cyclic prefix by prefixing the

actual symbols with the last 3 symbols, ensuring that the convolution won't distort the data.

Next, we bring in the channel model by searching for the "interpolating FIR filter" using

Ctrl+F (or Cmd+F). The filter block also needs to be rotated, use the left arrow twice to do

that. The filter taps will be set to `H`, which performs the convolution. Now that we have

our output from the convolution, we’ll introduce noise into the system.

Search for a noise source using Ctrl+F (or Cmd+F) and rotate it using the left arrow key.

After that, grab an "add" block and rotate it as well. The noise source’s amplitude will be

set by a variable called `noise_std`. To adjust this, we need a range block, use Ctrl+F (or

Cmd+F) to find it. This range will allow us to vary the standard deviation of the noise,

starting from 0.01, with a stop value of 3, and increments of 0.01. The default value for

`noise_std` should be 0.01, and the range will start at 0.

Now we have a noise source incorporated, and our output will clearly be affected by both

the channel and noise. To make the flow graph clearer, I’ll move the constellation object

over to free up some space. With this adjustment, the flow graph looks more organized.

At the receiver side, the first task is to remove the cyclic prefix and then perform

equalization. The equalization process will be simple, just a single-tap equalizer. Now,

there are two ways to remove the cyclic prefix. One method involves using a stream demux

to separate the `FFT size + 3` elements and send the first 3 to a null source. But, we will

use a simpler approach.

We’ll use a block called `keep m in n` (Ctrl+F or Cmd+F). This block is quite handy, it

lets you keep only `m` elements out of `n`, starting from a defined initial offset. In our

case, the first 3 elements are always going to be the cyclic prefix, so we set the initial offset

to 3 and keep only ̀ FFT size` elements out of `FFT size + 3`. By doing this, we effectively

remove the cyclic prefix from the data stream.

The remaining task is to take the FFT of the signal to see what we get back. I'll search for

the "stream to vector" block, rotate it using the arrow keys, and set the number of items to

`FFT size`. After that, I'll grab the FFT block and configure it. The FFT block needs to be

in forward mode, so I’ll copy the existing block, set it to forward, and connect it to the

stream.

Now, I’ll take the result and convert it back to a stream using the "vector to stream" block.

After rotating the block appropriately, I’ll prepare to visualize the output using a QT GUI

constellation sink. Search for the constellation sink (Ctrl+F or Cmd+F) and set the number

of inputs to 8, as we are working with 8 parallel streams.

Finally, I’ll demultiplex the stream so that we can view each of the 8 constellations

individually on the GUI. By copying the necessary blocks and arranging them, we can view

each stream’s constellation separately on the QT GUI.

Now that everything is connected, we are ready to run the flow graph. When we execute

it, a pattern appears, but one minor issue is that all the signals seem to be the same color,

which can make it difficult to differentiate between them. To fix this, you can double-click

on the respective elements and change their colors in the configuration settings. For

example, we can assign blue to the first stream, red to the second, green to the third, black

to the fourth, cyan to the fifth, magenta to the sixth, dark red to the seventh, and dark blue

to the eighth. This provides better visual separation of the streams.

Once we execute the flow graph again, we encounter a scaling issue due to the FFT, which

automatically scales the output. We haven’t accounted for this scaling yet. So, let’s

examine just one of the outputs by modifying the display settings. Interestingly, we observe

a QPSK-like constellation, but it’s rotated. As you might know, a rotation in the QPSK

constellation can be easily corrected with a simple multiplication to de-rotate it.

Let's move on to the second stream. It also shows a rotated QPSK-like constellation. The

third stream displays a similar pattern, as does the fourth. This indicates that the inter-

symbol interference introduced by the channel is not significantly detrimental because all

that’s required to recover the signal is a simple scaling adjustment. However, you may

notice that the amplitudes of some constellations vary, some are higher, some lower. This

variation is a result of the frequency-selective nature of the channel, which affects different

parts of the signal differently.

(Refer Slide Time: 33:09)

Different subcarriers are affected by the channel with varying degrees of impact.

Interestingly, the amplitudes of certain subcarriers tend to be close to one another, such as

subcarrier 0 and data1, subcarriers 2 and 3, and subcarriers 3 and 4. However, subcarrier 1

and subcarrier 4 may exhibit noticeable differences, as well as subcarrier 1 and subcarrier

6. This behavior is due to the gradual variation of the channel’s frequency response, which

manifests in the frequency domain.

Now, let’s experiment by changing the channel. For instance, let's modify the taps to `0.7

+ 0.7j` and `-0.1` or `-0.4`. With this altered channel, you’ll observe new characteristics

across the subcarriers. Let’s examine them one by one: subcarrier 1, subcarrier 2, and so

on. You’ll notice that subcarriers 7 and 8 appear weaker.

If you’re skeptical about whether this system is functioning properly, we can further

demonstrate it by switching to a QAM 16 constellation. We’ll adjust the constellation to

QAM 16 and modify the random source to output values between 0 and 16. When viewed,

you'll notice numerous dots on the display. Let’s focus on just one of the streams. You can

clearly see a rotated QAM 16 constellation. The same rotation appears in the other streams

as well, though some show weaker constellations due to the channel’s effect. Nevertheless,

they all exhibit the characteristic QAM 16 pattern, simply rotated.

This illustrates the power of OFDM. The technique of parallelizing the channel allows for

very simple equalization, just a single-tap equalizer suffices. It’s almost as if the

transmission is pre-equalized, without any detailed knowledge of the channel. If you’re

interested in diving deeper into OFDM using GNU Radio, there are more sophisticated

implementations that handle the allocation of data into OFDM frames, transmission,

reception, and more. Those are worth exploring on your own.

In this lecture, we built a basic OFDM simulation in GNU Radio, specifically a baseband

OFDM system. We demonstrated that even in the presence of a channel, OFDM can

mitigate the channel’s effects by transforming a wideband signal into multiple narrowband

sub-channels using the DFT. We saw that regardless of the constellation used, each

subcarrier undergoes only a multiplication by a complex number, which makes

equalization straightforward. This is why OFDM is effective in converting a frequency-

selective wideband channel into several nearly frequency-flat narrowband channels. It is

an extremely useful technique, which explains its widespread adoption in modern wireless

and wired communication standards, including Wi-Fi, LTE, and many others. Thank you.

